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Abstract
Knowledge-enhanced pre-trained language models (KEPLMs) leverage relation triples from knowledge graphs (KGs)
and integrate these external data sources into language models via self-supervised learning. Previous works treat
knowledge enhancement as two independent operations, i.e., knowledge injection and knowledge integration. In
this paper, we propose to learn Knowledge-Enhanced language representations with Hierarchical Reinforcement
Learning (KEHRL), which jointly addresses the problems of detecting positions for knowledge injection and integrating
external knowledge into the model in order to avoid injecting inaccurate or irrelevant knowledge. Specifically, a
high-level reinforcement learning (RL) agent utilizes both internal and prior knowledge to iteratively detect essential
positions in texts for knowledge injection, which filters out less meaningful entities to avoid diverting the knowledge
learning direction. Once the entity positions are selected, a relevant triple filtration module is triggered to perform
low-level RL to dynamically refine the triples associated with polysemic entities through binary-valued actions.
Experiments validate KEHRL’s effectiveness in probing factual knowledge and enhancing the model’s performance
on various natural language understanding tasks.

Keywords: Knowledge-enhancement, Reinforcement learning, Pre-trained language model

1. Introduction

General pre-trained language models (PLMs)
(Dong et al., 2019; Li et al., 2020; Bao et al., 2020)
are pre-trained on various sources (Ma et al., 2020;
Wu and He, 2019; Guu et al., 2020) and fine-tuned
with specific data for diverse tasks, such as Informa-
tion Extraction (Lee et al., 2022; Qin et al., 2021; Ma
et al., 2021), Natural Language Inference (Qi et al.,
2022; Saha et al., 2020), and Question Answering
(Zhang et al., 2022a; Heo et al., 2022; Pappas and
Androutsopoulos, 2021; Cheng et al., 2021).

To enhance context-aware representations,
PLMs are equipped with additional knowledge col-
lected from external resources in the forms of
structured data such as relation triples from knowl-
edge graphs (KGs) (Su et al., 2021) and unstruc-
tured description texts related to entities (Yu et al.,
2022). This type of PLMs is often called knowledge-
enhanced pre-trained language models (KEPLMs).
Meanwhile, the recently emerged large language
models (Zhao et al., 2023; Peng et al., 2023) also
need external knowledge such as parametric knowl-
edge (Luo et al., 2023) and retrieved knowledge
(Pan et al., 2023) to augment themselves to alle-
viate hallucination (Zhang et al., 2023b; Liu et al.,
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2023).

According to previous research, KEPLMs (Wang
et al., 2021b; Zhang et al., 2021b, 2022c) gen-
erally consist of two important modules, namely,
knowledge injection and knowledge integration. (1)
Knowledge Injection: it preprocesses the pre-
training corpus into token-level input and chooses
vital token positions (e.g., entities), preparing to in-
ject the retrieved relevant relation triples from KGs
at these positions. Recent research (Zhang et al.,
2019; Peters et al., 2019; Liu et al., 2022) injects
various types of knowledge into the positions of
all entities indiscriminately. However, frequent and
commonly used entities have already been learned
sufficiently by PLMs, causing the redundant learn-
ing phenomenon and further inducing knowledge
noise (Zhang et al., 2021a, 2022c). (2) Knowledge
Integration: it aggregates the retrieved relation
triples into the context-aware entity representations
output by a plain PLM and learns new knowledge-
enhanced representations to produce the final KE-
PLM. Existing works (Zhang et al., 2019; Lin et al.,
2019; Peters et al., 2019) generally allocate dif-
ferent attention weights to each entity’s triples to
remove redundant knowledge. However, the soft
distribution of the attention mechanism is not de-
terministic aggregation and inevitably introduces
inaccurate knowledge such as irrelevant ambigu-
ity triples (Peters et al., 2019; Zhang et al., 2019).
As shown in Figure 1, since “CNBC” has a rela-
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Figure 1: The dynamic selection process of entities and relation triples during pre-training.

tively weak contribution to the meaning of the whole
sentence, we should attach less emphasis to it to
avert error propagation to subsequent procedures.
“Cook” and “Apple” are polysemic entities, and their
irrelevant triples should be filtered out to avoid inac-
curate knowledge. The well-learned entity “Steve
Jobs” at the n-th epoch should not participate in the
subsequent (n+ 1)-th epoch knowledge enhance-
ment process to prevent duplicate learning (Zhang
et al., 2021a, 2022c).

