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Abstract
Lip reading, the process of interpreting silent speech from visual lip movements, has gained rising attention for
its wide range of realistic applications. Deep learning approaches greatly improve current lip reading systems.
However, lip reading in cross-speaker scenarios where the speaker identity changes, poses a challenging problem
due to inter-speaker variability. A well-trained lip reading system may perform poorly when handling a brand
new speaker. To learn a speaker-robust lip reading model, a key insight is to reduce visual variations across
speakers, avoiding the model overfitting to specific speakers. In this work, in view of both input visual clues and
latent representations based on a hybrid CTC/attention architecture, we propose to exploit the lip landmark-guided
fine-grained visual clues instead of frequently-used mouth-cropped images as input features, diminishing
speaker-specific appearance characteristics. Furthermore, a max-min mutual information regularization approach
is proposed to capture speaker-insensitive latent representations. Experimental evaluations on public lip reading
datasets demonstrate the effectiveness of the proposed approach under the intra-speaker and inter-speaker conditions.
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1. Introduction

Lip reading, commonly known as visual speech
recognition (VSR), aims to automatically recognize
spoken text units through the speaker’s lip move-
ments of a silent video clip, and is widely used in
various potential applications such as aiding individ-
uals with hearing impairments, speech recognition
in noisy environments, human-computer interac-
tion (Chung and Zisserman, 2016; Afouras et al.,
2018c; Yang et al., 2019; Afouras et al., 2018a;
Rekik et al., 2015). Recently lip reading research
has made great progress thanks to the advent of
deep learning and the availability of large-scale an-
notated corpus. Particularly, the advanced neural
models adapted from the fields of automatic speech
recognition (ASR) and natural language process-
ing (NLP) significantly boost the performance of lip
reading (Assael et al., 2016; Chung et al., 2017;
Martínez et al., 2020; Ma et al., 2021, 2022).

Despite its success, lip reading still suffers from a
non-trivial problem for practical usage, namely the
considerable variations between speakers (Almajai
et al., 2016; Burton et al., 2018). Conventional lip
reading systems trained on a limited set of speak-
ers tend to recognize the lip movements of specific
individuals, and are easily sensitive to speaker vari-
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ance, making them more suitable for overlapped
speakers appeared in the training set. However,
different speakers usually have different lip appear-
ance and shapes even when they say the same
utterances, and those systems may be prone to
overfit the visual variations of lip region, which re-
sults in degraded performance when adapting to
a speaker never seen before (Huang et al., 2021;
Xue et al., 2023). Hence, it is essential to develop a
lip reading system that can be generalized across
speakers in favor of real-world applications.

To improve the robustness and accuracy of a lip
reading model when dealing with unseen speak-
ers, one intuitive solution is to eliminate the visual
variations across speakers as much as possible.
Since facial landmarks are sparse geometric coor-
dinate points, indicating the location of key facial
areas, they are robust to the pixel-based visual ap-
pearance and could serve as speaker-independent
clues (Morrone et al., 2019). In (Xue et al., 2023),
besides the visual features extracted from lip im-
ages, the authors introduced the facial landmarks
to suppress the speaker variance in lip shapes and
movements, achieving effective performance gains.
In addition to the visual clues, another trend is to
encourage the lip reading model to learn speaker-
independent but speech content related visual rep-
resentations by various means (Wand and Schmid-
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huber, 2017; Yang et al., 2020; Huang et al., 2021;
Zhang et al., 2021; Lu et al., 2022).

Existing studies mostly take mouth-centered
crops as input, but the visual variations of lip shapes
and appearance may be inevitably introduced. To
handle speaker variations, we rethink both the in-
put visual clues and intermediate latent representa-
tions in this work. For the visual clues, we make the
most of the lip landmarks and explore the landmark-
guided fine-grained visual features from three as-
pects. First, we consider the landmark-centered
patches as they are not only key areas closely re-
lated to lip reading, but also facilitate reducing lip
shape variance. In particular, we extract tubelets
(i.e., 3D patches) centered on landmarks in view
of both spatial and temporal dimensions. Second,
to build the geometric correlation between different
patches within each frame, the relative distances
between landmarks are used as positional informa-
tion to complement the geometric features. More-
over, as lip motion trajectories tend to be speaker-
independent, we obtain the lip motion features from
landmark tracks across frames by calculating the
inter-frame difference of landmark coordinates. The
aforementioned visual features can be regarded
as the front-end obtained features, which are then
fed into a back-end conformer encoder to model
global and local temporal relationships (Gulati et al.,
2020). Finally, a hybrid CTC/attention architecture
(Hori et al., 2017; Petridis et al., 2018) is utilized for
target text prediction.

