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Abstract
Named Entity Recognition(NER), as a crucial subtask in natural language processing(NLP), is limited to a few labeled
samples(a.k.a. few-shot). Metric-based meta-learning methods aim to learn the semantic space and assign the
entity to its nearest label based on the similarity of their representations. However, these methods have trouble with
semantic space learning and result in suboptimal performance. Specifically, the label name or its description is widely
used for label semantic representation learning, but the label information extracted from the existing label description
is limited. In addition, these methods focus on reducing the distance between the entity and the corresponding label,
which may also reduce the distance between the labels and thus cause misclassification. In this paper, we propose
a few-shot NER method that harnesses the power of Knowledge Graph and Contrastive Learning to improve the
prototypical semantic space learning. First, KCL leverages knowledge graphs to provide rich and structured label
information for label semantic representation learning. Then, KCL introduces the idea of contrastive learning to learn
the label semantic representation. The label semantic representation is used to help distance the label clusters in the
prototypical semantic space to reduce misclassification. Extensive experiments show that KCL achieves significant
improvement over the state-of-the-art methods.
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1. Introduction

Named Entity Recognition (NER)(Mikheev et al.,
1999) aims to extract entity mentions from the text
and classify them into pre-defined entity categories
such as person and location. As a key sub-task of
natural language processing (NLP), NER extracts
key information for downstream tasks like machine
translation(Wang et al., 2017) and text categoriza-
tion(Rigutini et al., 2005), and helps the models
to understand semantic information deeply. Con-
ventional NER methods require a mount of anno-
tated data to ensure the prediction performance(Li
et al., 2020b). Actually, NER always suffers from
annotated data scarcity because labeling is time-
consuming and labor-intensive. Therefore, perform-
ing NER based on very limited annotated data(a.k.a.
few-shot ENR) has recently garnered a lot of atten-
tion(Huang et al., 2021; Chen et al., 2022b; Zhang
et al., 2021).

Metric-based meta-learning methods such as
prototypical networks are widely used for few-shot
NER tasks(Vinyals et al., 2016; Snell et al., 2017;
Fritzler et al., 2019). The basic idea of these meth-
ods is to learn a common semantic space from
rich source domains and use the semantic space
to perform NER tasks in target domains by a few
samples. In the semantic space, the entities be-
longing to the same label cluster around a single
prototype. As the label representation, the proto-
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type is the average of the entity representations.
Then, in the inference phase, the entity can be
assigned to the closest label based on the similar-
ity of the entity and label representations. Due to
that the label representation learning also benefits
from the label’s semantic information itself(Zhou
et al., 2018; Athiwaratkun et al., 2020; Wang et al.,
2021), some studies(Ma et al., 2022a; Hou et al.,
2020; Luo et al., 2021) use the label name as the
extra information for label representation learning.
Specifically, the label name is used to obtain the la-
bel semantic representation, and the weighted sum
of the label semantic representation and prototype
representation is used as the label representation.
Nevertheless, these studies still face the following
two challenges:

(1) Limited label semantic representation learn-
ing. The semantic information contained in the
label name is limited, which further affects la-
bel semantic representation learning. To this
end, some few-shot NER methods based on
data augmentation(Zhou et al., 2018) and pre-
trained(Athiwaratkun et al., 2020; Wang et al., 2021)
use the label description instead of the label name,
since the description contains more semantic infor-
mation about the label. For example, the descrip-
tion of the label “Person” is “A person is a being
who has certain capacities or attributes such as
reason, morality...”. The words in bold are se-
mantic information about “Person” and are called
label properties in this paper. However, only a few
properties are contained in the description, which



9682

means that the label semantic information is still
limited.

Artist
Politician
Mathematician

(a) The ideal 
situation

(b) The actual 
situation

Figure 1: An example of label clusters instance in
the semantic space.

(2) Misclassification caused by label-label sim-
ilarity. Prototypical networks aim to make entities
of the same label close together in the semantic
space. This poses a potential challenge in which
the distance between label clusters may be short-
ened, leading to misclassification. Specifically, Fig-
ure 1(a) shows the ideal situation of label clusters
distributed in the semantic space, where the trian-
gle represents the class ‘Person’. Blue, green, and
yellow triangles represent the Person’s sub-classes
‘Mathematician’, ‘Politician’, and ‘Artist’ respectively.
There should be a large distance between these
sub-classes to avoid misclassification. Actually, as
shown in Figure 1(b), because the entities (within
the red box) of the three sub-classes have the com-
mon features(a.k.a. semantic overlap) about ‘Per-
son’, these entities tend to get close which also
pulls into the distance of the sub-class clusters. In
this situation, the metric-based methods will result
in misclassification.

