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Abstract
As language models are often deployed as chatbot assistants, it becomes a virtue for models to engage in
conversations in a user’s first language. While these models are trained on a wide range of languages, a
comprehensive evaluation of their proficiency in low-resource languages such as Korean has been lacking. In
this work, we introduce KoDialogBench, a benchmark designed to assess language models’ conversational
capabilities in Korean. To this end, we collect native Korean dialogues on daily topics from public sources, or translate
dialogues from other languages. We then structure these conversations into diverse test datasets, spanning from
dialogue comprehension to response selection tasks. Leveraging the proposed benchmark, we conduct extensive
evaluations and analyses of various language models to measure a foundational understanding of Korean dialogues.
Experimental results indicate that there exists significant room for improvement in models’ conversation skills.
Furthermore, our in-depth comparisons across different language models highlight the effectiveness of recent training
techniques in enhancing conversational proficiency. We anticipate that KoDialogBench will promote the progress
towards conversation-aware Korean language models.
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1. Introduction

The recent advancement in large language models
(LLMs) (Touvron et al., 2023a,b; Chowdhery et al.,
2022) has sparked an increased interest in evalu-
ating their performance within the research com-
munity. Several recent studies propose datasets to
assess the abilities of language models in diverse
ways (Cobbe et al., 2021; Bisk et al., 2020; Chen
et al., 2021; Zellers et al., 2019). Following this
trend, the integration of these test sets into a unified
benchmark has become crucial for a holistic eval-
uation of LLMs. Notably, Srivastava et al. (2023);
Suzgun et al. (2023); Gao et al. (2023) curate
benchmarks comprising diverse sets of real-world
tasks through crowdsourcing, while Hendrycks et al.
(2021) focus on evaluating general capabilities us-
ing regular exams. These evaluations play a signifi-
cant role in unveiling the functionalities of LLMs and
transitioning LLMs to practical applications such as
autonomous agents (OpenAI, 2023).

Beyond these general functionalities, there also
exists a rising interest in assessing LLMs for so-
cial interactions (Zhou et al., 2023; Wang et al.,
2023). Unlike conventional tasks that require log-
ical knowledge, Sap et al. (2019) emphasize the
importance of commonsense reasoning for social
interactions, and the subsequent work delves into
the evaluation of these capabilities on LLMs (Sap
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et al., 2022). Further, Zhan et al. (2023) construct
a benchmark to analyze LLMs’ understanding of
social communications in the Chinese context.

However, there remains a notable gap between
the evaluation protocols of LLMs for Korean lan-
guage interactions and those for high-resource lan-
guages. To the best of our knowledge, a compre-
hensive benchmark for assessing Korean conver-
sational abilities of LLMs on daily topics has yet to
be proposed. Although Park et al. (2021) introduce
a representative benchmark for Korean language
understanding, it focuses on assessing the logical
functionalities. Jang et al. (2022) construct another
Korean benchmark designed by language experts,
focusing on measuring the linguistic knowledge
embedded in LLMs. This lack of domain-specific
evaluation methods potentially hinders the progres-
sion of Korean conversational LLMs.

In this work, we introduce KoDialogBench, a
benchmark tailored to assess and compare the
Korean conversational proficiency of LLMs. To
this end, we aggregate native Korean dialogues
from public sources (e.g., AI Hub), or translate di-
verse open-domain dialogue corpora from other lan-
guages. The collected dialogues are then framed
into two primary tasks: dialogue comprehension
and response selection. We extensively leverage
a variety of meta information provided by the origi-
nal sources, facilitating a multifaceted analysis of
conversational abilities. Specifically, in dialogue
comprehension, we probe various aspects to de-
termine if a model is able to discern the underlying
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concepts within a dialogue. For response selection,
we evaluate a model’s ability to distinguish appro-
priate next responses, categorizing dialogues by
their metadata types. Through these tasks, we aim
to assess the depth of understanding and response
accuracy of LLMs across diverse conversational
scenarios.

Experimental results demonstrate that despite
their extensive training on large-scale corpora, cur-
rent LLMs fall short in matching human-level con-
versational abilities in Korean. Although increasing
the model size and incorporating well-curated Ko-
rean corpora during training improve performance,
there still remains much room for LLMs to reach
human-level understanding of open-domain dia-
logues. Further analysis on heterogeneous dia-
logues discloses that most LLMs exhibit deficien-
cies in certain types of tasks, offering a precise
diagnostic perspective for identifying areas of im-
provement. Our benchmark not only furnishes a
multifaceted viewpoints for assessing the conversa-
tional abilities of LLMs in Korean, but also paves the
way for the development of adept conversational
agents.1

2. Related Work

Dialogue Benchmarks With the advent of
dialogue-based language models (Caldarini et al.,
2022; Chen et al., 2017; Ni et al., 2022), a myriad
of studies focus on evaluating these models in the
context of open-domain dialogues. Starting from a
widely-used evaluation dataset in DSTC7 (Galley
et al., 2019) for response generation task, subse-
quent works have further enriched the field. For
instance, Li et al. (2017) craft a dataset compris-
ing multi-turn dialogues whose topics are related
to daily life, and Zhang et al. (2020) introduce a
dataset derived from Reddit by transforming re-
ply chains into dialogue structures. Meanwhile,
benchmarks designed to evaluate specific aspects
of dialogues have also been proposed. Rashkin
et al. (2019) release a benchmark to assess the
empathy exhibited by dialogue agents, and Zhang
et al. (2018) scrutinize persona awareness through
the lens of persona-guided dialogues. Shuster
et al. (2020) assemble diverse collections of open-
domain dialogues, aiming to evaluate the capabil-
ity of dialogue systems for engaging human-like
conversations. More recently, Zhan et al. (2023)
present a benchmark intended to assess various
social elements embedded within dialogues. Nev-
ertheless, a majority of these advancements have
been confined to high-resource languages like En-
glish and Chinese, underlining a pertinent need
for evaluation datasets for low-resource languages

1We make our code and data publicly available at
https://github.com/sb-jang/kodialogbench.