Although the fine-grained local visual features in-
duced by lip landmarks are expected to reduce the
visual appearance variance, redundant speaker-
specific characteristics may still be preserved within
some patches. Therefore, we propose to leverage
a max-min mutual information (MI) regularization
scheme to decouple the identity-related features
and speech-related features, facilitating speaker-
insensitive latent representations. More specifically,
in order to dig out speaker identity-related informa-
tion, a speaker identification module is additionally
introduced. Then, we minimize the MI between the
speech-related features extracted by the conformer
encoder and identity-related features extracted by
the speaker identification module, while maximiz-
ing the MI between the representations encoded by
the front-end and back-end of a lip reading model.
In conclusion, the major contributions of this paper
are summarized as follows:

• We investigate the landmark-guided fine-
grained visual clues tailored for the cross-
speaker lip reading task, with better inter-
pretability in contrast to the widely-used mouth-
cropped images.

• We propose a max-min mutual information reg-
ularization approach to encourage the lip read-

ing model to learn speaker-insensitive latent
representations.

• Experiments and analysis performed on pub-
lic sentence-level lip reading datasets demon-
strate the effectiveness of the proposed ap-
proach in the cross-speaker setting.

2. Methodology

Figure 1 briefly illustrates the overall model frame-
work built on the joint CTC/attention architecture. It
consists of several key components, each of which
will be detailed in the following subsections.

2.1. Model Architecture
Let x = [x1, x2, · · · , xT ] be the visual input streams
of length T drawn from a facial video clip, mapped
into the target text sequence y = [y1, y2, · · · , yN ]
with N tokens by a lip reading model. Suppose K
lip landmarks are detected for each video frame in
the pre-processing stage.

2.1.1. Landmark-Guided Visual Front-end

The mouth-centered cropped regions are com-
monly used as the visual clues. Nevertheless,
local subtle lip dynamics (e.g., mouth contours)
may fail to to be effectively captured (Sheng et al.,
2022). In addition, the whole mouth-cropped im-
ages potentially contain much speaker-related in-
formation (e.g., personal appearance traits), re-
sulting in more significant visual appearance dif-
ference across speakers. Thus, we investigate
the landmark-based visual clues to capture local
fine-grained lip movements and meanwhile reduce
visual variance among different speakers. More
specifically, we exploit the 2D landmarks of lip re-
gion from three distinct perspectives as follows:

3D Patches For each frame at time-step t, we
first extract a small square window (patch)1 of
size wt × wt centered at each landmark position
pit (1 ≤ i ≤ K), and the landmark-centered patch
describes this point by the surrounding spatial con-
text. Considering the neighboring temporal context
of lip movements between adjacent frames, we
further extract the 3-dimensional patch (tubelet)
achieved by a 3D convolutional module, producing
the tubelet embedding vi

t. In other words, we can
construct a tubelet of size wt × wt × d (d means
the depth of patch determined by the kernel size in
time dimension) around each lip landmark at each
time-step. Unlike the whole mouth-cropped images

1For the sake of simplicity and ensuring a symmet-
ric spatial context, the square-shape window is given
preference.
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Figure 1: Illustration of the overall multi-task learning framework for cross-speaker lip reading. The model
inputs are derived from the mouth-centered crops coupled with lip landmarks.

encoded by 3D convolution, the landmark-centered
tubelet reduces the computational complexity of
visual feature extraction. Moreover, less speaker
identity-related information is retained.

