Keyphrase Generation: Lessons from a Reproducibility Study

Edwin Thomas' and Sowmya Vajjala2
" University of Ottawa, Canada
°National Research Council, Ottawa, Canada
ethom123@uottawa.ca, sowmya.vajjala@nrc-cnrc.gc.ca

Abstract

Reproducibility studies are treated as means to verify the validity of a scientific method, but what else can we
learn from such experiments? We addressed this question taking Keyphrase Generation (KPG) as the use case in
this paper, by studying three state-of-the-art KPG models in terms of reproducibility under either the same (same
data/model/code) or varied (different training data/model, but same code) conditions, and exploring different ways
of comparing KPG models beyond the most commonly used evaluation measures. We drew some conclusions on
the state of the art in KPG based on these experiments, and provided guidelines for researchers working on the
topic about reporting experimental results in a more comprehensive manner.

Keywords: keyphrase generation, reproducibility, replicability, evaluation

1. Introduction

There has been an increasing interest in repro-
ducibility and replicability of published results in
NLP and other related areas in recent years, both
in a more general, task-agnostic manner reviewing
reproducibility studies across tasks, as well as in a
task-specific manner, focusing on conducting rele-
vant experiments to replicate the published results
for that task (e.g., Belz et al., 2022; Arvan et al.,
2022; Popovi¢ et al., 2022). The goal of such work
is to understand and quantify the degree of repro-
ducibility of a published work. The current paper
takes a deeper dive into the reproducibility of ap-
proaches for one specific task - keyphrase gener-
ation, intending to understand the state of the art,
as well as provide guidelines for researchers on
reporting experiments more comprehensively.

Keyphrase Prediction (Extraction/Generation) is
an established NLP problem, which has applica-
tions in many real-world scenarios such as in-
formation retrieval, document tagging, text sum-
marization, and question answering, to name
a few. Keyphrases are often separated into
present/absent keyphrases, based on whether
they directly appear in the document or not, as il-
lustrated in Figure 1. While one strand of research
on this topic focused only on present keyphrase
extraction, another strand proposed methods for
Keyphrase Generation (KPG), aiming to generate
both present and absent keyphrases.

If each text is assigned n keyphrases (kps), all
the KPG approaches can be grouped into three
categories: One20ne, where each <text, kp>
pair is treated as a single training instance (e.g.,
Meng et al. (2017)), resulting in n instances per

* Work done during a summer internship at National
Research Council, Canada

Text: A Framework to Automate the Parsing of Arabic
Language Sentences This paper proposes a
framework to automate the parsing (sic) of Arabic
language sentences in general, although it focuses on
the simple verbal sentences but it can be extended to
any Arabic language sentence. The proposed system
is divided into two separated phases which are lexical
analysis and syntax analysis. Lexical phase analyses
the words, finds its originals and roots, separates it
from prefixes and suffixes, and assigns the filtered
words to special tokens. Syntax analysis receives all
the tokens and finds the best grammar for the given
sequence of the tokens by using context free
grammar. Our system assumes that the entered
sentences are correct lexically and grammatically.

Extractive: lexical analysis, syntax analysis
Abstractive: Arabic language parser*

[* does not appear in the text directly]

Figure 1: An example from KP20K dataset (Meng
et al., 2017) illustrating the task

text; One2Seq where all n kps of a text are con-
catenated into a sequence with a separator be-
tween kps (e.g., Yuan et al. (2020); and One2Set,
where the kps of a given text are generated as
a set, instead of a concatenated sequence (e.g.,
Ye et al. (2021); Ray Chowdhury et al. (2022); Xie
et al. (2022)). Apart from these, recent research
(Martinez-Cruz et al., 2023) reported the competi-
tive zero-shot performance of ChatGPT" for some
KPG datasets.

Despite this reasonably large body of research
on KPG and the availability of several open-
access labeled datasets (mainly for English, but
also for a few other languages), there is surpris-
ingly little work on reproducibility in KPG. In com-
paring two approaches, there is also not much

"https://chat.openai.com/

9720

LREC-COLING 2024, pages 9720-9731
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

https://chat.openai.com/

emphasis on some of the aspects of evaluation
e.g., reporting multiple evaluation measures, un-
derstanding whether two systems are more simi-
lar than they appear in terms of their predictions,
performing significance testing etc. In this back-
ground, we look into reproducibility of KPG re-
search, and study different methods of comparing
two systems. Specifically, we study the following
questions in this paper, considering three state-of-
the-art KPG models:

1. To what extent can we reproduce existing re-
sults using the same code/model/datasets?
(Section 4)

2. How does model performance vary when we
use the same code/models, but train on differ-
ent datasets instead? (Section 5)

3. How can we compare between two systems
going beyond a single evaluation measure,
and what are some good practices in report-
ing evaluation results? (Section 6)

We are motivated by two goals:

1. gain a better understanding of the state of the
artin KPG

2. guide researchers working on the topic in
terms of reporting results appropriately.

Note on the terminology: The terms repro-
ducibility, repeatability, and replicability have been
used variously and there is no consensus on their
definitions. Following Belz et al. (2021)’s recom-
mendations, we refer to all our experiments as
reproduction experiments, separating them into
same (where original data/model settings are re-
tained) and varied (where training data is different)
conditions instead.

The rest of this paper is organized as follows:
After briefly discussing some related work (Sec-
tion 2), we describe our methodology (Section 3).
The next two sections focus on reproducibility un-
der same (Section 4) and varied (Section 5)
conditions, followed by a detailed analysis of ap-
proaches to compare between two systems (Sec-
tion 6). Section 7 concludes the paper with a sum-
mary, followed by a discussion on the limitations
and pointers to future work.

2. Related Work

Keyphrase prediction has a two-decade long his-
tory in NLP, starting from early approaches to key-
word/phrase extraction (Witten et al., 1999; Mihal-
cea and Tarau, 2004). A lot of research focused
on extractive methods, and Song et al. (2023a)
provides a comprehensive overview of various ap-
proaches to present keyphrase extraction. Liu

et al. (2011) first proposed to treat keyphrase pre-
diction as machine translation, to account for ab-
sent keyphrasesi.e., keyphrases that don’t directly
appear in the document. But Meng et al. (2017)’s
application of sequence-to-sequence models for
end-to-end keyphrase generation can be consid-
ered the starting point of the use of deep learn-
ing approaches that aim to generate both present
and absent keyphrases together. A range of
approaches including recurrent neural networks
(Meng et al., 2017; Chen et al., 2018), generative
adversarial networks (Swaminathan et al., 2020;
Lancioni et al., 2020), reinforcement learning (Luo
etal., 2021) and pre-trained language models (Wu
et al., 2022a) have been explored for this task in
recent years. Xie et al. (2023)’s survey presents a
comprehensive survey of keyphrases generation
approaches. While most of the research in this
direction focuses on developing a new model for
keyphrase generation, some papers address the
issues around it such as dataset creation (Meng
et al.,, 2017; Wang et al.,, 2019; Cano and Bo-
jar, 2019b; Gallina et al., 2019; Yuan et al., 2020;
Li et al., 2020; Piedboeuf and Langlais, 2022,
etc.), and development of new evaluation mea-
sures (Chan et al., 2019; Boudin et al., 2020; Yuan
et al., 2020; Luo et al., 2021; Kundu et al., 2023;
Wu et al., 2023) as well.