Task Source Class Size

Topic
Korean SNS 6 1200
Korean Thematic Daily Dialogues 19 1900
SocialDial (Korean): Topic 4 400

Emotion
Korean Emotional Dialogues 6 1200
DailyDialog (Korean): Emotion 5 470
Empathetic Dialogues (Korean): Emotion 2 2000

Relation SocialDial (Korean): Social Distance 4 524
SocialDial (Korean): Social Relation 3 330

Location SocialDial (Korean): Location 4 376

Dialog Act Korean Thematic Daily Dialogues 4 520
DailyDialog (Korean): Act 4 1000

Fact
Korean Dialogue Summary 4 1200
PersonaChat (Korean): Persona 4 1000
Empathetic Dialogues (Korean): Situation 4 2394

Table 1: Statistics for the dialogue comprehension
task. Each task consists of one or more test sets,
each with its own taxonomy.

to assess conversational capabilities in a more di-
verse linguistic landscape.

Low-resource Language Benchmarks There
exist several research works aiming at evaluating
language models in the context of low-resource lan-
guage understanding. Lai et al. (2023); Ahuja et al.
(2023); Bandarkar et al. (2023); Zhang et al. (2023);
Ryan et al. (2023) employ a range of tasks across
various languages to conduct multilingual evalua-
tions. While such multilingual assessments provide
wide applicability for various languages, shifting a
focus on a single specific language can yield a more
sophisticated perspective and elevate the quality
of the evaluation process. For instance, Uzunoglu
and Şahin (2023) focus on Turkish to provide a de-
tailed evaluation of language model performance in
that language. Similarly, Augustyniak et al. (2022)
devise a benchmark exclusively for Polish to fur-
ther analyze language models’ understanding of
the language. Furthermore, Kurihara et al. (2022)
establish a benchmark centered on Japanese, em-
ploying original Japanese sentences. Similar work
has been conducted to measure the general under-
standing of Korean (Park et al., 2021; Jang et al.,
2022). Nonetheless, a comprehensive evaluation
of language models’ proficiency in Korean conver-
sational ability largely remains underexplored.

3. Korean Dialogue Benchmark

We construct a benchmark called KoDialogBench
to evaluate the conversational capabilities of lan-
guage models in Korean. This benchmark con-
sists of 21 test sets, encompassing diverse aspects
of open-domain colloquial dialogues, categorized
under two primary task suites: dialogue compre-
hension and response selection. In this section,
we outline the taxonomy of the benchmark and
its construction process. Throughout this process,

https://github.com/sb-jang/kodialogbench
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we use held-out sources, specifically validation or
test splits, to prevent benchmark contamination
(Brown et al., 2020; Dodge et al., 2021; Magar and
Schwartz, 2022).

3.1. Dialogue Comprehension
The dialogue comprehension task suite aims to
quantify the ability of language models to identify
diverse characteristics of conversations. To this
end, we exploit various meta information labeled to
the dialogues, which spans from explicit information
to implicit attributes inherent in the context. The
task suite encompasses six aspects and includes
14 test sets. The taxonomy and statistics are pre-
sented in Table 1. Throughout our methodology,
we exclude categories with less than 50 examples,
applying stratified sampling to mitigate class imbal-
ances. Further details regarding these categories
are elucidated in Appendix A.

3.1.1. Topic Classification

Topic classification is widely used to assess
whether language models can understand the main
subject of a conversation (Guo et al., 2018). We
leverage three publicly available corpora, each an-
notated with distinct topic categories.

We collect messenger chats from AI Hub web-
site.2 Out of the original categories, we select six
classes that are clearly distinguishable and refer
to this curated dataset as Korean SNS. Similarly,
we obtain Korean dialogues encompassing diverse
topics.3 We exclude the family category from the
original set due to its semantic overlap with other
categories, resulting in the Korean Thematic Daily
Dialogues dataset. Finally, we acquire conversa-
tions from the SocialDial corpus (Zhan et al., 2023).
We translate the native Chinese dialogues to Ko-
rean using the DeepL API.4 We further exclude the
life-trivial category because of its overlapping se-
mantics with other classes. This modified dataset
is denoted as SocialDial (Korean): Topic.

3.1.2. Emotion Recognition

Recognizing emotions is pivotal for engaging in
social conversations (Hsu et al., 2018; Chatterjee
et al., 2019). We harness three public sources
to create classification datasets focused on this
aspect.

From the AI Hub, we gather Korean human-bot
counseling dialogues.5 This results in a dataset de-
signed to gauge the counselee’s emotions through-

2https://bit.ly/3ZIUF3N
3https://bit.ly/3ZNnqfG
4For all translations in this study, we utilize the DeepL

API. Link: https://bit.ly/3F2R1YM
5https://bit.ly/3PFgOLK

Source Size

Korean SNS 10295
Korean Thematic Daily Dialogues 10616
Korean Emotional Dialogues 17818
PersonaChat (Korean) 7801
DailyDialog (Korean) 6740
Empathetic Dialogues (Korean) 7941
SocialDial (Korean) 7237

Table 2: Statistics for the response selection task
data.

out the dialogue, named Korean Emotional Dia-
logues. The major emotion labels based on six
classes are used in this dataset. Besides, we trans-
late the DailyDialog (Li et al., 2017) corpus, which
has utterance-level emotion annotations. We aim
to identify the speaker’s emotions in each utter-
ance, resulting in the DailyDialog (Korean): Emo-
tion dataset. Lastly, we translate the Empathetic
Dialogues (Rashkin et al., 2019) corpus, which
contains dialogues grounded in emotional situa-
tions. We binarize the original fine-grained emo-
tions based on their polarity except two emotions,
i.e., surprised and sentimental, whose polarities
cannot be determined by their names. This curated
dataset, focusing on predicting a speaker’s emo-
tional polarity, is dubbed as Empathetic Dialogues
(Korean): Emotion.

3.1.3. Relation Classification

Relation classification aims to discern the relations
or the social distances between interlocutors (Jia
et al., 2021). The two test sets for this classification
are derived from the translated SocialDial corpus,
albeit with different class categories.

One aspect we focus on is the prediction of so-
cial distance, emphasizing the degree of close-
ness or acceptance between the interlocutors. Ad-
ditionally, we conceptualize the problem of deter-
mining social relation, which concentrates on the
power distance between individuals. We exclude
dialogues that pertain to peer-peer and elder-junior
categories due to formality inconsistency during
translation (Lee et al., 2023a,b).