Intra-Frame Relative Position As lip landmarks
within a frame are not in fixed and regular posi-
tion but distributed in a certain shape, the local
patches alone may be not sufficient to learn good
visual features. Thus, we consider the geometri-
cal relationships between them within a frame by
calculating the relative distance between any two
landmark points. Specifically, we adopt a Multi-
Layer Perceptron (MLP) layer to encode the coor-
dinate differences between the i-th landmark and
other landmarks at the t-th time-step, producing
the relative positional vector defined as:

rit = MLP({pit − pjt}i ̸=j), (1 ≤ j ≤ K) (1)

As a result, we have the position-aware visual
feature at the i-th landmark: ui

t = vi
t + rit. In order

to obtain the visual representations of the whole
frame, we leverage a attention-weighted aggrega-
tion for the fine-grained features of all the land-
marks at the t-step, allowing for the interaction be-
tween those tubelets. Concretely, a Lf -layer atten-
tive encoder consumes the sequence of tubelet vec-
tors zt = [u1

t ,u
2
t , · · · ,uK

t ] at the t-step. Each layer
is composed of multi-head self-attention (MHSA)
(Vaswani et al., 2017) and MLP blocks along with
layer normalization (LN) as follows:

y
(l)
t = MHSA(LN(z

(l)
t )) + z

(l)
t ,

z
(l+1)
t = MLP(LN(y

(l)
t )) + y

(l)
t ,

(l = 1 · · ·Lf )

(2)

The outputs of the last layer (z(Lf )
t ) followed by

a global average pooling over all the landmarks
produce the intra-frame visual features ft.

Inter-Frame Lip Motions We explicitly extract
the inter-frame lip movement features derived from
the lip landmark tracks. For the t-th time-step, we
mainly consider the contour and geometric infor-
mation involving lip dynamics, including the land-
mark’s x-y coordinates; the height and width of
outer and inner lip measured by Euclidean distance.
Because these metrics may vary significantly when
a speaker pronouncing. The motion vector can be
obtained by computing the difference between two
adjacent frames, i.e., the current frame (t) simply
subtracts the pre-frame (t−1). The motion vector of
the first time-step can be set to zero. Here we use
a 1-dimensional convolutional module to extract
context-aware motion features mt. Furthermore,
we combine the motion features with the orthogonal
intra-frame visual features to generate the front-end
visual representations: ht = ft||mt (t = 1 · · ·T )
through a simple concatenation operation (||).

2.1.2. Conformer Back-end

In light of the sequential spatio-temporal properties
of video data, the spatially dominant visual front-
end mentioned above may fail to capture tempo-
ral dependencies between video frames effectively.
Hence, we take advantage of the conformer en-
coder which integrates self-attention mechanisms
and convolutional operations, to model global and
local temporal dependencies across frames dynam-
ically. The front-end visual features are passed
through the conformer encoder with Lb sequentially
stacked blocks with identical structure:

H(0) = [h1,h2, · · · ,hT ],

H(l) = ConformerBlock(H(l−1)),

(l = 1 · · ·Lb)

(3)

Each conformer block with the macaron-like struc-
ture is composed of a set of stacked modules: a
feed-forward module, a multi-head self-attention
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module, a convolution module and a second feed-
forward module (Gulati et al., 2020).

Similar to ASR, the monotonic alignment prop-
erty between input and target sequences is also
supposed to be satisfied in VSR. To this end, the
auxiliary CTC loss over the encoder outputs is ap-
plied to maximize the correct target alignments:

LCTC = − log pCTC(y|x), (4)

where pCTC(y|x) ≈
∏T

t=1 p(yt|x) based on condi-
tional independence assumption between the pre-
dicted outputs.

2.1.3. Transformer Decoder

Autoregressively, a standard transformer decoder
(Vaswani et al., 2017) is applied to receive the front-
end encoded hidden representations and the pre-
fixes of the target sequence to generate the next
token of speech content. The decoder is comprised
of a embedding layer followed by Ld stacked multi-
head attention blocks. The sequence of prefixes is
projected to embedding vectors, and then the abso-
lute positional encoding is added. Each attention
block consists of a masked multi-head self-attention
module, an encoder-decoder multi-head attention
module and a feed-forward module.

S(0) = TE(ŷ) + PE(ŷ),

S(l) = DecoderBlock(S(l−1),H(Lb)),

(l = 1 · · ·Ld)

(5)

where ŷ is the prefixes of target sequence, TE and
PE denote the token embedding layer and posi-
tional encoding layer respectively. To generate the
desired output sequence, the cross-entropy based
training loss is defined to narrow the gap between
the predicted sequence and the target sequence.

LCE = − log pCE(y|x), (6)

where pCE(y|x) ≈
∏N

t=1 p(yt|y<t,x) based on the
chain rule during the step-wise decoding process.