There is some research on evaluating the state
of the art and comparing different approaches to
keyphrase generation in the past. Cano and Bo-
jar (2019a)’'s survey of KPG closely compared
the training mechanisms of various abstractive
keyphrase generation approaches proposed at
that time, but does not mention any reproduction
effort. Gallina et al. (2020) report on comparing
multiple approaches, including reproducing two
KPG models, but evaluated only the keyphrase
extraction part. Meng et al. (2021) conducted a
larger empirical study on how various One20ne
and One2Seq KPG models perform when the or-
der of keyphrases change, comparing different de-
coding strategies, and reproducing some of their
own previous models (Meng et al., 2017; Yuan
et al., 2020). More recently, Martinez-Cruz et al.
(2023) and Song et al. (2023b) compare the per-
formance of ChatGPT’s zero-shot present/absent
keyphrase performance against previously re-
ported results i.e., without reproduction. Xie et al.
(2023) re-trained some of the state of the art KPG
models and presented a comparison, but they also
did not specifically discuss issues in reproducibi-
ilty, nor did they report results of training with mul-
tiple datasets.

In this background, we follow some previous re-
search in terms of reproducing existing work (Gal-
lina et al., 2020; Xie et al., 2023) and comparing
decoding strategies (Meng et al., 2021) but also

9721

extend that by training on other datasets, and,
more importantly, by showing different ways to
evaluate KPG and compare between two KPG ap-
proaches. In this process, we also identify some
gaps in existing research and suggest guide-
lines for researchers to report experimental results
more comprehensively.

3. Methodology

Since we aim to understand the issues related
to reproducibility and evaluation, we focus on ex-
isting methods instead of proposing a new ap-
proach. We experimented with three state-of-the-
art keyphrase generation approaches that shared
their code. For the experiments, we employed
commonly used open-access datasets reported in
the research on this topic. The rest of this section
describes our approach in detail.

3.1. Training Methods

We reused three publicly available implementa-
tions of recent keyphrase generation models -
UniKP (Wu et al., 2021), SetTrans (Ye et al., 2021)
and KPDrop (Ray Chowdhury et al., 2022), which
are briefly described below:

1. UniKP jointly learns extractive and abstrac-
tive keyphrase generation using a stacked re-
lation layer over UniLM (Dong et al., 2019),
which explicitly captures the relation between
extraction and abstraction?.

2. SetTrans does not separate extraction and
abstraction, and proposes to model KPG
as set generation, instead of generating a
sequence of keyphrases distinguished from
each other by a separator.

3. KPDrop is a method to improve absent
keyphrase generation in a given keyphrase
generation model by randomly dropping
present keyphrases and turning them into
absent keyphrases during training. Of the
two proposed variants in the paper (dropout
and augmentation), we used augmentation
method as that reported better results in the
paper. We used this method on SetTrans i.e.,
we reproduced the One2Set+KPD-A setting
from the paper.

We used the official github repositories for UniKP
and KPDrop, and used KPDrop’s fork of SetTrans
for all our experiments®. By default UniKP uses
beam search with a beam size of 5 for decoding

2The ArXiv version of the paper and ACL Anthology
version have substantial differences in results. We com-
pare with the ArXiv version as that reports results closer
to the Github repo the authors shared.

*https: //github.com/JRC1995/KPDrop/

whereas KPDrop and SetTrans use greedy decod-
ing. We compare both decoding strategies later in
Section 4.1.

3.2. Datasets

We used four training datasets and eight test sets
(including the test splits of the four training sets),
and they are all described below. For all the
datasets, we followed the standard train/dev/test
splits, and the recommended pre-/post-processing
steps followed in the available literature on this
topic.

Train The four training datasets we used in this
paper were used in KPG research in the past and
are described below:

1. KP20K (Meng et al., 2017) is a large dataset
(~ 531k instances) of scientific paper ab-
stracts from the computer science domain,
with author assigned keyphrases, and is the
most commonly used dataset to train KPG
models.

2. OpenKP (Xiong et al., 2019) is a dataset con-
sisting of real-world web documents with ex-
pert annotated keyphrases and has ~148k
instances. We only consider the present
keyphrases part of this dataset as the num-
ber of absent keyphrases is negligible.

3. KPTimes (Gallina et al., 2019), consists of
~290k news articles with expert labeled
keyphrases.

4. StackEx (Yuan et al., 2020) consists of ~331k
questions from stackexchange.com with au-
thor assigned keyphrases.

Test Apart from the test splits of the above train-
ing datasets, we used the following commonly
used four test sets.

1. Krapivin (Krapivin et al., 2009) consists of
about 2000 full text computer science articles
with author annotated keyphrases.

2. Inspec (Hulth, 2003) consists of 500 scientific
abstracts on topics related to computer sci-
ence, and is annotated by professional index-
ers.

3. SemEval (Kim et al., 2010) consists of 100
scientific abstracts covering computer sci-
ence, material science and physics with
non-author (student and expert) annotated
keyphrases.

4. NUS (Nguyen and Kan, 2007) consists of 211
scientific articles with author assigned, and
manually labeled keyphrases by student vol-
unteers.

9722

https://github.com/JRC1995/KPDrop/
https://stackexchange.com/

In Section 4, we report the results for the above
mentioned four test sets along with KP20k’s test
partition. In Section 5, we report results of training
and testing with the respective partitions of the four
large datasets described under Train. A summary
of some basic statistics about the datasets can be
found in Table 1.

Dataset | #docs | #pkp/doc | #akp/doc |

Train
KP20k 530K | 2.34 2.94
KPTimes | 260k | 2.15 2.88
Test
KP20k 20k 2.34 2.93
KPTimes | 20k 2.72 2.31
Inspec 500 6.57 3.26
Krapivin | 2304 3.73 1.6
SemEval | 100 9.2 6
NUS 211 8 3.07

Table 1: Dataset Statistics (pkp and akp represent
present and absent keyphrase respectively)

3.3. Evaluation Measures

Macro F1@M, where M is the number of predicted
keyphrases (i.e., all generated keyphrases are
considered to calculate F1 score) and @k where
k=5/10/15 (where top k generated keyphrases
are considered) are commonly reported for this
task, by averaging the evaluation measure over all
test instances, instead of micro averaging, where
the averaging is done after calculating the eval-
uation measure per test instance. Evaluation
is also reported separately for present and ab-
sent keyphrases. Among the three approaches
we replicated, UniKP reports micro-F1 instead
of macro-F1, though. Among other measures,
F1@O (where O is the number of ground-truth
keyphrases) is reported for both present/absent
keyphrases and Recall@10/50 is reported for ab-
sent keyphrase generation. In this paper, we
report macro-F1@M as the default, and discuss
other evaluation measures as needed (Section
6.1). All evaluation is conducted after applying
Porter stemmer (Porter, 1980) on the generated
output, following the standard practice in KPG re-
search. Detailed result tables with all evaluation
measures, for all approaches/test data combina-
tions can be found in the supplementary material®.