To tackle the problems mentioned above, we pro-
pose a new Knowledge-Enhanced language rep-
resentation learning framework with Hierarchical
Reinforcement Learning (KEHRL) process to alle-
viate the error propagation problem, which jointly
learns the positions of entities for knowledge in-
jection and leverages relevant candidate relation
triples dynamically at different levels for knowledge
pre-training. Two new techniques are proposed
and summarized below. (1) Reinforced Entity Po-
sition Detection combines the sentence’s current
representations and the prior knowledge as the
state, leveraging high-level RL (Sutton and Barto,
1998) to detect the essential entity positions us-
ing the entity reward function derived based on
the masked language modeling (MLM) task (De-
vlin et al., 2019). The final entity positions guide
the model toward the prospective direction. When
high-level RL’s actions regarding entity positions
are determined, low-level relevant triple selection
will be triggered. (2) Reinforced Triple Semantic
Refinement utilizes low-level RL to choose seman-

tically valid relation triples of polysemic entities with
binary-valued actions. We dynamically prune inac-
curate and ambiguous relation triples according to
the current state. The MLM task’s token accuracy
reward guides the model to adjust itself to calibrate
the learning bias from irrelevant relation triples.

2. Pre-training Data Analysis

Selection of Entities We compare four different
types of entity selection strategies for knowledge
injection to observe changes in KEPLMs’ perfor-
mance, including (1) no entities selected, (2) all
entities, (3) long-tail entities only, and (4) high-
frequency entities only. We utilize BERT-base (De-
vlin et al., 2019) as the backbone to evaluate the
performance. As Table 1 shows, we observe that
knowledge injection into long-tail entities outper-
forms the high-frequency setting slightly, indicating
that the models have already learned the factual
knowledge well for these entities, where the rel-
evant knowledge from KGs should be treated as
redundant (Zhang et al., 2021a, 2022c). The knowl-
edge injection setting of all entities has the lowest
scores compared to the others. We suggest that
the reason is that not all entities are helpful and
different entities play different roles during the pre-
training process for the enhancement of contextual
semantics.
Knowledge Injection from Relation Triples Since
PLMs have incorporated knowledge into model pa-
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Tasks Named Entity
Recognition

Relation
Extraction

Sentiment
Analysis

Information
Retrieval

Datasets ACE2005 SemEval SST-2 MARCO DOC DEV
Types ↓ Metrics → F1 F1 ACC MRR@100

No Entity 83.4 91.7 93.5 39.8
All Entities 82.5 89.6 92.5 38.3

Long-tail Entities 86.1 95.2 95.8 41.1
High-frequency Entities 84.8 93.9 94.0 40.4

Table 1: The performance of different entity selection types on four different tasks.

Figure 2: The comparison of different triple injection
operations.

rameters (Su et al., 2021; Sun et al., 2020) through
self-supervised learning, the remaining entities that
are most difficult for the model to understand are
polysemic entities (Zhang et al., 2023a), such as
the ambiguous semantics of “apple” regarding Ap-
ple Inc. or a kind of fruit. Sentences injected
with incorrect relation triples may divert them from
their correct meanings (Liu et al., 2020). For ex-
ample, when the important entity “Apple Inc.” oc-
curs in the pre-training sentence, it would be harm-
ful if a relation triple about the apple as a fruit is
injected, such as “<apple, subfamily_neighbour,
pear>”. We analyze two relation triple injection op-
erations, including fixed triple injection and dynamic
triple injection. Fixed triple injection leverages all
correlated relation triples without any filtering tech-
niques. Dynamic triple injection absorbs relation
triples with attention-weighted values learned by
self-supervised knowledge pre-training tasks au-
tomatically. We evaluate the average Spearman
correlation score between the triple-injected train-
ing sentences and the original sentences. From
Figure 2, we observe that dynamic triple injection
has higher Spearman scores than fixed triple injec-
tion, validating that the dynamically triple-injected
sentences contain less inaccurate semantics.