Finally, the training objective of the encoder-
decoder architecture is calculated by a simple linear
combination as follows:

LV SR = λLCTC + (1− λ)LCE . (7)

where the relative weight λ satisfies 0 ≤ λ ≤ 1.

2.2. Speaker Identification
To allow for the subsequent decoupling of speaker-
related features and speech content related fea-
tures, the model should be able to distinguish differ-
ent speakers from local lip appearance. Therefore,
we introduce an additional speaker identification
branch. The underlying speaker identity-related

features are obtained via a MLP head that has a
batch normalization layer, a ReLU activation func-
tion and a fully-connected (FC) layer. The speaker
classifier with a FC layer is then used for speaker
identification based on multi-class cross-entropy
objective function.

hID = MLP(GAP(H(0))),

pID = softmax(FC(hID)),

LID = −
C−1∑
c=0

yIDc log pIDc ,

(8)

whereGAP is the global average pooling layer used
to temporally aggregate the front-end visual fea-
tures (from Eq. 3), C refers to the number of all
speakers, pIDc represents the class probability of
the input sample belongs to speaker c while yIDc
is the binary ground-truth label indicating whether
this sample belongs to the speaker or not. The
speaker identification branch is only used in the
training phase.

2.3. Max-Min Mutual Information
Regularization

Although the landmark-based visual clues poten-
tially reduce the inter-speaker visual variations,
there may still retain the redundant speaker-specific
information within some patches. Therefore, we
further exploit the speaker-insensitive features in
latent representation space. To ensure the inde-
pendence between speaker identity and speech
content, we adopt the mutual information (MI) reg-
ularization method to facilitate learning of indepen-
dent disentangled representations. Formally, the
basic definition of MI between variables X and Y ,
establishing on the KL-divergence of their joint and
marginal probability distributions:

I(X,Y ) = KL
(
p(X,Y )||p(X)p(Y )

)
, (9)

For differentiable MI estimation, we introduce
using the variational Contrastive Log-Ratio Upper
Bound (vCLUB) (Cheng et al., 2020) as the up-
per bound of the desired MI I(X,Y ), achieving MI
minimization between latent representations.

IvCLUB(X,Y ) := Ep(X,Y )

[
log qϕ(y|x)

]
−

Ep(X)Ep(Y )

[
log qϕ(y|x)

]
,

(10)

where the variational distribution qϕ(y|x) with pa-
rameter ϕ is applied to approximate the unknown
conditional distribution p(y|x).2 Then, the training
loss of minimizing the MI between the content-
related features (Eq. 3) and the identity-related

2Note that IvCLUB(x, y) remains a MI upper bound
when we have a good variational approximation qϕ(y|x)
using a neural network.
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(Eq. 8) features can be defined as LminMI =
IvCLUB(h

ID,H(Lb)).
Besides, we adopt a MI neural estimator based

on the Jensen-Shannon divergence (Hjelm et al.,
2019) as a lower bound of Eq. 9 to achieve MI
maximization among latent representations.

Î(JSD)
θ (X,Y ) := Ep(X,Y )

[
− log(1 + e−Fθ(x,y))

]
− Ep(X)p(Y )

[
log(1 + eFθ(x,y))

]
,
(11)

where Fθ stands for a score function approximated
by a MLP with learnable parameter θ. The front-
end is encouraged to capture speaker irrelevant
representations, accomplishing by maximizing the
MI between features extracted from the front-end
and back-end encoders. Thus, the training loss is
defined as LmaxMI = −Î(JSD)

θ (H(0),H(Lb)) where
H(0) corresponds to the front-end visual features.

Consequently, the training objective of the MI
estimators is to minimize the overall loss as follows:

LMI = LminMI + LmaxMI . (12)

2.4. Training and Decoding
Finally, to optimize the whole model parameters,
we propose to utilize a two-stage training strategy:

Stage I We jointly train the VSR module and
speaker identification module in a multi-task learn-
ing manner, until the speaker identification module
converges.

L = LV SR + α1LID. (13)

Stage II We freeze the weights of the well-trained
speaker identification module, and continue to train
the VSR module along with the MI estimators.

L = LV SR + α2LMI . (14)

where α1 and α2 are the weight coefficients. The
first stage is to initialize the speaker identification
module, ensuring that speaker identity-related fea-
tures can be effectively extracted. While the second
stage aims to encourage the speech content related
features to be towards speaker-invariant. During
inference, the transformer decoder is performed
with a left-to-right beam search algorithm.