3.1.4. Location Classification

The goal of location classification is to determine
where a dialogue takes place. We also leverage the
translated SocialDial corpus. Out of the ten classes,
the processed dataset exclude three classes that
are difficult to infer from the given conversation
alone.

https://bit.ly/3ZIUF3N
https://bit.ly/3ZNnqfG
https://bit.ly/3F2R1YM
https://bit.ly/3PFgOLK
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3.1.5. Dialog Act Classification

Understanding dialog acts is essential for creat-
ing socially adept conversational agents (Stolcke
et al., 2000; Shriberg et al., 2004). To this end, we
leverage datasets from two distinct sources.

First, we utilize dialogues from the Korean The-
matic Daily Dialogues, which come with coarse-
grained dialog act classes such as directive, as-
sertive, commissive, and expressive. We devise
descriptions for each class by integrating the ver-
balized text of fine-grained act labels and provide
these descriptions in our prompts. Additionally, we
incorporate the translated DailyDialog to establish
another test set. Here, we follow the four act cate-
gories: inform, question, directive, and commissive.
We reference the explanations provided in the orig-
inal work, translating them into Korean for use in
our prompts.

3.1.6. Fact Identification

We devise three classification datasets that encom-
pass varied facts within conversations, including
dialogue summaries, personas, and situational con-
texts.

We collect conversations along with their sum-
maries from AI Hub.6 Here, we construct queries
presenting a four-option multiple choice format: one
ground truth summary and three random distrac-
tors. The objective is to correctly identify the sum-
mary that encapsulates the given dialogue. This
dataset is dubbed as Korean Dialogue Summary.

Additionally, we utilize a translated version of
PersonaChat (Zhang et al., 2018) enriched with
persona-grounded dialogues. We construct four-
option questions in which the ground truth is a per-
sona sentence describing a speaker, and three dis-
tractors are persona sentences sampled from other
examples. This dataset is named PersonaChat
(Korean): Persona.

Lastly, for discerning situational contexts, we em-
ploy the translated Empathetic Dialogues corpus.
The dataset contains descriptions detailing the situ-
ations in which the dialogues occur. We formulate
the problem that involves presenting a ground truth
situation alongside three distractors sampled from
other dialogues.

3.2. Response Selection
We construct seven response selection datasets
from our collection of Korean conversations through
the following processes. For Korean SNS, we sam-
ple the same number of conversations based on
attributes like the number of participants, the gen-
der composition of dialogues, and dialogue topics.
This not only reduces the computational costs for

6https://bit.ly/3RL03RQ

evaluation (Maynez et al., 2023), but also ensures
fair representation of various dialogues. For cor-
pora with more than 10k dialogues, namely Korean
SNS and Korean Thematic Daily Dialogues, we
sample informative utterances based on character
count and the number of unique Korean charac-
ters. Using these sampled utterances, we create
examples that require a model to predict these utter-
ances. For Korean Emotional Dialogues, we craft
instances for bot responses to measure the capabil-
ities of models to empathize with humans. For the
remaining corpora, every utterance is transformed
into a response selection example.

To curate five-option multiple choice questions,
we randomly sample four responses from the same
corpus to act as negatives. The statistics of the
datasets are presented in Table 2.

4. Experiments

4.1. Experimental Setup

4.1.1. Language Models

In Table 3, we organize recently published lan-
guage models based on four criteria that can in-
fluence Korean dialogue tasks. Detailed attributes
related to their handling Korean are as follows:

• LLaMA-2 is pretrained using Korean texts; how-
ever, they comprise less than 0.1% of the entire
corpus.

• Polyglot-Ko is pretrained on a Korean corpus
collected from a variety of sources including dia-
logue data such as ClovaCall (Ha et al., 2020).

• KoAlpaca utilizes the Alpaca dataset (Taori et al.,
2023), which is translated into Korean for instruc-
tion tuning.

• KORani adopts a similar approach as KoAlpaca
but uses the Vicuna dataset (Zheng et al., 2023).

4.1.2. Evaluation Protocols

We adopt the multiple-choice format,which is preva-
lent for evaluating language models (Hendrycks
et al., 2021; Gao et al., 2023). In this approach,
a language model calculates the log-likelihood of
generating each option given a prompt and makes
a selection accordingly. To ensure language mod-
els effectively focus on the target tasks, we employ
several prompting strategies. Illustrative examples
of these prompting methods are presented in the
Appendix B.

Direct Prompting Direct prompting requires a
model to generate answers directly for the pre-
sented problem. The prompt consists of a dialogue
and a subsequent question regarding the charac-

https://bit.ly/3RL03RQ


9909

Model Base Korean Chinese Code Instruction

XGLM (Lin et al., 2022)
LLaMA (Touvron et al., 2023a)
WizardLM (Xu et al., 2023) LLaMA D
LLaMA-2 (Touvron et al., 2023b)
LLaMA-2-Chat (Touvron et al., 2023b) LLaMA-2 D
Falcon (Penedo et al., 2023)
Falcon-Inst (Penedo et al., 2023) Falcon D
Mistral (Jiang et al., 2023)
Mistral-Inst (Jiang et al., 2023) Mistral D
CodeLLaMA (Rozière et al., 2023) LLaMA-2 D
CodeLLaMA-Inst (Rozière et al., 2023) CodeLLaMA D D
Qwen (Bai et al., 2023) D
Qwen-Chat (Bai et al., 2023) Qwen D D
Polyglot-Ko (Ko et al., 2023) D
KoAlpaca PolyGlot-Ko D D
KORani-v1 PolyGlot-Ko D D
KORani-v2 LLaMA D D
KORani-v3 LLaMA D D

Table 3: Details of language models used in experiments. Korean and Chinese indicate whether the
majority of pretraining text is Korean or Chinese, respectively. Code and Instruction denote whether the
model is additionally trained using code corpora or instruction datasets, respectively.

teristics of the dialogue. We take the log probabil-
ities of each verbalized class name as its scores.
This method is applied for topic, emotion, relation,
and location classification, as the verbalized class
names aptly convey their meanings.

Direct Prompting with Class Descriptions For
tasks where class names alone are not sufficiently
descriptive, we supplement the prompt with short
explanations about each class. This method is
employed for dialog act classification, as the class
names are often too abstract for models to solve
the task accurately.

Option Prompting Option prompting displays op-
tions alongside their corresponding numbers within
the prompt. A model is then asked to generate the
number corresponding to the correct class. We
adopt this method for fact identification since the
candidates differ for each example.

Response Selection Prompting Response se-
lection can be structured as a text completion task,
which is a format well-suited for language models.
The prompt is organized as a sequence of utter-
ances, ending with the speaker identifier for the
subsequent utterance. Given this prompt, it is nat-
ural for a model to generate the next utterance,
thereby completing the dialogue structure. It can
be interpreted that the model is inclined to generate

responses with the highest score compared to the
other options.