3. Model Architecture

In this section, we introduce our model components
in detail. An overview is shown in Figure 3.

3.1. Model Notations
In the pre-training corpus, there are Ntotal sen-
tences, and each sentence consists of certain to-
kens Si = (ti1, ti2, · · · , tili). Each sentence in-
cludes Ni entities, and the sentence’s entity col-
lection can be denoted as Ei = {ei1, ei2, · · · , eiNi

}.
The j-th entity of the i-th sentence is connected with
Mij triples in the KG; the entity’s triple collection
is denoted as {tri1ij , tri2ij , · · · , tri

Mij

ij }. We further
denote d as the dimension of the model’s hidden
representations.

3.2. Reinforced Entity Position Detection
In this module, the policy learns to dynamically se-
lect the entity injection positions. The recognized
entities in the sentence are regarded as the candi-
date pool. The more semantically important enti-
ties are selected, the higher the reward the strategy
owns.

State: The representation of each entity is ob-
tained in a knowledge combination process (See
Sec. 3.4). The representation of the j-th entity in
the i-th sentence eij is Heij ∈ Rd. We treat the
concatenation of all the entity representations in
the sample sentence as the state shigh

i of RL:

shigh
i = {Hei1 || Hei2 || · · · || HeiNi

} (1)

where “||” denotes the operation of concatenation.

Policy: The policy of high-level RL is a probability
distribution to decide which entity is more informa-
tive to the sentence. It leverages the current state
to conduct related actions ahigh

i . The policy πθhigh is
formulated as follows:

πθhigh(a
high
i |shigh

i ) = P (ahigh
i |shigh

i ) (2)

where θhigh represents the parameters of the policy.

Action: The action of high-level RL is to select
the entities, and the action for the i-th sentence is
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As CNBC reports, Cook still admires the leadership style of 
his predecessor Steve Jobs since he became chief executive of Apple.

··· ···

High-level Policy (entity)

CNBC Cook Steve Jobs Apple

Cook Steve Jobs Apple

KG

··· ··· ···

Low-level Policy (triple)

··· ··· ···

··· ···

𝐿𝑀𝐿𝑀
entity

reward
token

reward

model internal
knowledge

prior knowledge

+

replace

, ,

State

StateAction

Action

Reward

Reward

Transformers

Figure 3: The model architecture of KEHRL. The green part represents Reinforced Entity Position
Detection. The blue part represents Reinforced Triple Semantic Refinement.

a binary value vector:

ahigh
i = {0, 1, · · · , 0} ∈ RNi ,

ahigh
i ∼ πθhigh(a

high
i |shigh

i )
(3)

where “1” and “0” in the vector denote whether to
select the entity or not. “∼” means that the former
is sampled from the distribution of the latter. Note
that the low-level RL process for dynamic triple se-
lection is only triggered when the high-level action
for selecting entity injection positions is performed.

Reward: Our work treats the entity-grained task
performance as the high-level reward instead of
the intermediate reward. This depends on whether
the correct entity is predicted in the MLM task. The
reward can be formulated as follows:

rhigh
ij =

{
1 if êij = eij ,

0 if êij ̸= eij .
(4)

where êij is the j-th entity predicted by the model
for sentence Si. The accumulated reward for the
sentence is computed by Rhigh

i =
∑|Maske

i |
j=1 rhigh

ij ,
where |Maskei | is the number of masked entities.

3.3. Reinforced Triple Semantic
Refinement

At the low-level RL, the policy prompts the model
to choose more accurate triples with respect to

the selected entities during pre-training and filters
out inaccurate triples, rather than relying on soft
attention weights (Zhang et al., 2019; Lin et al.,
2019; Peters et al., 2019).