3. Experiments

3.1. Datasets and Evaluation
We conduct experiments on publicly available lip
reading dataset GRID (Cooke et al., 2006). It is
a popular sentence-level dataset, consisting of 34

speakers3, and each speaker utters a set of 1000
sentences with fixed grammar. The duration of
each recorded facial video clip is about 3 seconds,
sampling 25 frames per second. Following Assael
et al. (2016), we utilize the same unseen speaker
split that four speakers (1, 2, 20 and 22) are used for
testing and the rest for training. For the overlapped
speaker setting, we randomly select 255 samples
from each speaker for testing and the remaining
samples for training. Detailed data statistics can
be found in Table 1.

Setting Subset #Speaker #Sentence

Overlap Train 33 24408
Test 33 8415

Unseen Train 29 28837
Test 4 3986

Table 1: Data statistics for the overlapped and un-
seen speaker settings.

To measure model performance, we use word
error rate (WER) as evaluation protocol following
previous literature (Assael et al., 2016; Chung et al.,
2017). WER in percentage is calculated by com-
paring the number of substitutions (S), deletions
(D), and insertions (I) required to transform the rec-
ognized output generated by a lip reading system
into the reference transcription, divided by the total
number of words in the reference transcription (N).
Mathematically, the formula for calculating WER
can be just defined as WER = (S + D + I) / N. Lower
WER values indicate higher accuracy.

3.2. Implementation Details
For the pre-processing, we use the face alignment
detector (Bulat and Tzimiropoulos, 2017) to detect
and track 68 facial landmarks for each frame of
video clips from the dataset4. We resize the original
video into 360×288, and select all 20 lip landmarks
aligned with the landmark point of the nose tip (K=
20). The basic size of each patch centered on
a landmark point is 24×24. Moreover, all video
frames are converted to grayscale and normalized
by division by 255.

Table 2 shows the architecture of the 3D patch
encoding module. For the conformer encoder, we
use 3 blocks, hidden dim of 256, feed forward dim of
1024, 8 attention heads, and the kernel size of each
depth-wise convolutional layer is set to 31. For the

3Data source: https://spandh.dcs.shef.ac.
uk/gridcorpus. It is worth noting that the video data
for speaker 21 is not available.

4Open-source toolkit: https://github.com/
1adrianb/face-alignment. According to the same
index numbers in consecutive frames, we can connect
the corresponding landmark coordinates across frames
and track those landmarks over time.

https://spandh.dcs.shef.ac.uk/gridcorpus
https://spandh.dcs.shef.ac.uk/gridcorpus
https://github.com/1adrianb/face-alignment
https://github.com/1adrianb/face-alignment
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Layers Filters Output size
Conv3D 5× 3× 3, 64 64× T × H

2 × W
2

MaxPool3D 1× 3× 3, 64 64× T × H
4 × W

4

Conv2D 3× 3, 128 T × 128× H
8 × W

8

Conv2D 3× 3, 256 T × 256× H
16 × W

16
AvgPooling – T × 256

Table 2: The 3D patch encoding module. Each
convolution layer is followed by batch normalization
and Swish activation function.

transformer decoder, the basic hyper-parameters
are the same as in the conformer (Lf =Lb=Ld=3).
λ is set to 0.1 as suggested in (Ma et al., 2022), and
the values of α1, α2 are empirically set to 0.2. Dur-
ing training, the Adam optimizer is used to update
the learnable model parameters with a mini-batch
size of 50. The initial learning rate is 3e−4, following
a schedule strategy that increases linearly from 0
to the initial value and thereafter decreases with
cosine annealing. In the testing phase, a beam
search decoder is applied to the transformer de-
coder for character-level prediction with beam width
10, without using external language model.