To remedy this, Hou et al. (2020) proposes L-
TapNet that uses the linear matrix to map different
domains to different M spaces to avoid label in-
terference between domains. Then L-TapNet uses
reference vectors in the M space to further dis-
tance label prototypes. However, the simple linear
mapping just scales and biases the distribution of
the label clusters, which can not effectively change
the distribution and overcome the complicated se-
mantic overlap problem.

In this paper, to deal with these challenges, we
propose KCL, a few-shot NER method that har-
nesses the power of Knowledge Graph(KG) and
Contrastive Learning. Firstly, we introduce knowl-
edge graphs into the few-shot NER task to improve
the label semantic representation learning. Knowl-
edge graph records labels and their correspond-
ing properties, which can provide more richer and
structured semantic information than the label de-
scription. Specifically, we use the attention mech-
anism(Vaswani et al., 2017) to compute the label
semantic representation. The goal is to make label
semantic representation learning ‘pay more atten-
tion’ to the effective semantic information of the
label name and properties. Then, the label seman-
tic representation is obtained by fusing the name

and property representations.
To effectively utilize the label semantic informa-

tion to help reduce misclassification caused by
label-label similarity, we introduce the idea of con-
trastive learning(Chen et al., 2020). Contrastive
learning aims to bring positive sample pairs closer
and negative sample pairs farther away in the se-
mantic space. We use this idea to learn the label
semantic representation. Then the label semantic
representation is used to make the label clusters
evenly distributed instead of occupying a narrow
cone in the prototypical semantic space(Gao et al.,
2021). Specifically, we first assign the learnable
anchor-point vectors for each label semantic rep-
resentation. Then, the anchor-point vector and the
corresponding label semantic representations are
regarded as the positive sample pair while the vec-
tor and the rest of the label semantic representa-
tions are negative sample pairs. After that, the
similarity function is learned to make the label se-
mantic representations close to its corresponding
anchor-point vector and relatively far from other la-
bel semantic representations. Finally, we use the
linear mapping proposed by L-TapNet to map the
anchor-point vectors, label semantic representa-
tions, and samples of each domain to M space.
In M space, the label cluster is close to the cor-
responding label semantic representation and the
anchor-point vector, which achieves the purpose of
extending the distance between label clusters.

Our contributions are summarized as follows:
1. We propose to apply knowledge graphs to pro-

vide the external semantic information for la-
bel semantic representation learning in few-shot
NER tasks.

2. We introduce the idea of contrastive learning to
learn the strong distribution of prototype clus-
ters in the prototypical semantic space to reduce
misclassification.

3. Extensive experimental evaluation demonstrates
the outstanding performance of KCL for few-shot
NER.

2. Task Formulation

In few-shot learning, given a sentence x =
(x1, x2, ..., xL), NER models aim to output the la-
bel sequence y = (y1, y2, ..., yL) for x by just a few
training samples. Each domain is a NER task and
is a set of (x,y) pairs. In the training phase, NER
models are trained on source domains T = {T1, T2,
..., Tm}, where these source domains have rich an-
notated sample pairs. In the inference phase, NER
models are evaluated on unseen target domains
T ′ = {T ′

1, T ′
2, ..., T ′

n} by fine-tuning on the support
set S. The support set follows the “N -way K-shot”
principle that each label of N labels includes K
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samples, where K is small such as 1 or 5.
Formally, the task of few-shot NER is defined as

follows: given a query sentence x and a few-shot
support set S, find the best label sequence y∗ of x:

y∗ = argmax
y

P (y|x, S) (1)

3. Methodology

In this section, we describe the proposed few-shot
NER method KCL in detail. First, to improve the la-
bel semantic representation learning, KCL applies
the knowledge graph to provide the extra label in-
formation. Second, in order to effectively utilize
the label semantic information to reduce misclassi-
fication caused by label-label similarity, KCL intro-
duces the idea of contrastive learning to learn the
label semantic representations and help label clus-
ters evenly distributed in the prototypical semantic
space.