State: We obtain the representation of each re-
lation triple Htripij ∈ Rd by knowledge combination
(See Sec. 3.4). The concatenation of all triple repre-
sentations retrieved based on the selected entities
is treated as the state of low-level RL. Hence, the
state is represented as:

slow
ij = {Htri1ij || Htri2ij || · · · || HtriMij

ij

} (5)

Policy: The policy of low-level RL determines a
subset of related triples for a selected entity. It uti-
lizes the representations of the selected entity’s and
all of the connected triples’ to conduct the choosing
operation. The policy is a distribution given the
high-level action and the low-level states, i.e.,

πθlow(a
low
ij |ahigh

i ; slow
ij ) = P (alow

ij |ahigh
i ; slow

ij ) (6)

Action: The action of low-level RL is selecting un-
ambiguous relation triples and forcing the removal
of inaccurate relation triples in the current training
iteration. The action for the j-th entity in the i-th
sentence is also a binary value vector to represent
whether to choose the triple or not:

alow
ij = {0, 1, · · · , 0} ∈ RMij ,

alow
ij ∼ πθlow(a

low
ij |ahigh

i ; slow
ij )

(7)
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Reward: The final MLM task results at the token
level are regarded as the low-level reward, similar
to the high-level reward process. The low-level
reward is the number of correctly predicted tokens
in the MLM task, i.e.,

rlow
iq =

{
1 if t̂iq = tiq,

0 if t̂iq ̸= tiq.
(8)

where t̂iq is the q-th token predicted by the model for
sentence Si. The accumulated reward for the sen-
tence is computed as Rlow

i =
∑|Maskt

i |
q=1 rlow

iq , where
|Maskti | is the number of masked tokens. To inject
the relation triples into PLMs, we utilize the triple
representations to replace the related original entity
representations at the entity positions.

3.4. Weighted Knowledge Combination

We leverage the weighted mix of two types of knowl-
edge, including the model’s internal knowledge (i.e.,
the context-aware representations) and prior knowl-
edge, to further optimize the learning process.

Model’s Internal Knowledge: Different granular-
ities of text representations are combined to par-
ticipate in the RL procedure. The entity’s internal
knowledge consists of the contexts and KGs. The
contextual information is the mean-pooling repre-
sentation heij ∈ Rd, which is extracted from the
sentence embedding between the entity start and
end positions. The entity’s KG information is the
merged representations of all its connected triples,
i.e.,

Hmod
eij = heij +

Mij∑
p=1

αiphtripij ,

αip =
heij · htripij∑Mij

p=1 heij · htripij

.

(9)

The triple’s internal knowledge consists of global-
triple and sub-triple information. The global-triple is
the specific pseudo sentence representation htripij ∈
Rd. The pseudo sentence is the concatenation of
the triples tripij = ⟨head, rel, tail⟩. The sub-triple is
the merging of all triple components; we compute
the subject, relation, and object representations
respectively, and k ∈ {head, rel, tail}, i.e.,

Hmod
tripij

= htripij +
3∑

k=1

βpk
ij htriijpk

,

βpk
ij =

htripij · htriijpk∑3
k=1 htripij · htriijpk

.

(10)

Prior Knowledge: To calibrate the learning direc-
tion and avoid distorted forward steps, we consider
prior knowledge as part of the enhanced knowl-
edge components pre-processed before the model
training stage. The entity’s prior knowledge is the
normalized appearance frequency of each entity
relative to all entities in the training corpus. The
triple’s prior knowledge is the entity’s connected
(i.e., 1-hop, 2-hop, · · · , k-hop) triples’ normalized
importance, calculated by semantic similarity:

Hpri
eij = softmax

(
Ceij∑Ntotal

i=1

∑Ni

j=1 Ceij

)
,

Hpri
tripij

= softmax(sim(htripij , hSi)).

(11)

where Ceij denotes the number of appearances of
entity eij . “sim(·, ·)” denotes the similarity using the
cosine function. The sentence embedding hSi

∈
Rd is the sentence representation.

Next, we mix these two types of knowledge in a
weighted operation:

Heij = λHmod
eij + (1− λ)Hpri

eij ,

Htripij = λHmod
tripij

+ (1− λ)Hpri
tripij

.
(12)

where λ is the mixing degree controlling parameter.