4.2. Results
We report the accuracy results for the two task
suites in Table 4 and Table 5. Our analysis delves
into the empirical findings related to the Korean
conversational capabilities of the models.

Model Scaling We observe model scaling trends
across all model groups in both task suites. Gener-
ally, larger models outperform their smaller coun-
terparts, with the exception of Polyglot-Ko 5.8B
and XGLM 4.5B. This suggests that increasing the
model size may be an effective strategy to enhance
Korean conversational capabilities, but solely scal-
ing the model does not guarantee significant im-
provement.

Cross-lingual Transferability of Instruction Tun-
ing We find that instruction tuning using datasets
in languages other than Korean does not im-
prove Korean conversational capabilities. Specifi-
cally,WizardLM, LLaMA-2-Chat, Qwen-Chat, and
Mistral-Inst show lower average accuracy scores
in dialogue comprehension and show little to no
improvement in response selection compared to
their base models: LLaMA, LLaMA-2, Qwen, and
Mistral, respectively. On the other hand, instruc-
tion tuning with datasets in Korean such as KoAl-
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Model Topic Location Relation Emotion Dialog Act Fact Average

Random 15.6 25.0 29.2 28.9 25.0 25.0 24.8

XGLM 564M 30.8 52.1 35.8 37.1 24.7 25.2 34.3
XGLM 1.7B 30.2 48.1 33.4 39.5 25.0 25.2 33.6
XGLM 2.9B 37.2 45.7 41.1 44.3 25.0 25.2 36.4
XGLM 4.5B 32.3 61.4 36.0 43.5 25.8 25.2 37.4
XGLM 7.5B 38.9 69.4 42.3 50.5 24.9 25.0 41.8
LLaMA 7B 26.2 35.9 43.9 46.1 23.7 26.1 33.7
LLaMA 13B 29.3 42.3 37.5 37.7 23.6 34.2 34.1
WizardLM 7B 15.6 25.0 29.2 28.9 25.0 24.3 24.7
WizardLM 13B 28.6 42.6 36.4 36.1 24.6 34.5 33.8
LLaMA-2 7B 37.5 75.8 56.6 46.4 24.7 32.1 45.5
LLaMA-2 13B 36.0 78.2 53.3 54.6 24.8 38.0 47.5
LLaMA-2-Chat 7B 31.0 67.3 44.3 43.3 27.1 32.7 41.0
LLaMA-2-Chat 13B 37.0 74.7 46.2 51.3 23.6 41.5 45.7
Falcon 7B 19.7 29.5 35.1 32.9 25.0 25.2 27.9
Falcon-Inst 7B 22.5 26.6 37.2 36.3 24.6 25.2 28.7
Mistral 7B 34.1 76.9 46.7 58.8 25.0 68.3 51.6
Mistral-Inst 7B 27.9 39.9 52.9 42.8 26.9 53.0 40.6
CodeLLaMA 7B 30.7 52.7 39.8 46.7 23.8 41.8 39.2
CodeLLaMA 13B 33.8 63.3 54.0 63.1 25.5 31.8 45.3
CodeLLaMA-Inst 7B 32.1 55.3 41.5 52.2 26.8 47.2 42.5
CodeLLaMA-Inst 13B 32.9 63.3 57.5 63.9 26.0 49.4 48.8
Qwen 7B 38.8 64.1 29.4 49.4 25.0 45.1 42.0
Qwen 14B 45.3 73.7 41.9 59.8 27.7 77.2 54.3
Qwen-Chat 7B 36.2 48.4 38.5 37.2 25.4 58.0 40.6
Qwen-Chat 14B 41.8 68.6 41.5 54.8 28.7 82.9 53.0
Polyglot-Ko 1.3B 31.8 61.7 39.1 44.8 24.8 25.3 37.9
Polyglot-Ko 3.8B 36.2 58.8 45.4 48.1 25.2 25.3 39.8
Polyglot-Ko 5.8B 29.7 59.3 40.0 46.5 26.3 25.3 37.8
Polyglot-Ko 12.8B 36.7 61.7 47.2 53.9 24.9 24.3 41.5
KoAlpaca 5.8B 33.1 47.1 31.6 40.3 23.3 24.2 33.3
KoAlpaca 12.8B 42.1 70.5 44.2 60.1 24.3 23.7 44.1
KORani-v1 13B 33.4 73.1 45.8 52.0 24.0 24.3 42.1
KORani-v2 13B 30.5 68.1 45.7 39.0 25.3 34.6 40.5
KORani-v3 13B 34.7 69.7 41.5 48.3 26.7 36.1 42.8

Human 83.6 86.0 73.3 67.1 54.7 93.3 76.3

Table 4: Results for dialogue comprehension. Scores for each task represent the average across test
sets within a task. Detailed results for individual tasks are presented in Appendix C.

paca and KORani, improve scores despite potential
translation errors. This indicates that the general
improvement coming from instruction tuning, as
discussed in several research (Wei et al., 2022a;
Chung et al., 2022), does not exhibit cross-lingual
transferability.

Effects of Instruction Tuning Datasets KoAl-
paca models exhibit proficiency in dialogue com-
prehension tasks, whereas KORani-v1 excels in re-
sponse selection tasks, although both models are
fine-tuned on the same base model, Polyglot-Ko.
We attribute this distinction to the semantic differ-
ence of training examples in their respective instruc-
tion tuning datasets. The Alpaca dataset primarily

consists of question-answering dialogues, which
naturally aligns with dialogue comprehension tasks
that focus on understanding dialogue characteris-
tics. In contrast, the Vicuna dataset encompasses
more realistic conversations, potentially enabling
the model to preserve the capabilities of respond-
ing to diverse conversations. This suggests that
while instruction-tuning is thought to enhance the
generalization across various tasks, the format of
the instructions also influences the performance of
the target task.