The overview framework of KCL is shown in Fig-
ure 2. Specifically, KCL first obtains the label name
embedding and the corresponding property (pro-
vided by KG) embeddings. Then KCL performs
the attention mechanism for the label name and
property embeddings to get the label semantic em-
bedding. In addition, KCL assigns the anchor-point
vectors for each label. Contrastive learning is used
to make the label semantic representation and the
corresponding anchor-point vector close in the pro-
totypical space. After that, KCL maps the label
semantic embeddings, anchor-point vectors, and
token embeddings of the same domain in M space.
Then, the weighted sum of label semantic embed-
ding, anchor-point vector, and prototype embed-
ding is used as the label embedding. Finally, KCL
assigns labels to each token by calculating the sim-
ilarity between the token embeddings and the label
embeddings. The specific details of knowledge
graph application (3.1) and contrastive learning for
prototypical space learning(3.2) are as follows.

3.1. Knowledge graph for label semantic
representation learning

Knowledge graphs record the label properties and
the property descriptions, which can be used to pro-
vide rich label information for few-shot NER. The
detailed description of the KG application is com-
posed of the following two steps:

(1) Knowledge extraction. We use Google Knowl-
edge Graph1 to obtain the label information. The
knowledge graph contains millions of entries de-
scribing people, places, things, etc. in the real
world. These entries make up the nodes of the

1The Google Knowledge Graph is from
source: https://developers.google.com/knowledge-
graph?hl=zh-cn

graph. Therefore, we can view labels as nodes
and query their related information in the graph.
Google Knowledge Graph Search API provides the
labels search link called Schema.org2. If we input
the queried label, Schema.org will return its related
items. As shown in Figure 3, each item mainly in-
cludes the following information: (a) Property. A
property of the queried label. (b) Expected Type.
The type of the property. (c) Description. The
description of the property. In this paper, we use
Property and Description as the extra label infor-
mation other than the label name. Specifically, we
first obtain the search results for labels in HTML
format from Schema.org. Then we extract each
item including the information of Property and De-
scription from the HTML files. Finally, we concate-
nate the property and property description into a
sequence as a piece of property information from
one item.

It is worth noting that not all labels can be
searched for the corresponding properties and de-
scriptions. In the case where the label has no prop-
erties and property descriptions, we divide them
into the following three situations: (a) The queried
label has synonyms. In this case, we take the prop-
erties of the label’s synonym as that of the label.
Intuitively, the properties of similar words should
also be similar. For example, the label ‘Location’ is
similar to the label ‘Place’, the property ‘address’
of ‘Place’ can also be that of ‘Location’. (b) The
queried label has no synonyms but has its own de-
scriptions. For example, the search result for the
label ‘Abstract’ is its description, that is ‘An abstract
is a short description that summarizes a Creative-
Work.’. Therefore, we use the label description as
the label information. (c) The queried label has no
synonyms and its own descriptions. In this case,
we give up considering the property information.

(2) Knowledge application. In this phase, we use
the property information obtained from the knowl-
edge extraction phase for label semantic represen-
tation learning. It is worth noting that, for each label,
due to limitations of storage and computation, we
use downsampling to randomly select k property
information from the label’s all property information
extracted from the knowledge graph. Therefore,
we can obtain k pieces of property information Pi

= {p1i , p2i , ..., pki } as the label’s property information.
Furthermore, for each label semantic representa-
tion learning, we use the property information of
all labels instead of only considering its own prop-
erty information. The motivation is that there can
be common properties between labels, for exam-
ple, ‘address’ is a property of the label ‘Person’
and ‘Organization’ at the same time. Therefore,
using all property information can provide rich label

2The entities search link:
https://schema.org/docs/gs.html
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Figure 2: The overview framework of proposed KCL.

Property Expected Type Description

address PostalAddress Physical address of the item.

affiliation Organization An organization that this person is affiliated with. For 
example, a school/university, a club, or a team.

birthDate Date Date of birth.

Figure 3: The search result of label ‘Person’ from
Sechma.org.

information. In addition, we also considered the
label name ni for the label semantic representation
learning. In conclusion, the label semantic informa-
tion Ki = {ni, P1, P2, ..., PN} of label li consists of
one label name ni and the Nk property informa-
tion, where Ki ∈ R(Nk+1)×d (d is the embedding
dimension) and N is the number of labels. Finally,
the label semantic information Ki is used for the
label semantic representation learning of label li.