3.5. Hierarchical Learning Strategy
Our total learning objectives are composed of three
parts: the cross-entropy loss of the sentence MLM
task, the high-level RL objective, and the low-level
RL objective. The high-level RL objective is to max-
imize the expected accumulated rewards in the
entity-grained MLM task:

Jθhigh = E
s

high
i ,a

high
i ,r

high
ij

|Maske
i |∑

j=1

rhigh
ij (13)

The low-level RL objective is to maximize the ex-
pected accumulated rewards in the token-level
MLM task:

Jθlow = Eslow
ij ,alow

ij ,rlow
iq

|Maskt
i |∑

q=1

rlow
iq (14)

Note that there are no discretized time steps in the
episode (Sutton and Barto, 1998; Lapan, 2018).
We model the episode as the training iteration.
We treat the final task reward as the accumulated
reward during the calculation stage. To enable
the model to converge faster and exhibit smaller
variance, we exploit policy gradient methods (Sut-
ton et al., 1999) via the REINFORCE algorithm
(Williams, 1992) with a baseline (Weaver and Tao,
2001) to optimize the RL objectives. The gradients
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for the high-level and low-level policy are as follows:

▽θhighJθhigh = E
s

high
i

,a
high
i

,r
high
ij

[(Rhigh
i −Rhigh

basei
)

▽θhighπθhigh(a
high
i |shigh

i )]

▽θlowJθlow = Eslow
ij ,alow

ij ,rlow
iq
[(Rlow

i −Rlow
basei

)

▽θlowπθlow(a
low
ij |ahigh

i ; slow
ij )]

(15)

Thus, the total training objective is:

Ltotal = ω1LMLM + ω2Lhigh + ω3Llow

= ω1LMLM − ω2Jθhigh − ω3Jθlow

(16)

where ω1, ω2, ω3 are hyperparameters.

4. Experiments

4.1. Data and Baselines

(1) Pre-training Data. We fetch the pre-training
samples from a wealth of knowledge resources,
i.e., the English Wikipedia (2020/03/01). We obtain
the detected entities’ description text and related re-
lation triples from WikiData5M (Wang et al., 2021b)
using the entity linking tool TAGME (Ferragina and
Scaiella, 2010). We follow ERNIE (Zhang et al.,
2019) to complete the additional data processing
stages. Finally, we obtain the pre-training data with
26 million samples, 3,085,345 entities, and 822
relation types.
(2) Downstream Data. Our work is evaluated by
the LAMA benchmark1 (Petroni et al., 2019). The
four evaluation datasets of LAMA include approx-
imately 2,550,000 sentences. Additionally, we in-
troduce the Open Entity (Choi et al., 2018) with
about 6,000 examples for the entity typing task,
CoNLL2003 (Sang and Meulder, 2003) with about
22,000 examples for the named entity recogni-
tion task, and TACRED (Zhang et al., 2017) with
106,000 examples for the relation extraction task.
(3) Baselines. ERNIE (Zhang et al., 2019), Know-
BERT (Peters et al., 2019), and KALM (Feng et al.,
2023) inject the retrieved relevant entity embed-
dings into the model by an integrated entity linker.
KEPLER (Wang et al., 2021b) and DKPLM (Zhang
et al., 2022c) encode the entity’s embedding and
jointly optimize the model with knowledge embed-
ding and MLM objectives. GREASELM (Zhang
et al., 2022d) fuses the graph structure and lan-
guage context representation to encourage them
to perform well on textual narratives tasks. KP-
PLM (Wang et al., 2022) is trained with multiple
transformed knowledge sub-graph prompts.