3.4. Experimental setup

We conducted all our experiments on four Nvidia
Tesla V100 GPUs and employed distributed train-
ing. We set most of the hyperparameters for the
three systems to be the same as the respective

“https://github.com/edwinthomas444/
keyphrase-generation-reproducibility-study

original papers. We used a batch size of 128,
distributed over four GPUs equally (per-gpu batch
size of 32). While UniKP had a learning rate of
1e-05 and a warm-up proportion of 0.1, the other
two approaches employed a learning rate of 1e-
04 with reduction on loss plateau decay (as re-
ported in the respective papers). To keep the
training routine consistent, considering the com-
pute resources available and the number of exper-
iments, all the systems were trained for 5 epochs
(UniKP and KPDrop were trained for 100 and 20
epochs respectively in the original papers) using
the Adam Optimizer. We used the same sequence
length settings as the original papers for all the ap-
proaches. For present keyphrases the maximum
sequence length is set to 384 tokens for all sys-
tems. UniKP used a maximum sequence length of
40 tokens for absent keyphrases, while One2Set
and KPDrop has it as 6 tokens, setting maximum
number of keyphrases to 10 for both present and
absent keyphrases.

4. Reproducibility: same conditions

In the first set of experiments, we focused on re-
producing three KPG models using the released
code and keeping the original train/test setup.
Additionally, we compared the performance with
greedy versus beam search decoding for these
approaches.

First, we reproduced the default train/inference
routine for the three approaches. Table 2 summa-
rizes the results in terms of the difference between
the reported and reproduced scores (micro-F1 for
UniKP, as mentioned earlier).

Dataset UniKP SetTrans | KPDrop
Pres | Abs| Pres Abs| Pres Abs

KP20K | |7.2 | |3.6] [2.0|]1.4] [1.2| |1
Krapivin | - - ™ 11.6| 10.0|]0.2
Inspec | 110.20]0.7| [0.2| |0.8|]0.5| |1.1
SemEval | |49 | |2.5| |4 | |0.6| |3.4|]0.6
NUS 7.7 12.4| [1.5] |]2.3|]1.2] |1.9

Table 2: Difference in performance (in percent-
age) while reproducing (Macro-F1@M for KP-
Drop/SetTrans; Micro-F1@M for UniKP)

In most cases, there was a + 1.5% difference in
the results between the reported and observed
results for SetTrans and KPDrop, which can be
attributed to the differences in hardware, soft-
ware versions and other programming choices
that are potentially unnoticed/undocumented. The
drops are relatively higher for semeval’s present
keyphrases even for SetTrans and KPDrop (3-
4%). UniKP reproduction resulted in major differ-
ences across datasets, compared to SetTrans and
KPDrop. Some of it can potentially be attributed

9723

https://github.com/edwinthomas444/keyphrase-generation-reproducibility-study
https://github.com/edwinthomas444/keyphrase-generation-reproducibility-study

to the reduced number of training epochs (5 in-
stead of 100 used in the paper), but it is interest-
ing to note the 10% increase in present keyphrase
performance on the Inspec dataset despite that.
The reduced number of training epochs can ex-
plain part of the performance drop for KPDrop and
SetTrans as well (5 instead of 20 in the original pa-
pers), but clearly, the performance drops are much
lesser than with UniKP. There is also a lot of vari-
ability across datasets in terms of reproducibility®.

Since we are only reusing an existing repository
and configurations, it is hard to pinpoint on specific
reasons for these differences. However, these re-
sults clearly point to the difficulty of reproducibil-
ity of results even in cases where code and data
processing routines are fully shared. This situa-
tion is not unique to KPG or to these repos, and
is well documented in machine learning and NLP
communities (Belz et al., 2021). Some recent re-
search (Raff, 2019; Belz et al., 2022) attempts to
quantify the degree of reproducibility in machine
learning/NLP, which can potentially support the de-
velopment of reproducible research practices that
reduce the gap between the originals and repro-
ductions in future.

4.1. Comparing decoding strategies

KPG research primarily uses two decoding strate-
gies during inference: greedy and beam search.
While UniKP and SetTrans papers report results
with one default strategy, KPDrop compares beam
and greedy decoding. We did not see any change
in performance between greedy and beam search
for UniKP (potentially because 5 epochs were not
sufficient), and the results in both settings across
datasets were near-identical. However, we did
observe some interesting differences for SetTrans
and KPDrop.

We compared two beam search settings with a
low beam size (n=5) and a large beam size (n=50),
following the KPDrop paper. The low beam size
setting is expected to increase the overall perfor-
mance by increasing the diversity of generated
keyphrases, and the high beam size setting is ex-
pected to increase the recall. Table 3 and Table 4
show the performance of SetTrans and KPDrop for
greedy vs beam decoding settings.

A beam size of 5 appears to be slightly better
than greedy decoding in all cases for both present
and absent keyphrases although they are compa-
rable. In the larger beam size scenario, the recall
does increase hugely for most cases (especially
for present keyphrases), but at the cost of pre-
cision, resulting in a very large drop in F1 score

5Note: Original scores were in 30s and 40s
for present keyphrases, and under 10 for absent
keyphrases for all the models.