Flexible Patch Size Compared with a fixed patch
size, Beyer et al. (2023) have demonstrated the
superiority of randomized patch sizes for a stan-
dard vision transformer (Dosovitskiy et al., 2021).
Drawing inspiration from this, we try to dynamically
change the size of landmark-centered patch at each
iteration during training, which is implemented by
randomly sampling a window size from a range of
windows (e.g., w×w, w ∈ {20, 22, 24, 26, 28, 30, 32}
with an interval of 2 pixels in this work).5

3.3. Ablation Analysis
We perform a series of ablation studies in the
unseen speaker setting to better understand our
method from different aspects. Results are shown
in Table 3. First, performance drop can be ob-
served when removing the relative position or lip
motion features from the fine-grained visual clues
of our pipeline. That verifies the importance of
each part to enhance the visual features. More-
over, we ignore the temporal context information of
the landmark-centered patch through replacing the
tubelet with 2D patch, resulting in about 1.4% WER
increase. Furthermore, we abandon the mutual in-
formation regularization terms from the framework,
leading to consistent performance drops.

Here we consider adopting the commonly-used
mouth-cropped images rather than the proposed

5Due to limited computational resources, we uniformly
resize the large cropped patches to a proper resolution
of 24×24, which is also used for model inference.

fine-grained visual cues, and the results with perfor-
mance degradation prove the benefits of our visual
cues in improving the recognition performance of
unseen speakers. The whole mouth regions and
beyond may provide more complete and informa-
tive spatial context cues beneficial for lip reading
(Zhang et al., 2020), but at the cost of preserving
more speaker-specific characteristics that are not
conducive to cross-speaker adaptation. Also, this
motivates us to make a good trade-off between
recognition accuracy and robustness when exploit-
ing the visual features.

Method WER (%)
Ours 10.21
w/o RelPos 10.69
w/o Motion 10.92
w/o MI 11.13
w/o RelPos&Motion 11.41
w/o RelPos&MI 11.65
w/o Motion&MI 11.77
w/o RelPos&Motion&MI 12.40

Replacing 3D patch with 2D patch 11.62
Using mouth-centered crops 11.50

Table 3: Ablation studies for unseen speakers. Rel-
Pos, Motion and MI mean relative positions among
intra-frame landmarks, lip motion information, and
mutual information regularization, respectively.

3.4. Comparison with Previous Methods
As shown in Table 4, we compare the proposed
method with the previous competitive baselines for
the overlapped and unseen speaker settings. We
can observe that different lip reading methods in-
deed perform much better when handling those
seen speakers. The comparison results also indi-
cate that the proposed method can achieve perfor-
mance on par with or exceeding those competitive
methods in both settings, by attaining 1.83% WER
and 10.21% WER in the seen and unseen speaker
scenarios respectively. Since the core motivation
of this work is not to pursue a new state-of-the-art,
here we do not consider the mouth-cropped images
like the previous methods as global visual cues hav-
ing rich spatial information. Improved recognition
performance may be further obtained through any
feasible integration (Sheng et al., 2022; Xue et al.,
2023) with the proposed fine-grained visual cues.

3.5. Effect of Patch Size
To analyze the effect of patch size on recognition
performance, we further examine the landmark-
centered patches with different sizes, as depicted
in Fig. 2. Large patch size means more spatial con-
textual information around a landmark point, and
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Method (Overlapped) WER (%)
LipNet (Assael et al., 2016) 4.80
WAS (Chung et al., 2017) 3.00
LCANet (Xu et al., 2018) 2.90
DualLip (Chen et al., 2020) 2.71
CALLip (Huang et al., 2021) 2.48
LCSNet (Xue et al., 2022) 2.30
Ours 1.83
Method (Unseen) WER (%)
LipNet (Assael et al., 2016) 14.2
WAS (Chung et al., 2017) 14.6
TM-seq2seq (Afouras et al., 2018a) 11.7
Motion&Content (Riva et al., 2020) 19.8
PCPG-seq2seq (Luo et al., 2020) 12.3
LCSNet (Xue et al., 2022) 11.6
Ours 10.21

Table 4: Performance comparison with previous
competitive baseline methods.

vice versa. We observe that: (1) Patch size has
a less impact on the performance of overlapped
speakers compared to unseen speakers. It may be
attributed to a fact that the local appearance around
a landmark point is similar for a speaker who has
already been seen. (2) For unseen speaker set-
ting, smaller patches may provide less spatial con-
texts, while larger patches may lead to redundant
visual information since lip landmarks are closely
arranged. Thus, a moderate patch size ensures
good recognition results for unseen speakers.