1https://github.com/facebookresearch/LAMA/
tree/main

4.2. Experiments Settings
During the pre-training stage, we utilize the
RoBERTa base model as the backbone. We
choose AdamW (Loshchilov and Hutter, 2017) as
the optimizer with a learning rate of 5e-6 and a
weight decay of 1e-5. The batch size is 184, and
the model is trained for 5 epochs. The learning rate
for the pre-training stage is set to 4e-5. The max-
imum hop number of the prior knowledge’s entity
connected triples k is set to 3. In KEHRL, we fix
the number of entities per sentence to 5 and the
number of triples per entity to 7. Sentences with
fewer than 5 entities randomly select entities from
the existing ones to fill the total entity count. This
rule also applies to triples. The maximum length of
the concatenated triples ltri is 15. The ratio param-
eter λ controlling the internal and prior knowledge
is 0.5. The proportion parameters ω of the total
loss Ltotal are set to {0.3, 0.35, 0.35}. We run our
pre-training stage on 8 NVIDIA A100 80G GPUs
for 1 day.2

4.3. General Experimental Results
Zero-shot Knowledge Probing Tasks: We eval-
uate our model on the knowledge probing bench-
mark LAMA (Petroni et al., 2019) using the metric
of macro-averaged mean precision (Mean P@1).
As shown in Table 2, (1) KEHRL outperforms gen-
eral PLMs and recent KEPLMs, owing to the RL-
based knowledge selection. (2) The average im-
provements on T-REx related datasets are larger
than those on Google-RE related datasets (3.5 vs.
0.5), demonstrating KEHRL’s ability to probe fac-
tual knowledge in complex prediction scenarios. (3)
The performance of KEHRL on four LAMA datasets
is 2.1 points higher on average than the recent
prevalent prompt-based model KP-PLM (Wang
et al., 2022). We conjecture that KP-PLM focuses
on prompt construction and pays less attention to fil-
tering out inaccurate knowledge, indicating that our
RL technique refines knowledge injection delicately
and boosts performance.

Knowledge-intensive NLP Tasks via Fine-tun-
ing: We validate our model on three knowledge-
intensive tasks to verify its knowledge learning qual-
ity. The details are as follows:

In the entity linking task, we observe that (1)
KEHRL achieves the best results in terms of the
F1 metric and outperforms the strongest baseline
KALM (Feng et al., 2023) by 3.8 points (from 78.1
to 81.9) because KALM integrates abundant knowl-
edge without meticulous detection of inaccurate
samples. (2) Compared with the baselines, KEHRL

2The source code and data can be available at https:
//github.com/MatNLP/KEHRL

https://github.com/facebookresearch/LAMA/tree/main
https://github.com/facebookresearch/LAMA/tree/main
https://github.com/MatNLP/KEHRL
https://github.com/MatNLP/KEHRL
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Datasets↓ Models→ PLMs KEPLMs
ELMo RoBERTa KEPLER GREASELM DKPLM KP-PLM KALM KEHRL ∆

Google-RE 2.2 5.3 7.3 10.6 10.8 11.0 10.9 11.6 +0.6
UHN-Google-RE 2.3 2.2 4.1 5.0 5.4 5.6 5.4 5.9 +0.3

T-REx 0.2 24.7 24.6 26.8 32.0 32.3 31.1 34.9 +2.6
UHN-T-REx 0.2 17.0 17.1 22.7 22.9 22.5 23.1 27.5 +4.4

Table 2: Experimental results of KEHRL and baselines on the LAMA benchmark in terms of Mean P@1
metric (%). The t-tests demonstrate the improvements of KEHRL are statistically significant with p <0.05.

Models↓ Datasets→ Open Entity CoNLL2003 TACRED
Precision Recall F1 Precision Recall F1 Precision Recall F1

BERT 76.4 72.0 73.6 91.6 93 92.4 67.2 64.8 66.0
RoBERTa 77.4 73.6 75.4 90.9 94.4 92.6 70.8 69.6 70.2

ERNIEBERT 78.4 72.9 75.6 89.5 94.2 91.8 70.0 66.1 68.1
KnowBERTBERT 77.9 71.2 74.4 91.2 92.8 92.0 71.6 71.5 71.5

GREASELM 80.1 74.8 77.4 91.6 94.0 92.8 73.9 73.2 73.5
DKPLM 79.2 75.9 77.5 92.5 93.7 93.1 72.6 73.5 73.1
KP-PLM 80.8 75.1 77.8 92.7 93.9 93.3 72.6 73.7 73.2
KALM 82.5 75.2 78.7 92.3 93.5 92.9 74.7 73.8 74.2

