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Abstract
Wide usage of ChatGPT has highlighted the potential of reinforcement learning from human feedback. However,
its training pipeline relies on manual ranking, a resource-intensive process. To reduce labor costs, we propose
a self-supervised text ranking approach for applying Proximal-Policy-Optimization to fine-tune language models
while eliminating the need for human annotators. Our method begins with probabilistic sampling to encourage a
language model to generate diverse responses for each input. We then employ TextRank and ISODATA algorithms
to rank and cluster these responses based on their semantics. Subsequently, we construct a reward model to
learn the rank and optimize our generative policy. Our experimental results, conducted using two language models
on three tasks, demonstrate that the models trained by our method considerably outperform baselines regarding
BLEU, GLEU, and METEOR scores. Furthermore, our manual evaluation shows that our ranking results exhibit
a remarkably high consistency with that of humans. This research significantly reduces training costs of proximal
policy-guided models and demonstrates the potential for self-correction of language models.

Keywords:Natural Language Processing, Proximal Policy Optimization, Pre-trained Language Model, Rein-
forcement Learning, Self-supervised Learning

1. Introduction

With the advancement of natural language pro-
cessing, contemporary pre-trained language mod-
els (PLMs) have demonstrated significant com-
mercial value due to their widespread adoption
in sectors such as education, healthcare, and fi-
nance (Edunov et al., 2019; Sun et al., 2022).
However, due to the shortcut learning (Geirhos
et al., 2020), degeneration (Holtzman et al., 2020),
and other complicated reasons, PLMs often gen-
erate topic-irrelevant or unhelpful information, re-
sulting in a loss of resources and reliability (Wei-
dinger et al., 2021). As an existing optimization,
models trained through reinforcement learning
from human feedback (RLHF) (Wang et al., 2022)
are continually supervised by human-ranked data
during the training. Therefore, they demonstrate
higher performance and reliability across diverse
tasks such as dialogue, question-answering, and
machine reading comprehension.
Although RLHF has been widely proven to be ef-
fective in improving the quality of generative mod-
els (Lin et al., 2020a), there are three limitations
of applying RLHF: 1) training costs of large-scale
PLMs, 2) lack of high-quality prompts for varying
user intents (Bodonhelyi et al., 2024) and 3) labor
costs associated with crowdsourcing.
Both of the first two limitations have been ad-
dressed with diverse solutions. Regarding the first
limitation, contemporary lightweight PLMs such as

Stanford Alpaca and ChatGLM (Taori et al., 2023;
Zeng et al., 2023) have achieved performance
comparable to traditional large-scale PLMs with a
hundred billion parameter, substantially reducing
training costs. For the second limitation, prompt
generation methods, e.g., self-instruction (Wang
et al., 2022), have presented solutions for auto-
matically building instruction sets. However, for
the last point, there needs to be more focus on ex-
ploring the utilization of self-supervised learning as
a viable alternative to annotations on crowdsourc-
ing platforms to address the challenge of substan-
tial manual costs.

To achieve this, we propose a Self-supervised
Text Ranking (STR) pipeline, simulating the gen-
eration of human-ranked data. We derive our the-
oretical and empirical foundations from two arti-
cles: Chen et al. (2023) demonstrated that lan-
guage models can enhance generation quality
through self-checking and correction. Li et al.
(2023) established the effectiveness of ensemble
learning in assessing the rationality of various in-
terpretations produced by a PLM when it employs
different reasoning pathways to address the same
question. Building upon these two contributions,
we apply the proximal policy optimization (PPO)
through the STR pipeline to enable languagemod-
els to self-assess and self-supervise during fine-
tuning (Schulman et al., 2017) as shown in Fig-
ure 1, with the following three steps:
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1. Ensemble learning-based text ranking. We
follow the RLHF baseline, generating di-
verse answers for each question via a PLM.
After that, we apply a semantic similarity-
based TextRank algorithm (Mihalcea and Ta-
rau, 2004; Zhang and Wang, 2021) to rank
generated answers, distinguishing our work
from previous efforts. We root our motiva-
tion in the theoretical assumption that if a
PLM generates different answers to a given
question, the semantics among reasonable
answers should exhibit a stronger clustering
tendency than irrational ones. This is be-
cause incorrect or unhelpful statements hal-
lucinated by PLMs always involve various un-
related topics (Zhang et al., 2023).