Training with Code Data We observe that code
pretraining increases the ability to identify facts
within Korean conversations. As evidenced in Ta-
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Model K-SNS K-TDD K-ED PC (K) DD (K) ED (K) SD (K) Average

XGLM 564M 22.3 24.0 38.0 30.1 30.5 25.9 32.9 29.1
XGLM 1.7B 23.4 27.1 42.1 33.0 33.6 28.1 35.4 31.8
XGLM 2.9B 24.0 29.1 45.6 34.9 34.9 29.4 38.1 33.7
XGLM 4.5B 22.9 26.9 42.6 32.8 33.7 28.3 35.5 31.8
XGLM 7.5B 25.3 31.1 47.5 36.4 36.4 30.9 39.5 35.3
LLaMA 7B 20.4 22.2 38.1 31.0 28.9 24.5 30.3 29.2
LLaMA 13B 21.1 23.4 39.5 33.4 30.4 25.7 32.1 29.4
WizardLM 7B 15.4 13.0 21.0 21.0 22.2 20.7 23.0 19.5
WizardLM 13B 22.1 24.7 41.5 35.0 31.5 27.5 33.9 30.9
LLaMA-2 7B 22.1 25.5 41.7 35.1 33.0 27.7 35.6 31.5
LLaMA-2 13B 23.4 28.1 44.1 36.9 34.7 28.9 37.2 33.3
LLaMA-2-Chat 7B 22.6 25.3 41.3 35.3 33.5 28.4 36.3 31.8
LLaMA-2-Chat 13B 23.6 27.4 42.1 35.6 34.3 28.1 36.4 32.5
Falcon 7B 20.0 20.4 36.4 29.2 26.2 23.6 28.0 26.3
Falcon-Inst 7B 18.9 19.1 35.1 26.7 25.2 23.3 27.3 25.1
Mistral 7B 24.4 28.9 46.3 37.6 35.2 29.7 38.2 34.3
Mistral-Inst 7B 22.5 25.9 41.9 35.8 33.1 27.7 34.9 31.7
CodeLLaMA 7B 23.8 27.4 42.1 35.6 34.3 28.1 36.4 32.5
CodeLLaMA 13B 24.8 28.5 43.8 37.0 34.9 29.6 38.2 33.8
CodeLLaMA-Inst 7B 23.8 27.5 41.9 36.3 34.2 28.7 37.1 32.8
CodeLLaMA-Inst 13B 24.8 29.4 44.2 38.3 35.6 30.2 39.2 34.5
Qwen 7B 22.3 25.2 41.4 35.2 33.7 27.8 36.3 31.7
Qwen 14B 25.4 31.0 49.4 39.9 37.7 32.2 41.9 36.8
Qwen-Chat 7B 22.8 26.2 43.1 35.9 33.9 28.4 36.2 32.3
Qwen-Chat 14B 25.8 31.9 50.6 40.6 38.9 33.2 43.3 37.8
Polyglot-Ko 1.3B 28.9 33.7 46.3 33.9 35.5 30.7 39.5 35.5
Polyglot-Ko 3.8B 31.4 37.3 50.0 35.8 37.7 31.8 41.6 37.9
Polyglot-Ko 5.8B 31.0 38.0 50.8 35.3 37.7 32.0 41.9 38.1
Polyglot-Ko 12.8B 33.6 41.0 54.2 36.4 39.1 32.6 43.2 40.0
KoAlpaca 5.8B 25.7 29.1 39.9 31.5 33.5 29.3 38.0 32.4
KoAlpaca 12.8B 33.3 38.8 49.3 36.0 37.8 32.6 42.5 38.6
KORani-v1 13B 35.8 43.0 53.2 41.7 41.0 35.6 45.6 42.3
KORani-v2 13B 22.1 25.4 41.0 39.4 37.1 32.3 39.9 33.9
KORani-v3 13B 22.1 25.2 40.9 39.6 37.3 32.2 39.6 33.8

Human 84.0 98.0 98.7 86.0 90.0 87.3 88.7 90.4

Table 5: Results for response selection. K-SNS: Korean SNS and Dialogue Summary, K-TDD: Korean
Thematic Daily Dialogues, K-ED: Korean Emotional Dialogues, PC (K): PersonaChat (Korean), DD (K):
DailyDialog (Korean), ED (K): Empathetic Dialogues (Korean), and SD (K): SocialDial (Korean).

ble 4, CodeLLaMA-Inst outperforms LLaMA-2-Chat
in fact identification. This aligns with the observa-
tions of Madaan et al. (2022), indicating that code
training boosts reasoning capabilities. It also brings
improvements to response selection performances
with the same models.

Pretraining with Large Proportion of Korean
Corpus Our experimental results demonstrate
that language models primarily pretrained on a
large-scale Korean corpus, specifically Polyglot-
Ko, show better conversational proficiency com-
pared to other models. The most competitive model
is Qwen-Chat 14B, but it exhibits lower accuracy
scores on tasks derived from native Korean conver-

sations, namely K-SNS, K-TDD, and K-ED. Consid-
ering that the Korean text proportion in the pretrain-
ing dataset of LLaMA-2 is less than 0.1%, we spec-
ulate that such a proportion is insufficient to capture
the intrinsic nuances and cultural context of Korean
dialogues. Meanwhile, in dialogue comprehension
tasks, some multilingual models like LLaMA-2, Mis-
tral, and Qwen outperform Polyglot-Ko. This in-
dicates that while these models encode the basic
understanding of Korean conversations, their adept-
ness in generating appropriate responses remains
limited.

Fine-tuning with Korean Data It is worth not-
ing the potential of fine-tuning on Korean data for
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Model Bilateral Multilateral

XGLM 7.5B 26.8 23.5
LLaMA 13B 22.7 19.5
LLaMA-2 13B 25.2 21.5
Falcon 7B 21.5 18.4
Mistral 7B 26.2 22.4
CodeLLaMA 13B 26.3 23.1
Qwen 14B 27.7 22.9
Polyglot-Ko 12.8B 35.7 31.2
KORani-v1 13B 38.4 32.9

Human 84.0 82.6

Table 6: Response selection accuracy for bilateral
and multilateral dialogues. Dataset: K-SNS.

dialogue tasks. Both KORani-v2 and KORani-v3
consistently outperform their base model LLaMA
on both task suites. This implies that additional
training on Korean texts elicits a model’s capabil-
ity in Korean conversation, even though Korean is
not primarily utilized during pretraining. However,
significant improvements are seen in the response
selection tasks composed of translated conversa-
tions, namely PC (K), DD (K), ED (K), and SD (K).
Therefore,more sophisticated fine-tuning in Korean
is essential to effectively harness the Korean con-
versational ability embedded in language models.