KEHRL 89.3 75.6 81.9(±0.7) 92.8 94.6 93.7(±0.3) 78.0 74.1 76.0(±0.4)

Table 3: The experimental results (%) on downstream knowledge-intensive tasks.

attains the highest precision score of 89.3. These
results confirm that the tailored knowledge injec-
tion mechanism of KEHRL effectively incorporates
knowledge to enhance performance. In the named
entity recognition task, KEHRL achieves the best
F1 score of 93.7 (+0.4) on this knowledge-intensive
task, illustrating that our model has accurate rep-
resentational ability in entity-aware scenarios, as-
sisted by the knowledge refinement of RL. In the re-
lation extraction (RE) task, we fine-tune our model
using the training set and test the model’s relation
extraction ability. The model yields the highest
scores across all three metrics (+3.3 in Precision,
+0.3 in Recall, and +1.8 in F1), further indicating
KEHRL’s accurate representations of entities and
relations, due to the judicious knowledge injection.

5. Detailed Analysis of KEHRL

5.1. Ablation Study
To evaluate the effectiveness of each important
module in our model, we conduct an ablation study
on the Open Entity (Choi et al., 2018) and TACRED
(Zhang et al., 2017) datasets. The results are as
follows:

1. When Reinforced Triple Semantic Refinement
is removed, all related triples are injected into
the model without meticulous refining, causing
a performance drop of approximately 3.5 and
0.8 in F1 on the two datasets, respectively.

2. Without Reinforced Entity Position Detection,
knowledge is injected at all entity positions

Methods Open Entity TACRED
KEHRL 81.9 76.0
- Trip. Sema. Refi. 78.4 75.2
- Enti. Posi. Dete. 74.2 71.8
- Weig. Mixed Knowledge 80.5 75.5

Table 4: Ablation study of KEHRL on Open Entity
and TACRED in terms of F1 metric. “-” means
removing the module.

without essential position detection, which may
introduce irrelevant knowledge, leading to a
significant decline in model performance (81.9
→ 74.2, and 76.0 → 71.8 in F1).

3. Removing the weighted mixed knowledge and
retaining only internal knowledge while ignor-
ing prior knowledge results in a decrease of
1.4 and 0.5 points in F1.

The ablation experiments indicate that each module
contributes significantly to the model’s performance
on these tasks.

5.2. The Influence of RL

To probe the value of our customized knowledge in-
jection operation, we compare our RL-refined model
with a naive model that injects knowledge at all en-
tity positions on QA tasks, including MS MARCO
(Nguyen et al., 2016) and MQ2008 (Qin and Liu,
2013). We randomly sample three queries’ top-
10 related passages from MS MARCO and three
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Figure 4: The influence of Reinforcement Learning on MS MARCO and MQ2008.

Methods Open Entity TACRED
KEHRL 81.9 76.0
No Prior 80.5 75.5
Element Type Prior 79.3 73.4
Model Structure Prior 82.0 76.3
Data Augmentation Prior 81.7 75.9

Table 5: The comparison of different prior knowl-
edge combination methods.
queries’ 8 related passages from MQ20083, then
feed these passages to the two different models.

In Figure 4, we visualize the passage represen-
tations after t-SNE (van der Maaten and Hinton,
2008) dimensional reduction. The first and third
figures represent passages from our meticulously
RL-refined model, while the second and fourth fig-
ures represent passages from the model with naive
knowledge injection at all entity positions. The
closely clustered representations of our RL model
indicate its capability to select accurate and informa-
tive knowledge. In contrast, the sparse distribution
of the naive model’s representations suggests less
accurate knowledge selection.

A case study further highlights our model’s effec-
tiveness. As shown in Figure 5, KEHRL correctly
identifies meaningful entities and relation triples,
allocating less attention to less significant entities
such as “CNBC” and its related triples, thereby
demonstrating the precision of our RL-based knowl-
edge injection.