2. Extraction of representative answers. We
then cluster answers via the Iterative Self-
Organizing Data Analysis Technique Algo-
rithm (ISODATA) and extract cluster centers
to build answer pairs (Ball and Hall, 1967).
The advantage of clustering is the reduced
computational overhead and the avoidance
of comparing semantically similar sentences.
These constructed answer pairs will be uti-
lized to train a reward model for assessing the
quality of an answer.

3. To update the generation policy. We finally
learn a reward model from the answer pairs.
The reward model is then used to update our
generative policy, which generates answers
for evaluation.

Our contributions are as follows:

• We propose a novel self-supervised text rank-
ing method for simulating manual ranking in
RLHF while eliminating human labor costs in
fine-tuning PLMs.

• Our experimental results demonstrate that the
proposed method significantly outperforms
other fine-tuning approaches for two PLMs on
three datasets.

• Our manual evaluation experiments demon-
strate that our approach can considerably
substitute human annotators for generating
training data for future PPO-guided PLMs.

2. Related Work
2.1. Pre-trained language models
Transformer-based PLMs (Vaswani et al., 2017;
Lewis et al., 2020) have been widely used in
assorted downstream tasks due to their versa-
tility and excellent semantic extraction capabili-
ties. Among them, ERNIE (Zhang et al., 2019)
incorporates knowledge from knowledge graphs

to improve representation learning for NLU tasks.
T5 (Ni et al., 2022) achieved transforming vari-
ous NLP tasks into text-to-text transfer problems.
This paper uses theGPT-2 andGPT-Neo (Radford
et al., 2019; Black et al., 2021) due to the extensive
data sources they used in pre-training and their
representative architectures stacked by attention
layers.
Before inference, researchers often conduct fine-
tuning by retraining particular parameters of a
PLM on downstream datasets to adapt and opti-
mize it for specific tasks (Pfeiffer et al., 2020). A
fundamental fine-tuning approach involves train-
ing all the parameters with smaller learning rates.
However, Lin et al. (2020b) demonstrated that by
adding and fine-tuning additional 2-3% parame-
ters, PLMs could maintain a similar performance
of the full fine-tuning. Furthermore, Ben Za-
ken et al. (2022) proposed a sparse-fine-tuning
method where only the bias terms are being mod-
ified. (Hu et al., 2022) injected rank decomposi-
tion matrices into the Transformer architecture, re-
ducing the trainable parameters for downstream
tasks. However, these methods focus on optimiz-
ing model architecture or the size of trainable pa-
rameters while neglecting the effect of fine-tuning
in enhancing the model’s ability to self-correction.

2.2. Policy gradient
As a branch of reinforcement learning (RL) (Min-
sky, 1961), policy gradient algorithms (Sutton
et al., 1999) have been widely applied to NLP
tasks, such as addressing the issue of gradient
unavailability (Yu et al., 2017) in Generative Ad-
versarial Networks (Goodfellow et al., 2020). As
an off-policy improvement, Schulman et al. (2017)
propose PPO, which computes the similarity be-
tween the generative and sampling policies as part
of the objective function during training.
In the InstruchGPT (Ouyang et al., 2022), a proxy
model with the same architecture as the training
PLM is employed to explore generation strate-
gies for answers. However, updating the policy
requires human feedback, significantly increasing
the training cost. In this paper, we follow this work
and present a cost-efficient solution.

2.3. Text ranking
Contemporary unsupervised text ranking methods
rely on statistics, such as BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), METEOR (Banerjee
and Lavie, 2005), and BERTScore (Zhang* et al.,
2020), compute overlaps of n-grams or semantic
information to rank answers based on their similar-
ity to questions. However, while answers similar to
the question are topic-relevant, their helpfulness to
humans cannot be guaranteed.