Instead of using a single patch size, we propose
to utilize flexible patch size (FPS) for the lip-reading
model training by patch sampling strategy. The
comparison demonstrates that FPS can lead to
better recognition performance (i.e., dashed lines),
especially for the unseen speaker setting. FPS can
actually be regarded as a spatial context augmenta-
tion, and a lip reading model trained at FPS enables
receive patches of variable scales in comparison
to that trained at a single fixed patch size.

20 22 24 26 28 30 32
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Figure 2: Performance comparison of different
patch size (ranged from 20 to 32) in the overlapped
and unseen speaker settings. The dashed line in-
dicates the recognition performance using flexible
patch size.

3.6. Attention Visualization
As mentioned in subsection 2.1.1, a multi-head
attentive fusion module is used to aggregate the
features of 3D patches centered on lip landmarks
within a frame. We examine all 20 lip landmarks
out of 68 facial landmarks, indexed from 49 to 68.
Figure 3 presents the attention maps of a sampled
video clip produced by the attentive fusion module.
The weights are calculated by averaging over all
the self-attention heads at all layers, with values
suggesting the importance between the landmarks.
We can observe that not all landmark-centered ar-
eas are non-trivial across frames, and the module
pays more attention to the areas around the corners
of the mouth (e.g., landmark 49, 54, 55, 57, 61, etc).
One possible reason is that the visual movements
of those areas are relatively more evident at a lo-
cal scale ("view"), when a speaker utters with his
mouth open and closed. This finding may help us
determine lip landmarks that need to be processed,
leading to reduced computation overhead.

4. Related Work

4.1. Lip Reading
Lip reading technique is essentially the translation
of lip movements related visual signals into corre-
sponding transcribed text. For the visual signal
input, aligned mouth regions of interest cropped by
detected landmarks are the most commonly-used
(Chung and Zisserman, 2016; Chung et al., 2017;
Afouras et al., 2018a; Petridis et al., 2018; Ma et al.,
2021, 2022; Xue et al., 2023). Using extraoral re-
gions (e.g., the upper face and cheeks) also helps
boost recognition performance (Zhang et al., 2020).
For the textual output, lip reading paradigms can
be broadly categorized as word-level setting and
sentence-level setting. The former aims to map a
video frame sequence into isolated units with lim-
ited number (e.g., digits, letters or words), which
is extensively explored by early research efforts
(Chung and Zisserman, 2016; Yang et al., 2019;
Martínez et al., 2020; Zhao et al., 2020). The latter
is challenging yet practical, mapping a video frame
sequence into a spoken sentence. Typically, the
model architecture of the two paradigms consists of
3D and 2D convolutional layers (e.g., ResNet (He
et al., 2016)) as the front-end, and sequential mod-
els as the back-end, such as RNN (Assael et al.,
2016; Chung et al., 2017), TCN (Martínez et al.,
2020) and Transformer (Afouras et al., 2018a,b).
Unlike the word-level trained with simple classifi-
cation loss, sentence-level lip reading models usu-
ally train with Connectionist Temporal Classifica-
tion (CTC) (Graves et al., 2006) or sequence-to-
sequence (Sutskever et al., 2014; Vaswani et al.,
2017) fashion to achieve effective performance.
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Figure 3: Attention weight maps between lip landmarks (indices from 49 to 68) from the attentive intra-
frame fusion module. The weights are calculated by averaging over all the self-attention heads. The video
clip used here is drawn from the test set. Darker colors indicate larger weight values.

Even with the great progress, existing lip read-
ing systems are restricted in the limited number
of speaker, leading to speaker dependency prob-
lems. Due to the visual variations of lip movements
across speakers, these systems enable achieve
considerable performance for overlapped speakers
in training set, whereas obtain significant perfor-
mance drops for unseen speakers. To eliminate
the variations, on the one hand, enhancing the input
visual clues may be a straightforward way. Riva
et al. (2020) used the motion dynamics derived
from simple adjacent-frame differences to improve
the performance. Xue et al. (2023) used facial
landmarks to complement the features extracted
from lip images. On the other hand, several previ-
ous studies instead pay more attention to learning
speaker-independent features that are robust to
speaker identity information, such as adversarial
training (Wand and Schmidhuber, 2017), disentan-
gled representation learning (Zhang et al., 2021;
Lu et al., 2022), and speaker normalization (Yang
et al., 2020; Huang et al., 2021).