In the label semantic representation learning pro-
cess, we use the embedding of pi as the property
embedding. To make the label semantic repre-
sentation learning more "focus" on the properties
related to itself among all the properties, we use the
attention mechanism. In the conventional NER sce-
nario, the attention mechanism aims to learn the
importance of different tokens in the sequence. The
attention mechanism maps the tokens into three
vectors(query, key, and value) and outputs the
token embedding. The token embedding is com-
puted as a weighted sum of the values, where the
weight assigned to each value is computed by a
compatibility function of the query with the corre-
sponding key.

In this paper, we use the attention mechanism to
learn the importance of different properties and the
label name for the label. Therefore, for each label,
label name ni is query and key is Ki. Specifically,
we compute the weight value wi ∈ RNk+1 of Ki for

the label name ni:

wi = softmax(nT
i Ki) (2)

Then, the weight wi is assigned to value Ki and
the weighted sum of values of value is as the label
semantic representation si:

si = Attention(wi,Ki) (3)

Finally, we obtain all label semantic representations
S = {s1, s2, ..., sN} for each domain.

3.2. Contrastive learning for prototypical
space learning

In the prototypical semantic space, the distance
of the prototype clusters corresponding to labels
is close caused by the semantic overlap problem,
which results in misclassification. In addition, the
learned embeddings in the space tend to occupy a
narrow cone thus aggravating the shortening of dis-
tance. To this end, KCL uses contrastive learning
to effectively learn the label semantic representa-
tion, which further helps to change the distribution
of the label clusters in the space.

According to the optimization objective of the
contrastive learning that the samples in the posi-
tive sample pair are close to each other, and that
in the negative sample pair are far away, we con-
struct positive and negative sample pairs for label
semantic representations S. Due to that the la-
bel names and property information are extracted
from the text, and the label semantic represen-
tation is learned based on these semantic infor-
mation. The semantic overlap problem still ex-
ists and affects representation learning. To this
end, KCL assigns the trainable anchor-point vec-
tors V = [v1, v2, ..., vN ] to each si, because the
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anchor-point vector is semantic-agnostic which can
reduce the interference of the semantic overlap.
Specifically, we first assign an initialization vector
to each label semantic representation as an anchor-
point vector. Then the anchor-point vi, and the cor-
responding label semantic representation si form
positive sample pair(vi, si) while vi and the other
label semantic representations form negative sam-
ple pairs(vi, sj), respectively. Formally, given an
anchor-point vi, the label semantic representation
si, and the remaining N − 1 label semantic repre-
sentations, the loss function for an anchor-point is
as follows:

lossCLi
= −log

exp(score(vi, si))∑
j exp(score(vi, sj))

(4)

where score is the dot product. Then the lossCL is
minimized on entire prototype clusters:

lossCL =

N∑
i

lossCLi
(5)

Based on the semantic space learned by the con-
trastive learning, we use the projector M in Hou
et al. (2020) to map the samples of different do-
mains, the corresponding label semantic represen-
tations S, and anchor-point vectors V to different M
spaces. The motivation is to avoid the interference
of labels between domains. In M space, for each
label, its label semantic representation si, label pro-
totype ci, and anchor-point vector vi align closely
while the distance between these of different labels
is further separated. Then, KCL fuses si, ci, and vi
to obtain the label representation li:

li = (1− α) · ci + α · ((1− β) · vi + β · si) (6)

where the α and β are weight factors to evaluate the
importance of si, ci and vi. Finally, KCL assigns
labels to each token by calculating the similarity
between the token representations and the label
representations.

In addition, because the few-shot NER also ben-
efits from considering the dependencies between
labels, we use the CRF framework to learn the label
dependencies. CRF framework includes two mod-
ules: (1)Emission module, which is used to con-
sider the correlations of entity-label. and computes
the similarity(called emission score Fems) between
the entity and the label. (2)Transition module, which
takes into account the connection of label-label and
constructs the label transition matrix to record the
transition score Ftra that is the probability of the
current label given the previous label. In this paper,
we use CDT proposed by Hou et al. (2020) to obtain
the transition matrix for the few-shot NER, and the
loss function of CRF is as follows:

lossCRF = −log
exp(Fems + Ftra)∑

y′∈Y exp(Fems + Ftra)
(7)

Finally, the loss lossKCL is consisted of CRF and
contrastive learning:

lossKCL = (1− λ) · lossCRF + λ · lossCL (8)

where λ is the adjustable parameter that balances
weights of the two losses and 0 ≤ λ ≤ 1.