9306

Figure 1: Our pipeline comprises three steps: 1) fine-tuning a language model to generate multiple
candidate answers for a given question and using the TextRank algorithm to rank these answers; 2)
filtering out non-representative answers using the ISODATA algorithm and training a reward model based
on the remaining answers, and 3) scoring the ranked answers using the reward model and updating the
generation policy via PPO. Note that we implemented the generative policy through a PLM in our study.

3. Methodology
3.1. Problem formulation
We aim to automatically rank text by leverag-
ing the semantic information widely learned by
PLMs during pre-training, thus implementing the
PPO-guided training under unsupervised condi-
tions to further fine-tune PLMs. Our study consid-
ers various natural language processing tasks as
question-answering.
Formally, given a parallel dataset consisting of a
prompt P , a set of questions Q = (q1, ..., qm),
and their corresponding answers A = (a1, ..., am),
we are going to fine-tune a question-answering
PLM LMϕ and enhance its performance via PPO
achieved by using ranked text.

3.2. How to generate diverse answers?
We initially follow the training paradigm of RLHF,
wherein we fine-tune a PLM to produce distinct an-
swers for a given question (Ouyang et al., 2022).
Specifically, to generate tokens for answering,
we compute logits for each input token sequence
w1, ..., w(i−1) using LMϕ. The probability of gen-
erating the i’th token wi as w ∈ V is then given
by Pϕ(w|w1:i), where V represents the vocabu-
lary. Subsequently, we apply a temperature func-
tion (Ackley et al., 1985) with a small τ , to shape
the probability distribution:

P ′
ϕ(wi) =

Pϕ(w|w1:i)
1/τ∑

w′∈V Pϕ(w′|w1:i)1/τ
. (1)

To encourage the LMϕ to generate answers via di-
verse expression while mitigating potential text de-
generation, we apply a top-p sampling with a high

p to conduct a subset of V and sample token wi

according to probability distribution P ′′
ϕ :

P ′′
ϕ (wi) =

{
P ′
ϕ(wi)/

∑
w′∈Vp

P ′
ϕ(w

′) if wi ∈ Vp

0 otherwise,
(2)

where top-p vocabulary Vp is the smallest set such
that:

∑
wi∈vp

P (wi|w1:i−1) ≥ p.
By repeatedly sampling from P ′′

ϕ (wi), we generate
multiple answers for each question in the dataset.

3.3. How to rank generated answers?
For a specific question, we assume that the se-
mantic similarity among different answers can re-
flect the correctness of these answers in theory.
Specifically, high-quality answers should exhibit
more similarity in the hidden space than others.
For example, given a question “What does ‘ap-
ple’ mean?”, possible answers include “a kind of
red fruit”, ”a fruit rich in vitamins”, “a US-based
business”, and “a company involved in electronic
production”. Although there may not be a unique
correct answer, in this case, the first two an-
swers relate to “apples”, while the last two refer
to “Apple Inc.”. Therefore, in theory, we could
recognize their corresponding clusters in seman-
tic space. Conversely, incorrect or irrelevant an-
swers, such as “a toxic substance.” or “I am full.”,
would be more dispersed in the semantic space as
the hallucinations (Alkaissi and McFarlane, 2023)
always involve various unrelated topics or con-
cepts (Azamfirei et al., 2023). Therefore, we score
and rank answers by quantifying their relative po-
sitions in the semantic space.
To achieve that, we regard the generated an-
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swers as nodes and the similarity between these
answers as the weights of edges to construct a
graph. In such a graph, we use the TextRank al-
gorithm (Mihalcea and Tarau, 2004) to calculate
the weights of the nodes to reflect their ranks.
Specifically, when computing the weight of an
edge connecting two nodes ni and nj , we utilize
a Sentence-BERT (Reimers and Gurevych, 2019)
to embed their corresponding answers ai and aj to
vectors, calculating the cosine similarity between
the two vectors, as shown in eq. (3):