Present Keyphrases

Dataset | Greedy | Beam=5 Beam=50
KP20K 37.16 37.46 13.05 (87.72)
Krapivin 36.2 36.45 12.88 (86.54)
Inspec 31.97 32.91 25.21 (82.45)
SemEval | 34.31 35.59 21.21 (78.1)
NUS 42.2 42.44 19.56 (85.99)

Absent Keyphrases

Dataset | Greedy | Beam=5 Beam=50
KP20K 4.23 5.22 0.37 (25.91)
Krapivin 5.16 7.53 0.47 (29.34)
Inspec 2.01 2.55 0.31 (19.07)
SemEval 2.86 2.87 0.53 (11.51)
NUS 4.1 6.5 0.57 (20.06)

Table 3: Performance of SetTrans for beam vs
greedy search settings (Macro F1@M with Macro
Recall@M in parantheses for Beam=>50 setting)

Present Keyphrases

Dataset | Greedy | Beam=5 Beam=50
KP20K 38.43 38.55 13.97 (87.66)
Krapivin 35.26 35.77 13.85 (86.91)
Inspec 30.06 31.66 27.20 (82.43)
SemEval | 31.01 31.99 22.40 (79.82)
NUS 42.41 43.48 21.39 (86.31)

Absent Keyphrases

Dataset | Greedy | Beam=5 Beam=50
KP20K 5.58 6.27 0.46 (28.92)
Krapivin 6.96 7.89 0.54 (29.04)
Inspec 212 218 0.37 (20.03)
SemEval 4.06 4.73 0.65 (13.43)
NUS 5.54 6.53 0.76 (24.45)

Table 4: Performance of KPDrop for beam vs
greedy search settings (Macro F1@M with Macro
Recall@M in parentheses for Beam=50 setting)

in all cases (especially for absent keyphrases).
Although beam search with a beam size of 5
gives the best performance across all models and
datasets, it is debatable whether the slight perfor-
mance improvement over greedy search is worth
the increased latency during inference. Based on
these results, we infer that in terms of decoding
strategies, greedy and beam decoding (n=5) offer
comparable performance for KPG for these mod-
els and high beam sizes are not particularly benefi-
cial. Hence, we chose greedy search for the rest of
our experiments, considering the latency time and
the relatively minor performance improvement for
beam search.

5. Reproducibility: other datasets

In this section, we turn to the question of how
the state-of-the-art KPG approaches perform on
other training datasets/domains. As described

9724

Present
Keyphrases

30 Absent
Keyphrases
20
10
° | I

KP20k OpenkP KPTimes StackEx KP20k KPTimes StackEx

mUNKP mSetTrans mKPDrop

Figure 2: Performance of the three KPG models
with other training datasets (Macro-F1@M)

in Section 3, we trained the three KPG methods
using three other datasets (OpenKP, KPTimes,
and StackEx) which come from other domains,
and compared performance of present and absent
keyphrase prediction (in terms of macro F1@M) in
a greedy decoding setting with the models trained
on KP20K in the previous section. Figure 2 shows
the results.

KPDrop performs better than the other two ap-
proaches (with large improvements compared to
UnikP) on 3 of the 4 the datasets for present
keyphrases, with a less than 1% drop compared
to UniKP on OpenKP. For absent keyphrases, KP-
Drop gets the best results for two of the three
datasets and UniKP has the lowest scores for
all the datasets. Note that the absolute perfor-
mance varies widely across datasets. Studying
the datasets more closely in terms of how they
were created may explain the performance differ-
ence, and we leave that analysis for future work.

Cross-domain transfer: In Section 4, the four
test datasets we used: Krapivin, Inspec, Semeval,
NUS - all belonged to the same domain of scien-
tific papers, with the first two test sets even sharing
the sub-domain (computer science) with the train-
ing dataset KP20K. Hence, there was some trans-
fer from the models trained on KP20K (Tables 1-
3). We briefly studied the degree of cross-domain
transfer with the new training datasets, taking KP-
Drop as the base model. There was a negli-
gible amount of transfer for absent keyphrases
and slightly better for present key phrases, but
even the best result for a given train-test dataset
combo hovered around 15%, which is much less
than what we saw when the model was trained
with KP20k.® This lead us to conclude that the
KPG approaches we tested have some transfer to
other datasets from the same domain, but there
is very little transfer in out-of-domain testing sce-
narios. Some recent research (Meng et al., 2023)

®Detailed results are in the supplementary material.

discusses approaches to improve transferability in
keyphrase generation models, and it would be in-
teresting to see if that could offer a solution for this
problem in future.

6. Approaches to compare two KPG
systems

In this section, we address the question: what
are the different means to compare two KPG ap-
proaches, beyond a standard evaluation mea-
sure? We discuss the various evaluation mea-
sures used in the literature, illustrate the appli-
cation of bootstrap/permutation tests for statisti-
cal significance testing for this task, and study the
overlap among predictions of two systems to un-
derstand what it can tell us about KPG in general.

6.1. Evaluation Measures

Several evaluation measures are reported across
papers that discuss KPG, as mentioned in Sec-
tion 3. There are three issues which are important
to understand a model performance appropriately
and compare across models, which are discussed
below:

Micro vs Macro Averaging: Calculating the
averaged evaluation measure (precision/recall/f-
score) over a collection of predicted keyphrases
on a given test set, can be done either via macro
or micro averaging. Macro averaging seems to be
the most preferred approach in KPG research, al-
though there is no clear explanation given for the
choice. We assume that it is merely a conven-
tion. Some papers prefer micro-F1 instead, and
some do not specify that in the paper (e.g., Wu
et al. (2021, 2022b); Martinez-Cruz et al. (2023)).
In this background, we explored if there are any
noticeable differences between micro and macro
F1 scores. Table 5 shows the average test dataset
performance difference between macro and mi-
cro F1@M for KPDrop models trained on the four
training sets (as mentioned before, OpenKP re-
sults are only considered for present KPs). For
each model, the test sets considered for averag-
ing include the training set’s test partition, and the
four other test sets (inspec, krapivin, semeval and
nus).

Train present KP | absent KP
KP20K 2.85 -0.15
KPTimes | -1.08 0.1
OpenKP | 0.49 -

StackEx | -1.09 -2.21

Table 5: Difference between Macro vs Micro
F1@M

The results from Table 5 indicate that macro-F1
shows larger numbers than micro-F1 for present

9725

keyphrases for KP20K (2.85 points difference on
an average) whereas micro-F1 is higher (by 2.21
points) for absent KPs for StackEx. There is no
observable trend in this rise and fall across set-
tings. Future research should consider studying
this in depth, to recommend whether to report mi-
cro or macro. Until then, we would recommend
researchers report macro-F1 (as that is commonly
used and enables comparisons) or report both mi-
cro and macro scores, and specify what is being
reported clearly.

R@10/50 for absent keyphrase prediction
Some papers report R@k (where k is large e.g.,
50) instead of F-scores, especially for absent
keyphrase generation (Zhao and Zhang, 2019;
Chen et al., 2019; Yuan et al., 2020; Meng et al.,
2021). We did not find a clear motivation for this
choice, although some papers speculate on po-
tential usefulness of the measure in retrieval fo-
cused applications. However, as seen in Sec-
tion 4 (Table 3 and Table 4), high recall scenar-
ios resulted in large drops in precision. Should
we prefer covering all the ground truth keyphrases
(high-recall) with a lot of irrelevant keyphrases
(low-precision)? Additionally, not having a com-
mon evaluation measure across present and ab-
sent keyphrases would not give us a comprehen-
sive picture of the model performance. Hence, we
would recommend reporting a common evaluation
measure (an F-score), and include an additional
discussion on R@k (and P@Kk), if needed, in main
text or as supplementary material.