4. Experiment

This section experimentally evaluates the gener-
alization ability of KCL on multiple few-shot NER
datasets. First, we introduce the experiment set-
ting. Second, we compare KCL against existing
methods on 1-shot/5-shot NER scenarios to demon-
strate the effectiveness of KCL. In addition, we de-
sign ablation experiments to illustrate the necessity
both of KG application and the use of contrastive
learning. Finally, we give the parameter analysis
experiments, including regulating the number k of
label property information extracted from KG and
the weight factor λ used to balance the weights of
lossCRF and lossCL.

4.1. Settings
Dataset We use 4 different datasets from different
domains as the benchmark datasets: 1) CoNLL-
2003 (Sang and De Meulder, 2003); 2) GUM
(Zeldes, 2017); 3) WNUT-2017 (Derczynski et al.,
2017); 4) and Ontonotes (Pradhan et al., 2013).
To simulate the few-shot situation, we adapt the
sample collection method proposed by Hou et al.
(2020) to construct 1-shot/5-shot datasets from the
above original datasets. It is worth noting that, due
to device limitations and time costs, we randomly
sample a part of each original dataset. Therefore,
the number of the few-shot samples is smaller than
that in Hou et al. (2020). Tabel 1 shows the detailed
statistics of the original datasets used to construct
few-shot experiment data.

Table 1: Statistic of Dataset
Dataset Domain # Labels # Sent
CoNLL News 5 4703
GUM Wiki 12 5300
WNUT Social 7 10433
OntoNotes Mixed 19 3438

Evaluation We conduct main experiments on 1-
shot and 5-shot scenarios following previous work
(Hou et al., 2020; Wang et al., 2021). We use four-
fold cross-validation to test the generalization ability
of our method on the four benchmark datasets. For
each fold, we use one dataset as the test set, one as
the validation set, and the remaining two datasets
as the training set. We randomly generate four-fold
experimental data so that the same dataset will not
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be repeated as a test set or a validation set. F1-
score is the evaluation metric and the results are
averaged over 5 runs with different random seeds
± one standard deviation.
Comparison Methods We divide comparison
methods into two categories, namely the few-shot
NER method and the traditional NER method.
The few-shot NER methods consist of two types:
(1) Methods without label dependency and consid-
ering label dependence. Specifically, Four meth-
ods without label dependency include Matching
NetworkMNet(Vinyals et al., 2016) classifies each
entity according to its similarity with the samples of
each class; WarmProtoZero(WPZ )(Fritzler et al.,
2019) adopts a similar strategy as MN, except re-
placing the matching network with the prototypical
network; TapNet(Yoon et al., 2019) constructs dif-
ferent mapping spaces for different tasks instead
of using the common prototypical semantic space.
In these mapping spaces, entities corresponding
to the same label are close to each other, and
the distances between labels are stretched; L-
TapNet(Hou et al., 2020) uses TapNet to learn the
label representation and also considers label infor-
mation including name and description. (2) Meth-
ods considering label dependence. To consider la-
bel dependency, we use the CRF framework where
the above four methods (MNet, WPZ, TapNet, and
L-TapNet) are emission modules, respectively. In
the transition module, the state-of-the-art method
CDT (Hou et al., 2020) which constructs an abstract
label transition score is used for label dependency
transfer in the specific few-shot task. In addition,
SpanNER(Ma et al., 2022c), as a span-level NER
method, which divides the NER task into two sub-
tasks: span detection and entity typing, to bypass
the token-wise label dependency.
The traditional NER method. We use LSTM+CRF
method as the traditional NER method. The LSTM
is used for effectively learning the contextual infor-
mation in text and CRF is used for considering label
dependence.
Hyperparameters We use the uncased BERT-
Base (Kenton and Toutanova, 2019) to calculate
contextual embeddings for all baseline models and
our model KCL. We use Adam optimizer (Kingma
and Ba, 2015) to train the models with batch size 4
and the learning rate is selected from {1e-4, 1e-5,
1e-6}. For CDT which is used for transition score,
we set the learning rate η for the meta-parameter
update, which is taken from {1e-2, 1e-3, 1e-4}. The
hyper-parameter value selections of number k of
label property and λ in loss function are described
in section 4.4. We run all experiments on NVIDIA
RTX 3090 GPU.