S(ni, nj) =
SBERT(ai) · SBERT(aj)

||SBERT(ai)|| ||SBERT(aj)||
, (3)

where SBERT(·) is the embedding function of the
Sentence-BERT. Subsequently, we calculated the
weight of a node ni as follows:

W (ni) =
∑

nj∈I(nj)

S(ni, nj)∑
nk∈O(nj)

S(nj , nk)
W (nj), (4)

where I(ni) represents the set of nodes that point
to node ni, and O(nj) represents the set of nodes
that node nj points to.
Following previous study (Page et al., 1998), we
incorporate an empirical damping factor d = 0.85
into the formulation to ensure the stability and con-
vergence of the algorithm, that is:

W ′(ni) = (1− d) + d ∗W (ni). (5)

The overall ranking algorithm is shown as Algo-
rithm 1.

Algorithm 1 TextRank Algorithm
Require:

A set ofm nodes (n1, ..., nm) corresponding to
answers (a1, ..., am);

Ensure:
Ranking of answers [a1, ..., am];

1: Initialize all the node weights W (n) to 1.0;
2: for each i ∈ [1,m− 1] do
3: for each j ∈ [i+ 1,m] do
4: Calculate the similarity between ni and nj

according to Eq. (3);
5: end for
6: end for
7: for each i ∈ [1,m] do
8: Calculate the weight of node ni using

Eq. (5);
9: end for
10: Rank the nodes in descending order according

to their weights.

3.4. How to construct contrasting data?
After we rank all the answers, we only extract a
subset from them to train a reward model. Our

motivation is that the PLM may generate duplicate
or similar outputs. For instance:
Question: How to improve concentration?
Answer A: Minimize distractions, use focus tech-
niques, and manage time effectively.
Answer B: Avoid interruptions, apply concentra-
tion methods, and utilize time management skills.
In this example, learning the relative ranking of
these two answers is irrational as they convey the
same meaning. Therefore, we first cluster an-
swers by minimizing the semantic distance within
the clusters. Then, we retain only one representa-
tive answer within each cluster.
However, it is difficult to pre-determine the opti-
mal number of clusters in real-world cases. For
instance, in multiple-choice questions, the optimal
number of clusters is expected to be similar to the
number of options. On the contrary, open-ended
questions may require more clusters to capture
the diversity of answers. To solve this problem,
we used the ISODATA to select the representative
subset. The advantage of employing ISODATA is
its ability to adaptively adjust the number of answer
clusters by merging or splitting them for different
questions, as shown in Algorithm 2. Please note
that the effectiveness of TextRank relies on a sub-
stantial number of samples. Therefore, we should
only filter answers after ranking them.

Algorithm 2 ISODATA Algorithm
Require:

A set of answers A = (a1, ..., am);
Ensure:

A subset of A: [a′1, ..., a′m′ ];
1: Randomly initialize K cluster C = (c1, ..., ck).
2: while Convergence criteria are not reached

do
3: for each i ∈ [1,m] do
4: Assign ai to the nearest cluster.
5: end for
6: Calculate the centroid of each cluster.
7: while the number of samples in the cluster

ci ≤ min-threshold, ci ∈ C do
8: Merge ci and cj , where cj is the closest

cluster for ci.
9: end while
10: while the number of samples in the cluster

ci ≥ max-threshold, ci ∈ C do
11: Calculate the distance between each

sample point in ci and the cluster centroid,
split the farthest sample point.

12: end while
13: end while
14: Extract centroids of all clusters as outputs.