F@ M vs O vs K: As described earlier, KPG
methods report one or two or all of the following
three F1 scores: F1@M, where M is the number
of generated keyphrases; F1@k, which just con-
siders top-k generated kps and F1@0O, where O is
the number of ground truth keyphrases. Although
F1@0O is not commonly reported, it seems intuitive
to expect F1@O to be a stricter measure since the
generator cannot know the number of ground truth
keyphrases in advance.

Table 6 shows the comparison between F1@M
and F1@O using KPDrop model, trained with
various datasets, and tested on the test splits
of the respective datasets. The results indicate
that the choice of M/O/K did not impact much
when the overall performance is low (e.g., absent
keyphrases in most cases, and cross-domain sce-
narios). While there was variation among them,
it remained in the range of 0-1%. However,
in scenarios where the performance was gener-
ally higher (e.g., train-test splits from the same
source), there was a noticeable difference be-
tween F1@M and F1@O, but very little (< 1%)
difference between F1@5 and F1@M.

Clearly, these results also show that F1@O

| Dataset | F1@M | F1@O |
Present Keyphrases

KP20k 38.43 | 30.85
OpenKP | 31.9 27.2

StackEx | 55.61 46.53
KPTimes | 55.49 | 49.92

Absent Keyphrases
| KPTimes | 42.64 [37.68 |

Table 6: Difference between F1@M and F1@O for
models with higher reported scores

consistently assigns lower overall performance
scores, which may mean that the models may
be generating more key phrases than the ground
truth. The usage of F1@O warrants further
study and future research can perhaps focus on
re-ranking the generated keyphrases to boost
F1@O. Based on the results so far, it appears like
F1@M and F1@5 are close to each other, and
F1@O is different from both. So, we would rec-
ommend reporting F1@M and F1@O, and possi-
bly report the rest as additional information.

6.2. Significance Testing

Conducting significance testing would help us un-
derstand whether the difference in performance
between two systems is a chance variation or a
statistically meaningful difference. Despite sev-
eral proposed approaches in keyphrase extrac-
tion/generation literature, reporting significance is
not common. Among the few who report, the us-
age of a paired t-test for Mean Average Precision,
R@10/F@10/F@M is the most common (Boudin
et al., 2020; Gallina et al., 2020). More recently,
Garg et al. (2022) used a "two tailed statistical
significance test” but no details are given. How-
ever, NLP literature on statistical significance has
argued that t-tests are not appropriate for preci-
sion and F-score (Yeh, 2000), as normality cannot
be assumed. Papagiannopoulou and Tsoumakas
(2019) checks for normality to choose between t-
test and wilcoxon'’s signed rank test on F scores for
unsupervised keyphrase extraction, which seems
to be a reasonable approach.

In this paper, following the recommendations of
Yeh (2000) and Dror et al. (2018) on doing signifi-
cance testing for NLP, we used bootstrap and per-
mutation tests, as implemented by the latter’. We
compared the performance of two systems that
are close to each other (KPDrop and SetTrans,
referenced as System A and System B respec-
tively) on KPTimes dataset, on which both present
and absent keyphrase generation had reasonable
performance, in the greedy decoding setting, in

"https://github. com/rtmdrr/
testSignificanceNLP

9726

https://github.com/rtmdrr/testSignificanceNLP
https://github.com/rtmdrr/testSignificanceNLP

terms of F@5/M/O, as shown in Table 7. All the
differences were statistically significant with both
bootstrap and permutation tests (p <0.001) except
F@O-Present, where both tests indicated that the
difference was not statistically significant.

] \ F@5 \ F@M \ F@O \
Present
System A | 55.347 | 55.497 | 49.92
System B | 54.63 54.77 49.34
Absent
System A | 42.36" | 42.64” | 37.68"
System B | 40.58 41.02 35.58

Table 7: Significance Testing across evaluation
measures (** indicates that the difference between
System A and B is significant (p < 0.001)

We did not compare UniKP with KPDrop because
the performance differences were large enough to
assume a significant difference (Figure 2). Clearly,
the choice of evaluation measure also influences
the result of the statistical significance test. Con-
sidering that the implementations of the recom-
mended bootstrap/permutation tests are easily
available, we would recommend future work on
this topic to report the results of significance test-
ing at least on results that are close to each other,
and on multiple evaluation measures, if possible.

6.3. Overlap in generated output

While evaluation measures help us understand
model performance, they do not give any insights
into the similarities or dissimilarities between mod-
els. Observing the overlap between the generated
output of two (or more) systems can be one way
of addressing this. Figure 3 shows the degree of
overlap between two approaches (UniKP and KP-
Drop) on KPTimes test set for present and absent
keyphrases (PKP and AKP respectively).

From Figure 3, we observe that in the test in-
stances where the overlap between the two sys-
tems was less (left side of the plots), there were
more overlaps among the keyphrases that are not
seen in the ground truth. For example, in the O-
10% overlap bracket for PKPs, over 50% of the in-
stances that overlapped were keyphrases that did
not exist in the ground truth, but were generated by
both systems. This was close to 50% even in AKP.
However, in the test instances where the over-
lap is higher (e.g., 40-50% bracket) the overlap is
higher among the correctly predicted keyphrases,
for both PKP and AKP. While the trend is not en-
tirely surprising and we could expect that higher
overlap would likely mean a higher overlap with
ground truth too, it is interesting to notice that PKP
and AKP plots are almost identical, except for the
difference in the frequency of overlap.

GT Mismatches
50 GT Matches

8

w
=3

Percentage Frequency

N
)

0
0 10 20 30 40 50 60 70 80 90 100

% Overlap between PKP predictions of two Systems

(a)

GT Mismatches
GT Matches

40

w
-}

N
°

Percentage Frequency

10

0
0 10 20 30 40 50 60 70 80 90 100

% Overlap between AKP predictions of two Systems

Figure 3: Percentage Overlap between keyphrase
predictions generated by UniKP and KPDrop on
KPTimes test set

With regards to the high overlap among the wrong
predictions, it is possible that the ground truth
labels don’t have a hundred percent coverage
and the model generated outputs are not en-
tirely wrong. Table 8 illustrates one example of
this kind, where some extractive and abstractive
keyphrases that are not seen in the ground truth
are shared by two systems. The system out-
puts in these cases are not incorrect, but are just
not covered in the ground truth. Thus, compar-
ing overlaps across systems can potentially pro-
vide a way to expand the ground truth coverage
too. Such analyses also help us understand if
there are any common (or complementary) trends
of success/failure across all models, and develop
strategies to work around them. Future research
should delve into this aspect further, devising bet-
ter means of comparing the predictions of two sys-
tems, and exploring the possibility of ensemble
based KPG approaches in future.