4.2. Main Results
Table 2 shows the 1-shot NER results of KCL and
all baselines. Each row represents the F1-scores
of test domains using the corresponding method.
Result of 1-shot setting For the results in the 1-
shot scenario, we conclude four main observations
as follows.

(1) KCL achieves better performance than meth-
ods considering label dependency that MNet, WPZ,
TapNet and L-TapNet are emission modules and
CDT is the transition module. Compared to these
methods, KCL improves at least 5, 6, 6, and 3
F1-score points respectively on average. These re-
sults show the strong prediction ability of KCL. KCL
also improves 7 F1-score points on average com-
pared to SpanNER which considers the span-level
label dependency. This illustrates the effectiveness
of KCL in considering the token-level label depen-
dency. In addition, the F1-score of LSTM-CRF on
average is 1.78, which is at least 23 percentage
points lower than that of KCL. This indicates that, for
the traditional NER model, a few training samples
will cause serious overfitting.

(2) Compared to the few-shot NER method that
considers label information, KCL demonstrates bet-
ter predictive performance. L-TapNet uses the label
name and description as the label information for la-
bel representation learning. Compared to L-TapNet
and L-TapNet+CDT, KCL improves by 10.4 and 3.86
F1-score points on average. This indicates that, in
comparison with using label names and descrip-
tions as label information, KCL utilizes the knowl-
edge graph to provide richer label information and
effectively to learn label representations using the
contrastive learning idea.

(3) KCL maintains excellent generalization abil-
ity in all domains. Specifically, compared to all
baselines on the four benchmark datasets, KCL
improves by 1.26, 2.77, 3.34, and 0.41 F1-score
points respectively on average. This demonstrates
that KCL has superior improvement on few-shot
NER.

(4) The methods(MNet, WPZ, L-TapNet, and Tap-
Net) equipped with CDT have better generalization
ability than those without label dependency. These
results illustrate the significance of considering the
label dependency for few-shot NER. In addition,
our KCL performs significantly better than baseline
methods without label dependency. These results
also illustrate the effectiveness of our work.
Result of 5-shot setting As shown in Table 3,
the result of the 5-shot NER shows that KCL also
achieves the best performance. Compared to the
baselines that ignore or weaken the label depen-
dency, KCL improves at least 6 F1-score points
on average. In the case of considering label de-
pendency, KCL also achieves the best F1-score on
average compared to all baselines. The results are
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K-shot Model Wiki SocialMedia OntoNotes News Ave.

1-shot

LSTM+CRF 1.26±0.10 1.34±0.23 0.45±0.07 4.08±0.34 1.78±0.35
SpanNER 5.45±0.14 19.57±1.05 9.33±1.59 39.18±1.36 18.38±0.82
MNet 2.96±0.07 20.59±0.64 6.42±0.82 39.44±0.95 17.35±0.32
MNet+CDT 3.45±0.38 24.55±2.09 9.38±2.29 42.87±1.29 20.06±1.36
WPZ 2.91±0.24 20.50±0.82 6.23±0.43 34.06±1.05 15.93±0.26
WPZ+CDT 4.11±0.64 24.01±1.47 8.78±1.75 42.11±1.90 19.76±1.34
TapNet 3.30±0.47 19.00±0.79 8.32±0.54 28.66±3.46 14.82±1.06
TapNet+CDT 3.40±0.44 22.50±2.15 11.51±1.66 41.60±1.11 19.75±1.02
L-TapNet 3.27±0.54 19.63±0.71 8.30±0.69 30.22±1.47 15.36±0.27
L-TapNet+CDT 7.17±0.94 27.66±1.03 17.58±1.36 35.20±2.04 21.90±0.45
KG-only (ours) 7.47±0.50 30.14±2.44 19.65±1.33 38.90±4.64 24.04±1.39
KCL (ours) 8.43±0.37 30.43±2.12 20.92±0.93 43.28±3.09 25.76±0.89

Table 2: F1-scores with standard deviations on the four benchmark datasets in 1-shot
consistent with the 1-shot setting, which demon-
strates the generalization ability of KCL in more
shots situations.