Human Performance We find that current state-
of-the-art language models still lag behind human
performance across various tasks. To measure hu-
man performance, we employ three native speak-
ers and have them solve 50 randomly sampled
problems per each task.7 We present the aver-
age accuracy scores of these three participants.
As a result, we observe that there exists a large
performance gap between the models and human
participants in both task suites. This signifies that
there remains room for further improving the mod-
els’ proficiency in Korean conversations.

Analysis on the Number of Speakers We fur-
ther investigate the effects of the number of speak-
ers on model performance. We evaluate response
selection accuracy for two dialogue types: bilat-
eral and multilateral, using the K-SNS dataset. The
results are reported in Table 6. All models show
higher accuracy with bilateral dialogues as opposed
to multilateral dialogues. In contrast, human perfor-
mance remains similar across both dialogue types.
This implies that language models struggle to ac-
curately trace the interlocutors’ information as the

7Fleiss’ κ = 0.793 for all tasks, which indicates sub-
stantial agreements. The results for each task are de-
tailed in Appendix C.

Model Male Mixed Female

XGLM 7.5B 26.8 27.5 26.2
LLaMA 13B 21.6 23.4 23.0
LLaMA-2 13B 24.9 25.8 24.9
Falcon 7B 20.5 22.4 21.6
Mistral 7B 26.9 26.3 25.5
CodeLLaMA 13B 26.8 26.7 25.4
Qwen 14B 28.7 27.8 26.6
Polyglot-Ko 12.8B 36.8 36.7 33.6
KORani-v1 13B 39.8 39.2 36.2

Human 81.5 85.2 81.5

Table 7: Response selection accuracy across gen-
der compositions in bilateral dialogues. ”Male” in-
dicates both speakers are males, ”Mixed” denotes
dialogues between a male and female speakers,
and ”Female” signifies both speakers are females.
Dataset: K-SNS.

number of speakers increases, which is consistent
with the finding in prior work (Sap et al., 2022). This
trend is also observed across all models, highlight-
ing a need for further research to improve the abili-
ties of the models to discern speakers, especially
for multilateral dialogues.

Analysis on Gender Composition Given that
gender plays a significant role in natural language
processing (Zhao et al., 2019; Schofield and Mehr,
2016), a language model’s capabilities on re-
sponse selection may vary depending on the gen-
der composition of a dialogue. To explore this,
we evaluate response selection accuracy across
three types of bilateral dialogues. As shown in Ta-
ble 7,most models exhibit higher accuracy for male
and mixed dialogues than for female dialogues.
However, human performance remains consistent
across male and female dialogues, also showing
higher accuracy for mixed dialogues. As concerns
around gender bias grow, it is crucial to ensure
balanced progress in addressing these disparities
(Sun et al., 2019; Liu et al., 2020; Kaneko et al.,
2022).

5. Conclusion

In this study, we introduced KoDialogBench, a com-
prehensive benchmark tailored to evaluate Korean
conversation abilities of language models. To this
end, we collected native Korean conversations from
public sources or translated conversations from
other languages. Utilizing KoDialogBench, we as-
sessed several state-of-the-art LLMs and exam-
ined how various techniques influenced their per-
formances in Korean conversations. Our findings
emphasized the significant role of including Korean
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conversational data during the training phase of
language models. In addition, our results revealed
that the models still lag behind human performance,
highlighting an avenue for future research in devel-
oping Korean language models for conversational
agents.

As the conversational capabilities of LLMs be-
come increasingly important especially in thera-
peutic contexts (Chaves and Gerosa, 2021; Croes
and Antheunis, 2021), we envision KoDialogBench
playing a crucial role in advancing this domain.

Limitations

Our benchmark may suffer from a chronic problem
of benchmark contamination. Due to the scarcity
of Korean language resources, there is a possibility
that the held-out sources utilized to construct the
benchmark might overlap with training data used
for some language models. We aim to address the
detection and mitigation of benchmark contamina-
tion in our future work.

Ethics Statement

Our benchmark dataset was designed to assess ca-
pabilities related to various situations and aspects
of conversations in Korean language. To achieve
this, we utilized conversational content from pub-
licly available datasets from various sources, either
without modification or with translation if necessary.
During this process, there is a possibility that harm-
ful content or inappropriate biases existing in the
original data may have been conveyed, or may have
arisen due to limitations of translation tools. We
reject any form of violence, discrimination, or of-
fensive language, and our benchmark dataset and
experimental results does not represent such val-
ues. If any harmful content or privacy infringement
is identified within the dataset, we kindly request
immediate notification to the authors. In the event
of such cases being reported, we will apply the
highest ethical standards and take appropriate ac-
tions.
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A. Data Preprocessing

We elucidate the detailed statistics and preprocess-
ing procedures of raw corpora in our dialogue com-
prehension task suite. For native Korean corpora,
we modify the class names to make them represent
the dialogue contents precisely. For translated cor-
pora, we also translate the class names to Korean.
See Table 8 for more details.

A.1. Topic Classification
Korean SNS The original corpus contains 200k
dialogues, each annotated with one of 9 topic cat-
egories. We remove the주거와생활(living), 행사
(event), and개인및관계 (relationship) categories
due to their ambiguity in distinction from other cat-
egories. From these, we then randomly select 200
dialogue examples for each class.

Korean Thematic Daily Dialogues The raw cor-
pus comprises 10,962 dialogues, annotated across
20 topic categories We exclude the 가족(family)
class due to semantic overlap with other categories,
resulting in a refined list of 19 classes. From each
class, we randomly sample 100 dialogue examples.

SocialDial (Korean): Topic From the initial
12 topic classes, we eliminate 7 categories
with fewer than 50 examples each: police-
corruption, tourism, farming, counter-terrorism/anti-
crime, disaster-victims, poverty-assistance, and
child-missing. Additionally, we exclude the life-
trivial class due to its semantic overlap with other
categories, ultimately yielding 4 classes. For each
of these classes, we randomly sample 100 dialogue
examples.

A.2. Emotion Recognition
Korean Emotional Dialogues The raw corpus
encompasses 6,641 dialogues, each with up to
three turns (i.e., six utterances), and is annotated
with 6 emotion categories. We retain these classes
without modification. Furthermore, we randomly
sample 200 three-turn dialogues from each class.

DailyDialog (Korean): Emotion The raw corpus
comprise 7 emotion categories. We exclude the dis-
gust and fear categories, which have fewer than 50
examples each, resulting in 5 classes. From each
class, we randomly sample 94 dialogue examples.