7. Conclusions

We started with the goal of understanding the state
of the art in KPG research through reproducibil-
ity experiments, and looked into different ways of

9727

Text: This paper proposes a framework to automate the parsing of Arabic language sentences in general,
although it focuses on the simple verbal sentences but it can be extended to any Arabic language sentence.
The proposed system is divided into two separated phases which are lexical analysis and syntax analysis.
Lexical phase analyses the words, finds its originals and roots, separates it from prefixes and suffixes, and
assigns the filtered words to special tokens. Syntax analysis receives all the tokens and finds the best
grammar for the given sequence of the tokens by using context free grammar. Our system assumes that the
entered sentences are correct lexically and grammatically.
Extractive Abstractive

lexical analysis, syntax analysis Arabic language parser

Ground Truth

UniKP - Language parsing
SetTrans Lexical analysis; arabic lan- arabic language parsing
guage sentences; context free
grammar; parsing;
KPDrop Parsing; context free grammar ; arabic language parsing ; sen-

arabic language;

tence retrieval ; natural language
processing

Table 8: An Example showing ground truth and the predictions predictions from different models

comparing among KPG models. In terms of the
research questions we started with, our learnings
and some pointers to future research can be sum-
marized as follows:

1. Reproducing results, even when code
and data remain the same, is challenging.
Change of hardware, training epochs etc.,
explain part of the difference, but not every-
thing. More research is indeed to quantify
reproducibility and delineate the factors that
impact it.

2. When trained using the same code, but dif-
ferent training data, we noticed large differ-
ences in terms of absolute performance per
dataset. This leads to a conclusion that not
all keyphrase datasets are created the same,
and more research is perhaps needed on the
data analysis side, to understand the task bet-
ter.

3. There are many evaluation measures re-
ported in this task, and the choice of mea-
sure could affect the overall conclusions. The
overlap between model predictions both when
the predictions are right or wrong can give
some insights into what works and doesn’t
work for the KPG task. So, it needs to be ex-
plored further.

Recommendations: Based on our results, we
recommend the following best practices for report-
ing on future KPG research:

* Report the same evaluation measure for
present/absent KPs, and discuss additional
evaluation measures separately either in
main content or supplementary material.

+ Specify whether micro or macro averaging is
used.

* Use the appropriate statistical significance
test on close, best-performing setups.

7.1. Limitations and Outlook

We only looked at English datasets and super-
vised learning models in this paper, primarily to
keep the number of experiments under control.
We also did not repeat experiments (e.g., with
different random seeds) due to computing con-
straints. Despite studying the overlap between
systems, we did not perform any qualitative anal-
ysis yet, and designing a protocol for performing
such analysis effectively for this task is an inter-
esting direction to pursue. Finally, more experi-
ments along the lines of Meng et al. (2023), investi-
gating methods that achieve better transfer across
domains is an important next step.

8. Ethics statement

We relied on publicly available, pre-existing code
and datasets and all the code and detailed result
files are provided on github®.

Acknowledgements

We thank Rotem Dror for advice on signifi-
cance testing, the three anonymous reviewers and
Gabriel Bernier-Colborne, Yunli Wang and Taraka
Rama for their feedback on the paper. Most im-
portantly, we thank the authors of the papers that
form the basis of this study, for sharing their code
publicly, in a useable manner. This research was
conducted at the National Research Council of
Canada (“NRC"), thereby establishing a copyright
belonging to the Crown in Right of Canada, that s,
to the Government of Canada.

®https://github. com/edwinthomas444/
keyphrase-generation-reproducibility-study/

9728

https://github.com/edwinthomas444/keyphrase-generation-reproducibility-study/
https://github.com/edwinthomas444/keyphrase-generation-reproducibility-study/

9. References

Mohammad Arvan, Luis Pina, and Natalie Parde.
2022. Reproducibility in computational linguis-
tics: Is source code enough? In Proceedings
of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 2350—
2361, Abu Dhabi, United Arab Emirates. Asso-
ciation for Computational Linguistics.

Anya Belz, Shubham Agarwal, Anastasia Shimo-
rina, and Ehud Reiter. 2021. A systematic re-
view of reproducibility research in natural lan-
guage processing. In Proceedings of the 16th
Conference of the European Chapter of the As-
sociation for Computational Linguistics: Main
Volume, pages 381-393, Online. Association
for Computational Linguistics.

Anya Belz, Maja Popovic, and Simon Mille. 2022.
Quantified reproducibility assessment of NLP
results. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 16-28,
Dublin, Ireland. Association for Computational
Linguistics.

Florian Boudin, Ygor Gallina, and Akiko Aizawa.
2020. Keyphrase generation for scientific docu-
ment retrieval. In Proceedings of the 58th An-
nual Meeting of the Association for Computa-
tional Linguistics, pages 1118-1126, Online. As-
sociation for Computational Linguistics.

Erion Cano and Ondrej Bojar. 2019a. Keyphrase
generation: A multi-aspect survey. In 20719
25th Conference of Open Innovations Associa-
tion (FRUCT), pages 85-94. |IEEE.

Erion Cano and Ondrej Bojar. 2019b. Keyphrase
generation: A text summarization struggle. In
Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Pa-
pers), pages 666—672, Minneapolis, Minnesota.
Association for Computational Linguistics.

Hou Pong Chan, Wang Chen, Lu Wang, and Irwin
King. 2019. Neural keyphrase generation via
reinforcement learning with adaptive rewards.
In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics,
pages 2163-2174, Florence, ltaly. Association
for Computational Linguistics.

Jun Chen, Xiaoming Zhang, Yu Wu, Zhao Yan,
and Zhoujun Li. 2018. Keyphrase generation
with correlation constraints. In Proceedings
of the 2018 Conference on Empirical Methods

in Natural Language Processing, pages 4057—
4066, Brussels, Belgium. Association for Com-
putational Linguistics.

Wang Chen, Yifan Gao, Jiani Zhang, Irwin King,
and Michael R Lyu. 2019. Title-guided encoding
for keyphrase generation. In Proceedings of the
AAAI Conference on Atrtificial Intelligence, vol-
ume 33, pages 6268-6275.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei,
Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming
Zhou, and Hsiao-Wuen Hon. 2019. Unified lan-
guage model pre-training for natural language
understanding and generation. Advances in
neural information processing systems, 32.

Rotem Dror, Gili Baumer, Segev Shlomov, and
Roi Reichart. 2018. The hitchhiker’s guide
to testing statistical significance in natural lan-
guage processing. In Proceedings of the 56th
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 1383—-1392, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Ygor Gallina, Florian Boudin, and Béatrice Daille.
2019. Kptimes: A large-scale dataset for
keyphrase generation on news documents. In
Proceedings of the 12th International Confer-
ence on Natural Language Generation, pages
130-135.

Ygor Gallina, Florian Boudin, and Béatrice Daille.
2020. Large-scale evaluation of keyphrase
extraction models. In Proceedings of the
ACM/IEEE Joint Conference on Digital Libraries
in 2020, pages 271-278.