It is worth noting that, the F1-score of MNet+CDT
is higher than that of KCL. The reason is as fol-
lows. When dataset News is the test set, datasets
Wiki and OntoNotes are training sets. The above
training sets have many samples corresponding
to labels in News, so when performing tests on
News, a large amount of common knowledge is
transferred from the training sets to News. MNet
maps all domains into the same semantic space,
which can make good use of the transferred com-
mon knowledge. KCL uses the TapNet that maps
different domains to different spaces, which may
hinder the utilization of transferred common knowl-
edge. In the 1-shot setting, F1-score of KCL is
higher than that of MNet. The reason is that each
label has only one sample, which means that little
transferred common knowledge available for MNet
to utilize. However, KCL uses knowledge graphs to
provide additional semantic information and uses
contrastive learning to effectively learn the seman-
tic information, which improves the generalization
performance of the model.

4.3. Ablation Study
In this section, we conduct the ablation analysis
to indicate the necessity of KG application and the
use of contrastive learning in our method (KCL).
Effectiveness of KG application To prove the ef-
fectiveness of applying knowledge graphs to few-
shot NER, we perform the ablation experiments
that only consider label name and label proper-
ties extracted from KG to obtain the label semantic
representation(KG-only) and ignore the contrastive
learning. Specifically, we directly map the label se-
mantic representations to M space without using
contrastive learning. In the M space, we use the
idea of L-TapNet to assign the reference vectors
to labels, and then the weighted sum of the label

semantic representation, the reference vector, and
the prototype representation is used as the label
representation. Then we use CDT as the transition
module.

Table 2 and Table 3 show the results of KG-
only on all domains in 1-shot/5-shot settings. We
can see KG-only is more advantageous than base-
lines. Specifically, in the 1-shot scenario, KG-
only achieves the best performance on the above
datasets. In the 5-shot setting, KG-only also has
the best generalization ability on Wiki, SocialMe-
dia, and OntoNotes. This shows that it’s important
to provide the extra semantic information in few-
shot NER. In addition, the F1-scores of KG-only
are lower than that of MNet in 1-shot/5-shot scenar-
ios, the reason is concluded in Result of 5-shot
setting of section 4.2.
Necessity of using contrastive learning To ver-
ify that using contrastive learning is essential for
KCL to learn the semantic space, we compare
KG-only to KCL which considers contrastive learn-
ing. As shown in Tables 2 and 3, we can see that
KCL achieves higher F1-scores than KG-only on all
datasets in 1-shot and 5-shot situations. This indi-
cates the necessity of using the idea of contrastive
learning to further learn the prototypical semantic
space based on considering the label semantic
representation.

4.4. Hyper-parameter value selection
In this section, we give the experiments of hyper-
parameter value selections about parameters k and
λ in the 1-shot setting. For all experiments, the
F1-scores are averaged over 3 runs with different
random seeds ± one standard deviation.
Value selection of parameter k In order to find
the optimal k of properties to provide additional
semantic information, we take k from {1, 2, 3, 4,
5}. Figure 4 shows the results of different values
of k on the four benchmark datasets. For dataset
News, the F1-score is highest when k is 5, which
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K-shot Model Wiki SocialMedia OntoNotes News Ave.

5-shot

LSTM+CRF 4.35±0.09 4.79±0.22 4.81±1.07 11.06±0.31 6.25±0.25
SpanNER 4.74±0.78 16.38±7.30 9.66±0.31 39.59±2.24 17.59±1.88
MNet 3.80±0.82 18.45±2.78 9.58±1.23 40.70±4.86 18.13±1.61
MNet+CDT 6.17±0.63 20.58±3.70 14.62±1.93 48.87±4.19 22.56±1.14
WPZ 2.77±0.34 17.03±3.28 9.41±0.82 28.84±3.91 14.51±0.92
WPZ+CDT 2.20±1.17 19.69±2.96 17.45±1.92 37.65±3.84 19.25±1.84
TapNet 3.04±0.56 14.37±1.69 10.85±0.96 31.69±2.40 14.99±0.26
TapNet+CDT 5.34±1.60 22.12±2.46 15.66±2.66 40.46±4.45 20.89±0.88
L-TapNet 3.82±0.57 16.51±2.11 11.82±1.42 32.12±2.99 16.07±0.62
L-TapNet+CDT 5.51±0.47 19.58±3.59 19.78±2.79 32.45±4.67 19.33±1.25
KG-only (ours) 7.75±2.33 23.25±3.03 19.65±1.51 35.48±7.75 21.53±1.85
KCL (ours) 9.06±1.79 25.55±3.86 23.34±2.62 39.26±3.70 24.30±1.11