5.3. The Influence of Weighted Mixed
Knowledge

We explore the impact of different prior knowledge
strategies on our model:

3In MQ2008, each query only contains 8 related pas-
sages.

• Element Type Prior: Projects entity and rela-
tionship information into vectors for integration
into the model.

• Model Structure Prior: Incorporates an ad-
ditional model to preprocess training samples
and generate representations for entities and
triples.

• Data Augmentation Prior: Applies Easy Data
Augmentation (EDA) techniques (Wei and Zou,
2019) to samples and pseudo triple sentences,
considering the augmented representations as
prior knowledge.

According to the results presented in Table 5,
both the No Prior and Element Type Prior strate-
gies yield lower scores on the two datasets when
compared to KEHRL. The Model Structure Prior
achieves the best performance, surpassing that of
KEHRL. However, this approach introduces an addi-
tional computational burden due to the extra model
required. The Data Augmentation Prior performs
marginally below KEHRL and entails increased
computational costs associated with the data aug-
mentation process. Consequently, our approach of
leveraging linguistic prior knowledge proves to be
the most cost-effective alternative.

6. Related Works

6.1. Knowledge-Enhanced Pre-trained
Language Models (KEPLMs)

KEPLMs leverage external knowledge from Knowl-
edge Graphs (KGs) to enhance semantic represen-
tation capabilities. They can be categorized based
on the type of knowledge used:

1. Structured Knowledge: Works by Zhang
et al. (2022b, 2023c); Su et al. (2021); Sun
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Figure 5: The heat map of the entity and triple representations of KEHRL and the model without RL. The
solid line produced by KEHRL and the dotted line is the model without RL.

et al. (2020); Ji et al. (2020); Lin et al. (2019)
augment models with sub-graphs from KGs by
collecting multi-hop triples, learning nuanced
semantics through graph neural networks and
attention mechanisms.

2. Unstructured Knowledge: Yu et al. (2022);
Chen et al. (2022) employ dictionary descrip-
tions of sentence components to bolster the
models’ information retention. For instance,
RAG (Lewis et al., 2020) retrieves top-k related
text documents or chunks using the K-NN al-
gorithm to enrich the training corpus.

3. Heterogeneous Knowledge: Qin et al. (2021)
incorporate both entity and relation represen-
tations in the neighboring space for enhance-
ment. K-Adapter (Wang et al., 2021a) inte-
grates contextual relation semantics of entities
into the model through a pluggable training
strategy.

However, previous approaches generally treat
knowledge integration as two separate processes,
not considering entity selection and triple refine-
ment jointly.

6.2. Hierarchical Reinforcement Learning
(HRL)

Hierarchical Reinforcement Learning (HRL) breaks
down complex problems into manageable sub-
tasks, each addressed independently.

1. Top-down HRL: This approach uses a high-
level policy to determine low-level settings. For
instance, Takanobu et al. (2019) divided the
relation extraction task into high-level relation
detection and low-level entity extraction. In

medical applications, Zhong et al. (2022) de-
signed a master model to activate symptom
checkers and disease classifiers. Rohmatillah
and Chien (2023) established a high-level do-
main at the start of a dialogue, with sub-polices
controlling the subsequent conversation.

2. Bottom-up HRL: This type focuses on low-
level policies aiding high-level policy learning.
HRL-Rec (Xie et al., 2021) has a low-level
agent for channel selection, which guides high-
level item recommendations. VISA (Jonsson
and Barto, 2006) decomposes the value func-
tion and employs a Dynamic Bayesian Network
to model relationships.

7. Conclusion

In this paper, we introduce KEHRL, a pre-training
framework utilizing Hierarchical Reinforcement
Learning for natural language understanding. The
Reinforced Entity Position Detection module se-
lects knowledge injection positions intelligently,
avoiding less meaningful ones. The Reinforced
Triple Semantic Refinement filters out inaccuracies
and focuses on relevant triples linked to the cho-
sen entities from the preceding module. Exten-
sive experiments verify the effectiveness of KEHRL
on factual knowledge based task and knowledge-
intensive language tasks.
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