Krishna Garg, Jishnu Ray Chowdhury, and Cor-
nelia Caragea. 2022. Keyphrase generation be-
yond the boundaries of title and abstract. In
Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 5809-5821,
Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Anette Hulth. 2003. Improved automatic keyword
extraction given more linguistic knowledge. In
Proceedings of the 2003 conference on Em-
pirical methods in natural language processing,
pages 216-223.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2010. SemEval-2010 task 5
: Automatic keyphrase extraction from scientific
articles. In Proceedings of the 5th International
Workshop on Semantic Evaluation, pages 21—
26, Uppsala, Sweden. Association for Compu-
tational Linguistics.

9729

https://doi.org/10.18653/v1/2022.emnlp-main.150
https://doi.org/10.18653/v1/2022.emnlp-main.150
https://doi.org/10.18653/v1/2021.eacl-main.29
https://doi.org/10.18653/v1/2021.eacl-main.29
https://doi.org/10.18653/v1/2021.eacl-main.29
https://doi.org/10.18653/v1/2022.acl-long.2
https://doi.org/10.18653/v1/2022.acl-long.2
https://doi.org/10.18653/v1/2020.acl-main.105
https://doi.org/10.18653/v1/2020.acl-main.105
https://doi.org/10.18653/v1/N19-1070
https://doi.org/10.18653/v1/N19-1070
https://doi.org/10.18653/v1/P19-1208
https://doi.org/10.18653/v1/P19-1208
https://doi.org/10.18653/v1/D18-1439
https://doi.org/10.18653/v1/D18-1439
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/2022.findings-emnlp.427
https://doi.org/10.18653/v1/2022.findings-emnlp.427
https://aclanthology.org/S10-1004
https://aclanthology.org/S10-1004
https://aclanthology.org/S10-1004

Mikalai Krapivin, Aliaksandr Autaeu, and Maurizio
Marchese. 2009. Large dataset for keyphrases
extraction.

Tuhin Kundu, Jishnu Ray Chowdhury, and Cor-
nelia Caragea. 2023. Neural keyphrase gener-
ation: Analysis and evaluation. arXiv preprint
arXiv:2304.13883.

Giuseppe Lancioni, Saida S.Mohamed, Beatrice
Portelli, Giuseppe Serra, and Carlo Tasso.
2020. Keyphrase generation with GANs in low-
resources scenarios. In Proceedings of Sus-
taiNLP: Workshop on Simple and Efficient Natu-
ral Language Processing, pages 89-96, Online.
Association for Computational Linguistics.

Weidong Li, Rong Peng, Song Li, Yagian Wang,
and Zhihuan Yan. 2020. Co-occurrence
graph based hierarchical neural networks
for keyphrase generation. Neurocomputing,
415:15-26.

Zhiyuan Liu, Xinxiong Chen, Yabin Zheng, and
Maosong Sun. 2011. Automatic keyphrase ex-
traction by bridging vocabulary gap. In Pro-
ceedings of the Fifteenth Conference on Com-
putational Natural Language Learning, pages
135-144, Portland, Oregon, USA. Association
for Computational Linguistics.

Yichao Luo, Yige Xu, Jiacheng Ye, Xipeng Qiu,
and Qi Zhang. 2021. Keyphrase generation
with fine-grained evaluation-guided reinforce-
ment learning. In Findings of the Association
for Computational Linguistics: EMNLP 2021,
pages 497-507, Punta Cana, Dominican Re-
public. Association for Computational Linguis-
tics.

Roberto Martinez-Cruz, Alvaro J Loépez-Lopez,
and José Portela. 2023. Chatgpt vs state-
of-the-art models: A benchmarking study in
keyphrase generation task. arXiv preprint
arXiv:2304.14177.

Rui Meng, Tong Wang, Xingdi Yuan, Yingbo Zhou,
and Daqing He. 2023. General-to-specific trans-
fer labeling for domain adaptable keyphrase
generation. In Findings of the Association for
Computational Linguistics: ACL 2023, pages
1602-1618, Toronto, Canada. Association for
Computational Linguistics.

Rui Meng, Xingdi Yuan, Tong Wang, Sangiang
Zhao, Adam Trischler, and Daging He. 2021.
An empirical study on neural keyphrase gener-
ation. In Proceedings of the 2021 Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies, pages 4985-5007, Online.
Association for Computational Linguistics.

Rui Meng, Sangiang Zhao, Shuguang Han,
Daging He, Peter Brusilovsky, and Yu Chi. 2017.
Deep keyphrase generation. In Proceedings of
the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Pa-
pers), pages 582-592, Vancouver, Canada. As-
sociation for Computational Linguistics.

Rada Mihalcea and Paul Tarau. 2004. Tex-
tRank: Bringing order into text. In Proceedings
of the 2004 Conference on Empirical Methods
in Natural Language Processing, pages 404—
411, Barcelona, Spain. Association for Compu-
tational Linguistics.

Thuy Dung Nguyen and Min-Yen Kan. 2007.
Keyphrase extraction in scientific publications.
In International conference on Asian digital li-
braries, pages 317-326. Springer.

Eirini Papagiannopoulou and Grigorios
Tsoumakas. 2019. Unsupervised keyphrase
extraction from scientific publications. In
International Conference on Computational
Linguistics and Intelligent Text Processing,
pages 215-229. Springer.

Frédéric Piedboeuf and Philippe Langlais. 2022. A
new dataset for multilingual keyphrase genera-
tion. Advances in Neural Information Process-
ing Systems, 35:38046—-38059.

Maja Popovi¢, Sheila Castilho, Rudali Huidrom,
and Anya Belz. 2022. Reproducing a manual
evaluation of the simplicity of text simplification
system outputs. In Proceedings of the 15th
International Conference on Natural Language
Generation: Generation Challenges, pages 80—
85, Waterville, Maine, USA and virtual meeting.
Association for Computational Linguistics.

Martin F Porter. 1980. An algorithm for suffix strip-
ping. Program, 14(3):130-137.

Edward Raff. 2019. A step toward quantifying in-
dependently reproducible machine learning re-
search. Advances in Neural Information Pro-
cessing Systems, 32.