Table 3: F1-scores with standard deviations on the four benchmark datasets in 5-shot
illustrates that KCL obtains the most effective in-
formation. About the dataset SocialMedia, as k
increases, the F1-score first increases and then
tends to be stable. This indicates that KCL ob-
tains enough semantic information as k is 2. For
datasets Wiki and OntoNotes, as k is 4, the F1-
scores of the two datasets are highest compared to
that of the other four values. Therefore, we choose
4 as the optimal value for the two datasets. It is
worth noting that, as the number of label proper-
ties increases, F1-score does not increase all the
time but floats up and down. The reason is that
the properties are obtained by random sampling,
as the number of properties increases, useless la-
bel properties for domains may be added, which
affects the generalization performance of KCL.
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Figure 4: The hyper-parameter value selection of
parameter k

Value selection of parameter λ In this section, we
adjust parameter λ from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9} to balance the weight of lossCRF and
lossCL in the loss function. The F1-scores of differ-
ent values on four benchmark datasets are shown
in Figure 5. For datasets News and OntoNotes,
as λ increases, the F1-score is the highest. After
that, there is an overall downward trend. About
the dataset SocialMedia, the overall trend of F1-
scores is downward as the value of λ increases.

For the above three datasets, the best weight val-
ues of lossCL are all less than 0.5. The possible
reason is that there are useless label properties
extracted from KG which leads to inaccurate label
semantic representation. Therefore, it is necessary
to reduce the weight of lossCL to avoid mislead-
ing model training. On dataset Wiki, we use 0.8
as the optimal value corresponding to the highest
F1-score. This also demonstrates that KCL obtains
effective label properties and increases the weight
of lossCL for semantic space learning.
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Figure 5: The hyper-parameter value selection of
parameter λ

5. Related work

As a classification problem, the few-shot NER stud-
ies focus on modeling the correlation of entities-
labels and have been widely explored with similarity-
based methods(Mettes et al., 2019; Tong et al.,
2021; Li et al., 2021). These methods aim to learn
a prototype for each label and classify an entity by
finding the nearest prototype in a mapping space.
Specifically, there are two aspects to learning the
prototype for the label:

Label semantics. The conventional prototype
network(Tong et al., 2021; Zhu and Wang, 2019;
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Lu et al., 2016; Chen et al., 2022a) uses the aver-
age of entity representations as their corresponding
label prototype, which oversimplifies the learning
of label semantic representations. To solve this
problem, some studies(Ma et al., 2022a; Hou et al.,
2020; Luo et al., 2021) proposed that label names
should be leveraged, because label names are
also words that appear in the text and thus seman-
tically related to other words that appear in the text.
Moreover, the label descriptions are also used to
provide rich label information for the label semantic
representations learning(Ma et al., 2022b; Wang
et al., 2021). Different from the existing methods,
our method proposes to apply knowledge graph to
the label semantic representations learning. The
reason is that the knowledge graph contains proper-
ties information about labels and thus can provide
richer label semantic information compared with
label descriptions.

Relative distance between labels. The similarity-
based methods mainly focus on making the dis-
tance between entities of the same label close
and ignore the distance between labels, which may
cause the situation that the distance between sub-
labels under the same parent label is too close to
cause misclassification. To address this problem,
(Hou et al., 2020) proposes to construct different
mapping spaces for NER tasks in different domains,
and learns reference vectors to distance prototype
clusters. Different from this work which uses the
simple linear mapping just scale and bias the distri-
bution of the prototype clusters, we use contrastive
learning to make the prototype clusters evenly dis-
tributed in the prototypical semantic space. Das
et al. (2022) uses contrastive learning to improve
the relative distance between entities, where the
entities with similar semantics are close and those
with different semantics should be separated. Com-
pared to it which is label-independent, our method
considers the label information as the extra seman-
tic information to improve the semantic space learn-
ing.

6. Conclusion

In this paper, we propose a few-shot NER method
based on knowledge graph and contrastive learn-
ing. To improve the label semantic representation
learning, we use knowledge graphs that contain
properties and property descriptions of labels and
thus provide rich and structured label information
for label semantic representation learning. In ad-
dition, to effectively utilize the label semantic in-
formation to help reduce misclassification caused
by label-label similarity, we introduce the idea of
contrastive learning to learn the label semantic rep-
resentation and then help extend the distance be-
tween label clusters in the prototypical semantic

space. Experiment results validate that both apply-
ing knowledge graphs and contrastive learning can
improve the prototypical semantic space learning
and further improve the few-shot NER accuracy.
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