Empathetic Dialogues (Korean): Emotion The
raw corpus encompasses 32 emotion categories,
which we consolidate into positive and negative
classes, excluding surprise and sentimental cat-
egories. The 긍정(positive) class amalgamates

14 categories: excited, proud, grateful, impressed,
hopeful, confident, anticipating, joyful, nostalgic,
prepared, content, caring, trusting, and faithful.
Conversely, the 부정(negative) class comprises
16 categories: angry, sad, lonely, afraid, terrified,
guilty, disgusted, furious, anxious, disappointed,
jealous, devastated, embarrassed, ashamed, and
apprehensive. We randomly sample 1,000 dia-
logue examples from each polarity.

A.3. Relation Classification
SocialDial (Korean): Social Distance The raw
corpus is grouped into 6 social distance categories.
We omit the neighborhood and romantic categories
due to their having fewer than 50 examples, thereby
utilizing 4 classes. From each class, we randomly
sample 131 dialogue examples.

SocialDial (Korean): Social Relation The raw
corpus encompasses 8 distinct social relation cat-
egories. Initially, we amalgamate the commander-
soldier category into chief-subordinate and the
mentor-mentee into student-professor, respectively.
Subsequently, the partner-partner category is omit-
ted due to comprising fewer than 50 examples. Fur-
ther, we exclude the peer-peer and elder-junior cat-
egories due to inconsistencies in the translation of
formality forms. Consequently, this refinement re-
sults in 3 classes, from each of which we randomly
sample 110 dialogue examples.

A.4. Location Classification
SocialDial (Korean): Location The original cor-
pus encompasses 10 location categories. We ex-
clude the home and open-area categories due to
their indistinct boundaries with other categories and
omit the hotel, online, police-station, and refugee-
camp categories, each containing fewer than 50
examples. This refinement results in 4 classes.
From each class, we randomly sample 94 dialogue
examples.

A.5. Dialog Act Classification
Korean Thematic Daily Dialogues The raw cor-
pus consists of 4 dialog act classes. We employ
these classes without modification and randomly
sample 130 dialogue examples from each class.

DailyDialog (Korean): Act The raw corpus is
composed of 4 dialog act classes. We randomly
sample 250 dialogue examples from each class.

B. Prompts

We illustrate prompt examples used in our experi-
ments along with the line-by-line translations.
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Task Source Split Raw Categories

Topic

K-SNS Valid

일과직업, 여가생활, 시사/교육, 주거와생활, 행사, 식음료, 개인및
관계, 상거래(쇼핑), 미용과건강
work, leisure, news/education, living, event, food, relationship, shop-
ping, health and beauty

K-TDD Valid

사회이슈, 식음료, 가족, 교육, 건강, 계절/날씨, 타 국가이슈, 교통,
방송/연예, 군대, 여행, 회사/아르바이트, 게임, 연애/결혼, 영화/만화,
스포츠/레저, 미용, 반려동물, 상거래전반, 주거와생활
domestic issue, food, family, education, health, weather, interna-
tional issue, transportation, entertainment, military, travel, job, game,
love/marriage, movie/cartoon, sports, beauty, pet, shopping, living

SD (K) -

비리/부패, 여행, 회사업무, 음식, 농업, 학교생활, 범죄/테러, 상거래,
재난피해자, 빈곤구호, 아동실종, 일상생활
police-corruption, tourism, office-affairs, food, farming, school-
life, counter-terrorism/anti-crime, sale, disaster-victims, poverty-
assistance, child-missing, life-trivial

Emotion

K-ED Valid 불안, 슬픔, 당황, 분노, 상처, 기쁨
anxiety, sadness, embarrassment, anger, hurt, happiness

DD (K) Test 감정없음, 화남, 혐오, 두려움, 기쁨, 슬픔, 놀람
no emotion, anger, disgust, fear, happiness, sadness, surprise

ED (K) Test

신남, 화남, 자랑스러움, 슬픔, 짜증, 감사, 외로움, 두려움, 무서움,
죄책감, 감명, 혐오, 희망, 자신감, 분노, 걱정, 기대, 기쁨, 향수, 실망,
준비, 질투, 만족, 충격, 당황, 배려, 신뢰, 수치, 걱정, 믿음
excited, angry, proud, sad, annoyed, grateful, lonely, afraid, terrified,
guilty, impressed, disgusted, hopeful, confident, furious, anxious,
anticipating, joyful, nostalgic, disappointed, prepared, jealous, content,
devastated, embarrassed, caring, trusting, ashamed, apprehensive,
faithful

Relation

SDDst (K) - 이웃, 낯선사람, 친구, 직장, 연인, 가족
neighborhood, stranger, friend, working, romantic, family

SDRel (K) -

동료-동료, 상사-부하, 멘토-멘티, 지휘관-병사, 연인또는부부, 고객-
직원, 손윗사람-손아랫사람, 학생-선생님
peer-peer, chief-subordinate, mentor-mentee, commander-soldier,
partner-partner, customer-server, elder-junior, student-professor

Location SD (K) -

학교, 가게, 집, 호텔, 공공장소, 식당, 전화통화, 경찰서, 사무실, 난민
캠프
school, store, home, hotel, open-area, restaurant, online, police-
station, office, refugee-camp

Dialog Act
K-TDD Valid 지시, 단언, 언약, 표현

directive, assertive, commissive, expressive

DD (K) Test 알림, 질문, 지시, 언약
inform, question, directive, commissive

Table 8: Detailed description of dialogue comprehension task suite. We enumerate the original categories
of raw corpora in both Korean and English. We use the class names in Korean to all of our tasks.

B.1. Direct Prompting Direct Prompting

화자2: 그동안많이힘들었겠군요.
Speaker 2: I’m sorry you’ve been through
so much.
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화자1: 맞아. 근데이젠가족들에게속마음
을털어놓을수있어기뻐.
Speaker 1: Yes, but I’m glad I can open up
to my family now.
화자2: 가족들에게 마음을 털어 놓아 편안
하시군요.
Speaker 2: It’s good to hear that you feel
comfortable opening up to your family.