Jishnu Ray Chowdhury, Seo Yeon Park, Tuhin
Kundu, and Cornelia Caragea. 2022. KPDROP:
Improving absent keyphrase generation. In
Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 4853-4870,
Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Mingyang Song, Yi Feng, and Liping Jing. 2023a.
A survey on recent advances in keyphrase ex-
traction from pre-trained language models. In
Findings of the Association for Computational
Linguistics: EACL 2023, pages 2153-2164,

9730

https://doi.org/10.18653/v1/2020.sustainlp-1.12
https://doi.org/10.18653/v1/2020.sustainlp-1.12
https://aclanthology.org/W11-0316
https://aclanthology.org/W11-0316
https://doi.org/10.18653/v1/2021.findings-emnlp.45
https://doi.org/10.18653/v1/2021.findings-emnlp.45
https://doi.org/10.18653/v1/2021.findings-emnlp.45
https://doi.org/10.18653/v1/2023.findings-acl.102
https://doi.org/10.18653/v1/2023.findings-acl.102
https://doi.org/10.18653/v1/2023.findings-acl.102
https://doi.org/10.18653/v1/2021.naacl-main.396
https://doi.org/10.18653/v1/2021.naacl-main.396
https://doi.org/10.18653/v1/P17-1054
https://aclanthology.org/W04-3252
https://aclanthology.org/W04-3252
https://aclanthology.org/2022.inlg-genchal.12
https://aclanthology.org/2022.inlg-genchal.12
https://aclanthology.org/2022.inlg-genchal.12
https://doi.org/10.18653/v1/2022.findings-emnlp.357
https://doi.org/10.18653/v1/2022.findings-emnlp.357
https://aclanthology.org/2023.findings-eacl.161
https://aclanthology.org/2023.findings-eacl.161

Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Mingyang Song, Haiyun Jiang, Shuming Shi,
Songfang Yao, Shilong Lu, Yi Feng, Huafeng
Liu, and Liping Jing. 2023b. Is chatgpt a
good keyphrase generator? a preliminary study.
arXiv preprint arXiv:2303.13001.

Avinash Swaminathan, Haimin Zhang, Debanjan
Mahata, Rakesh Gosangi, Rajiv Ratn Shah, and
Amanda Stent. 2020. A preliminary exploration
of GANs for keyphrase generation. In Proceed-
ings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 8021-8030, Online. Association for Com-
putational Linguistics.

Yue Wang, Jing Li, Hou Pong Chan, Irwin King,
Michael R. Lyu, and Shuming Shi. 2019. Topic-
aware neural keyphrase generation for social
media language. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 25162526, Florence,
Italy. Association for Computational Linguistics.

lan H Witten, Gordon W Paynter, Eibe Frank, Carl
Gutwin, and Craig G Nevill-Manning. 1999. Kea:
Practical automatic keyphrase extraction. In
Proceedings of the fourth ACM conference on
Digital libraries, pages 254—255.

Di Wu, Wasi Uddin Ahmad, and Kai-Wei Chang.
2022a. Pre-trained language models for
keyphrase generation: A thorough empirical
study. https://arxiv.org/abs/2212.10233.

Di Wu, Da Yin, and Kai-Wei Chang. 2023. Kpe-
val: Towards fine-grained semantic-based eval-
uation of keyphrase extraction and generation
systems. arXiv preprint arXiv:2303.15422.

Huanqgin Wu, Wei Liu, Lei Li, Dan Nie, Tao
Chen, Feng Zhang, and Di Wang. 2021.
UniKeyphrase: A unified extraction and gener-
ation framework for keyphrase prediction. In
Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 825-
835, Online. Association for Computational Lin-
guistics.

Huangin Wu, Baijiaxin Ma, Wei Liu, Tao Chen, and
Dan Nie. 2022b. Fast and constrained absent
keyphrase generation by prompt-based learn-
ing. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 11495—
11503.

Binbin Xie, Jia Song, Liangying Shao, Suhang Wu,
Xiangpeng Wei, Baosong Yang, Huan Lin, Jun
Xie, and Jinsong Su. 2023. From statistical
methods to deep learning, automatic keyphrase

prediction: A survey. Information Processing &
Management, 60(4):103382.

Binbin Xie, Xiangpeng Wei, Baosong Yang, Huan
Lin, Jun Xie, Xiaoli Wang, Min Zhang, and Jin-
song Su. 2022. WR-One2Set: Towards well-
calibrated keyphrase generation. In Proceed-
ings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages
72837293, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Lee Xiong, Chuan Hu, Chenyan Xiong, Daniel
Campos, and Arnold Overwijk. 2019. Open
domain web keyphrase extraction beyond lan-
guage modeling. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5175-5184,
Hong Kong, China. Association for Computa-
tional Linguistics.

Jiacheng Ye, Tao Gui, Yichao Luo, Yige Xu, and
Qi Zhang. 2021. One2Set: Generating diverse
keyphrases as a set. In Proceedings of the 59th
Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint
Conference on Natural Language Processing
(Volume 1: Long Papers), pages 45984608,
Online. Association for Computational Linguis-
tics.

Alexander Yeh. 2000. More accurate tests for the
statistical significance of result differences. In
COLING 2000 Volume 2: The 18th International
Conference on Computational Linguistics.

Xingdi Yuan, Tong Wang, Rui Meng, Khushboo
Thaker, Peter Brusilovsky, Daqing He, and
Adam Trischler. 2020. One size does not fit all:
Generating and evaluating variable number of
keyphrases. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, pages 7961-7975, Online. Associ-
ation for Computational Linguistics.

Jing Zhao and Yuxiang Zhang. 2019. Incorporat-
ing linguistic constraints into keyphrase genera-
tion. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 5224-5233, Florence, Italy. Association
for Computational Linguistics.

9731

https://doi.org/10.18653/v1/2020.emnlp-main.645
https://doi.org/10.18653/v1/2020.emnlp-main.645
https://doi.org/10.18653/v1/P19-1240
https://doi.org/10.18653/v1/P19-1240
https://doi.org/10.18653/v1/P19-1240
https://doi.org/10.18653/v1/2021.findings-acl.73
https://doi.org/10.18653/v1/2021.findings-acl.73
https://aclanthology.org/2022.emnlp-main.491
https://aclanthology.org/2022.emnlp-main.491
https://doi.org/10.18653/v1/D19-1521
https://doi.org/10.18653/v1/D19-1521
https://doi.org/10.18653/v1/D19-1521
https://doi.org/10.18653/v1/2021.acl-long.354
https://doi.org/10.18653/v1/2021.acl-long.354
https://aclanthology.org/C00-2137
https://aclanthology.org/C00-2137
https://doi.org/10.18653/v1/2020.acl-main.710
https://doi.org/10.18653/v1/2020.acl-main.710
https://doi.org/10.18653/v1/2020.acl-main.710
https://doi.org/10.18653/v1/P19-1515
https://doi.org/10.18653/v1/P19-1515
https://doi.org/10.18653/v1/P19-1515

	Introduction
	Related Work
	Methodology
	Training Methods
	Datasets
	Evaluation Measures
	Experimental setup

	Reproducibility: same conditions
	Comparing decoding strategies

	Reproducibility: other datasets
	Approaches to compare two KPG systems
	Evaluation Measures
	Significance Testing
	Overlap in generated output

	Conclusions
	Limitations and Outlook

	Ethics statement
	References