In this work, we focus on the sentence-level lip
reading. Unlike the previous studies, consider-
ing that the mouth-centered crops might preserve
more speaker-related features (e.g., the beard or
mole around mouth) irrelevant to speech content
recognition, we explore the landmark-guided fine-
grained visual clues to reduce visual appearance
variance. Moreover, a mutual information regular-
ization scheme is proposed to encourage both the
front- and back-end of a lip reading model to learn
speaker-insensitive latent representations.

4.2. Landmark-based Visual Features
Facial landmarks, referring to specific coordinate
points on a person’s face that are used to locate
key facial areas (e.g., eyes, eyebrows, nose and
lip), have attracted increasing attention in visual
speech-related fields over recent years. One ad-
vantage of landmark points is that they outline the
overall shape of facial key areas in a sparse posi-
tional encoding way, and further geometric and con-
tour features can be easily derived (Cetingul et al.,

2006; Kumar et al., 2007; Zhou et al., 2011), effec-
tively describing lip motion irrespective of speak-
ers. Morrone et al. (2019) applied motion features
based on facial landmarks to improve speech en-
hancement in a multi-speaker scenario, and proved
that the advantages of motion-based features over
position-based features. To fully exploit the charac-
teristics of lip dynamics, Sheng et al. (2022) lever-
aged Graph Convolution Network (GCN) to model
dynamic mouth contours and capture local subtle
movements, improving recognition performance by
enhancing visual feature representations. Since
landmark-based features are less affected by visual
variations caused by lip shapes and appearance,
Xue et al. (2023) introduced the facial landmarks as
complementary feature to the visual appearance of
lip regions via a cross-modal fusion manner, elimi-
nating biased visual variations between speakers
and yield improved performance and robustness
for unseen speakers. Motivated by the success
of landmarks, in this work, we further investigate
the lip-landmark guided visual clues for facilitating
generalization to unseen speakers.

4.3. Mutual Information Regularization
Mutual information (MI) is typically employed as
a measure of the amount of information that one
random variable reveals about the other (Kinney
and Atwal, 2014). It quantifies the dependence
between two variables. In the context of (unsuper-
vised) representation learning, through maximizing
the MI, the model is enforced to capture meaningful
dependencies or relevance between different fea-
ture representations, and vice versa. Actually, MI
is hard to exactly calculate in the high-dimensional
and continuous cases. Thus, various efficient neu-
ral estimation methods have been proposed over
recent years as approximate solutions (Belghazi
et al., 2018; van den Oord et al., 2018; Hjelm et al.,
2019; Cheng et al., 2020). Krishna et al. (2019)
improved the image-to-question generation model
by maximizing the MI between the image, expected
answer, and generated question. Zhu et al. (2018)
tried to solve talking face generation generation
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problem by MI maximization between word distri-
bution and other modal distribution. Similarly, to
improve the lip reading performance, Zhao et al.
(2020) utilized the global and local MI maximization
constraints to extract discriminative features.

Different from previous works, we introduce a MI
regularization term to learn informative represen-
tations for cross-speaker adaptation in lip reading.
Instead of relying on sample pairs from the same
or different speakers as model input (Yang et al.,
2020; Zhang et al., 2021; Lu et al., 2022), we try
to minimize the MI between speaker-dependent
features and content-dependent features for the
purpose of decoupling, while maximizing the MI
between the front-end encoded features and the
back-end encoded features.

5. Conclusion

In this paper, we provide insights into the cross-
speaker lip reading task in terms of visual clues
and latent representations, aiming to reduce visual
appearance variations across speakers. On the
basis of the hybrid CTC/attention architecture, we
propose to exploit the landmark-guided fine-grained
visual clues as model input features, while introduc-
ing the max-min mutual information regularization
to learn speaker-insensitive latent representations
via a two-stage optimizing scheme. The experi-
mental results evaluated on the sentence-level lip
reading demonstrate the effectiveness of the pro-
posed approach.

6. Limitations

One potential drawback of softmax activation in the
speaker identification module is that it fails to en-
courage cluster compactness and cannot ensure
the similarity among samples within the same cat-
egory. To address this problem, the AM-Softmax
loss (Wang et al., 2018), an enhanced version of
softmax, may help better learn speaker discrimina-
tive representations. In addition, the performance
of the current lip reading system still has room for
further advancement. One possible way to improve
is to make the most of the mouth-cropped images
and beyond as complementary information. We
leave these for future research.
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