질문: 대화에서 화자1이 느끼는 감정
은무엇인가?
Question: What is Speaker 1 feeling in this
conversation?
정답:
Answer:

B.2. Direct Prompting with Class
Descriptions

Direct Prompting with Class Descriptions

[대화]
[Dialogue]
화자2: 잠깐일시적으로추워진거래키키
Speaker 2: It has just become temporarily
cold they say, lol.
화자1: 아진짜? 다행이다
Speaker 1: Oh, really? Thank God.
화자1: 한파라고해서진짜오잉했잖아!
Speaker 1: I was so freaking out when they
said it was cold surge!
화자2: 나도한파주의보문자와서당황함
Speaker 2: I was also confused when I got
the cold surge warning.

[보기]
[Choices]
지시: 상대에게 충고, 제안, 명령, 요구,
질문, 부탁등을하는발화
Directive: an utterance that gives advice,
suggestions, orders, demands, questions,
favors, etc. to the other.
단언: 자신의 의견을 진술, 주장하거나
상대의의견을반박하는발화
Assertive: an utterance that states or
asserts one’s opinion or refutes the other’s
opinion.
언약: 상대와약속을하거나상대의요청을
거절하는발화
Commissive: an utterance in which one
make a promise to or refuse a request from
the other.
표현: 인사, 감사, 사과, 긍정 및 부정감정
표현등을하는발화
Expressive: an utterance that gives greet-
ings, thanks, apologies, expressions of

positive and negative emotions, etc.

질문: 보기 중 대화의 마지막 발화의
의도로가장알맞은것은?
Question: Which of the choices best
describes the intent of the last utterance?
정답:
Answer:

B.3. Option Prompting

Option Prompting

[대화]
[Dialogue]
화자1: 이렇게늦게까지뭐하세요?
Speaker 1: What are you doing up so late?
화자2: 요리하고있었어요! 당신은요?
Speaker 2: I’ve been cooking! You?
화자1: 개산책시키고있어요.
Speaker 1: I’m walking the dog.
화자2: 이렇게 늦게까지! 그냥 요리 연습
중이에요. 몇살이에요?
Speaker 2: This late! I’m just practicing
cooking. How old are you?
화자1: 이늦은시간에타코를만드시네요.
Speaker 1: You’re making tacos at this late
hour.
화자2: 네! 나타코좋아해요! 제가싫어하는
건별로없어요, 23살이에요.
Speaker 2: Yeah! I love tacos! There’s not
much I don’t like, I’m 23 years old.
화자1: 어디사세요?
Speaker 1: Where do you live?
화자2: 지금은 오리건주에 살고 있지만
올해전세계를돌아다녔어요.
Speaker 2: I live in Oregon right now, but
I’ve been traveling around the world this
year.
화자1: 앨라배마에가보셨어요?
Speaker 1: Have you been to Alabama?
화자2: 네. 거기서먹은타코가정말맛있었
어요! 어디에사세요?
Speaker 2: Yeah. I loved the tacos there!
Where do you live?
화자1: 몽고메리에살고있어요.
Speaker 1: I live in Montgomery.
화자2: 요트를 거기 근처에 보관하고 있어
요. 지금은빌려주고있어요.
Speaker 2: I keep my yacht near there, and
I’m renting it out now.
화자1: 요트가멋지네요.
Speaker 1: That’s a nice yacht.

[보기]
[Choices]
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1) 3개월후에세쌍둥이를출산할예정입니
다.
1) I am expecting triplets in three months.
2) 빨간색에파란색줄무늬가있어레이스할
때반짝반짝빛납니다.
2) It’s red with blue stripes, so it sparkles
when I race.
3) 저는여행을정말좋아합니다.
3) I really like traveling.
4) 가는 곳마다 온갖 종류의 음식을 다
먹어봤어요.
4) I’ve tried every kind of food everywhere
I’ve been.

질문: 보기 중 화자2에 관한 서술로 옳
은것은?
Question: Which statement about speaker
2 in the choices is correct?
정답:
Answer:

B.4. Response Selection Prompting

Response Selection Prompting

화자2: 요새샐러드파는가게
Speaker 2: Salad shops these days
화자2: 많아졌따
Speaker 2: There’s a lot of them.
화자1: 맞아그리고진짜
Speaker 1: Yeah, and really
화자1: 퀄리티도좋더라요새는
Speaker 1: The quality is good, too.
화자2: 응맨날사먹고싶게생겼어
Speaker 2: Yeah, it looks so good that I’d
like to eat it everyday.
화자2: 샐러드인데도
Speaker 2: Even though it’s a salad
화자1: 근데가격도
Speaker 1: But the price
화자1: 비싸더라고...
Speaker 1: It is expensive...
화자2:
Speaker 2:

C. Detailed Results

C.1. Results on Individual Tasks in
Dialogue Comprehension

We provide the detailed results for individual tasks
of dialogue comprehension in Table 10. Each task
consists of examples from the same data sources.
The acronyms of datasets not defined in Table 5
are defined as follows:

• SDDst (K): social distance classes from SD (K)

• SDRel (K): social relation classes from SD (K)

• K-DS: Korean Dialogue Summary

C.2. Reliability of Human Evaluation

Task κ

D
ia

lo
gu

e
C

om
pr

eh
en

si
on

Topic
K-SNS 0.800
K-TDD 0.865
SD (K) 0.946

Location SD (K) 0.794

Relation SDDst (K) 0.540
SDRel (K) 0.900

Emotion
K-ED 0.628
DD (K) 0.536
ED (K) 0.678

Dialog Act K-TDD 0.415
DD (K) 0.370

Fact
K-DS 0.982
PC (K) 0.706
ED (K) 1.000

Re
sp

on
se

Se
le

ct
io

n K-SNS 0.815
K-TDD 0.965
K-ED 0.983
PC (K) 0.829
DD (K) 0.838
ED (K) 0.830
SD (K) 0.838

Table 9: Inter-rater agreements of human evalua-
tors for each task.

We calculate Fleiss’ kappa to estimate the inter-
rater agreements of the three human evaluators (Ta-
ble 9). We observe almost perfect (> 0.8) and sub-
stantial (> 0.6) agreements in most tasks, whereas
we observe moderate (> 0.4) agreements in Rela-
tion: SDDst (K), Emotion: DD (K) and Dialog Act:
K-TDD, and fair (> 0.2) agreement in Dialog Act:
DD (K).We speculate the subjective nature of emo-
tion led to the low performance and agreements of
human evaluators in emotion recognition tasks. For
dialog act classification, it is because the verbalized
class names are defined academically and connote
several hyponyms, which is hard for humans to pre-
cisely understand without linguistic knowledge.
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