After the clustering, we build high-low-ranked an-
swer pairs to train a reward model. To increase the
quality difference between the two answers in an
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answer pair, we propose to select themwith a fixed
interval. Let A′ = (a′1, ..., a′m′) be a ranked an-
swer set from ISODATA, the i’th answer pair would
be APi = (a′w, a′l), where l ≥ w+ IL, and IL is the
interval length, i.e. distances in the ranking list.
Furthermore, we propose noise injection to the
low-ranked answers to ensure the correctness of
the ranking. Here, we designed three types of
noise injection: 1) n-gram level editing operations
involve randomly deleting or replacing an n-gram
(where n < 4) with another random n-gram or in-
serting a random n-gram to the answer. 2) Adding
or deleting negation words, where we randomly
add negation words before verbs and delete them
for answers that already contain negation words.
3) We consider randomly shuffling the order of
sentences for answers that contain more than one
sentence. When a low-ranked answer is identi-
fied for noise injection, we randomly select one of
the three noise types. Here, the noise injection is
employed to enhance the diversity in the quality of
the two answers within an answer pair. Moreover,
counterexamples generated based on the above
three manually defined rules can assist in training
the language model to mitigate the severity of cor-
responding errors, thereby improving the overall
generation quality, as demonstrated in the experi-
mental section below.

3.5. Training
After constructing answer pairs, we fine-tune an-
other PLM as the reward model to convert answer
ranks into numerical values to represent their rea-
sonableness. In detail, during the training process
of the reward model, we maximize the reward dif-
ference between the two answers (aw, al) in an an-
swer pair for a question q:

Rθ(aw, al; q) = σ(rθ(q, aw)− rθ(q, al)). (6)

The loss function of the reward model θ is:

loss(θ) = −E(q,aw,al)∈D[logRθ(aw, al; q)], (7)

where D is the set of answer pairs.
Regarding the training of our generative policy,
we maximizing our objective function, as shown in
eq. (8). For a given input x and a model output y,
the objective function comprises two components:
The score computed by the reward model and the
KL divergence between the generative policy πRL

ϕ

and a sampling policy πSFT.

objective(ϕ) = E(x,y)∈D
πRL
ϕ

[Rθ(x, y)

−β log(πRL
ϕ (y|x)/πSFT(y|x))],

(8)

where the sampling policy πSFT is an original copy
of the generative policy.

Through this approach, our generative policy
generates answers with high rewards while pre-
serving its original question-answering capabili-
ties (Ouyang et al., 2022).

4. Experiments
To validate the effectiveness of our approach,
we conducted experiments on three tasks: dia-
logue, story generation, and natural language un-
derstanding (NLU). To enhance the uniformity of
our evaluation, we consider them all as question-
answering tasks with different prompts (Qi et al.,
2022). Furthermore, we employed three human
annotators to rank model outputs on two datasets
with open-domain answers, computing the similar-
ity between the results of our annotations and hu-
man annotations.

4.1. Data sets used
DailyDialogue is an extensive English conver-
sation dataset that covers various topics and is
collected from English learning websites (Li et al.,
2017). The conversations are authored by English
speakers and showcase a natural language style
with high complexity and diversity.
The Cornell Movie-Dialogue Corpus is an En-
glish movie dataset collected by Cornell Uni-
versity (Danescu-Niculescu-Mizil and Lee, 2011).
The dataset includes dialogues between movie
characters, covering the conversations from more
than 600 movies. These dialogues cover roman-
tic, sci-fi, and thriller films.
Stanford Question-Answering Dataset v2.0
(SQuAD) is a reading comprehension dataset,
which comprises a question set raised by crowd-
workers on a variety of Wikipedia articles (Ra-
jpurkar et al., 2016). For each question, the an-
swer is a text segment, also known as a span, ob-
tained from the corresponding reading passage.

4.2. Details
In this paper, we carried out experiments with the
GPT-2 with 124 million parameters and GPT-Neo
with 125 million parameters. 1

In terms of the TextRank, we set the maximum iter-
ations to 1,000. For ISODATA, we set the cluster
splitting variance threshold to 0.05. As for train-
ing, we used a mini-batch size of 16, and the op-
timizer is AdamW (Loshchilov and Hutter, 2019)
with a learning rate of 3e−5. In addition, we set the
value of β to 0.5 in eq. (8). Regarding inference,
we controlled the maximum generated length be-
low 100 tokens; the top-p value is 0.95 and the
temperature is 0.8.
To ensure the model’s generalization, we con-
ducted all dataset fine-tuning in an autoregressive

1Our code is available at GitHub.

https://github.com/ShuoYangtum/STA/tree/main
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Dataset DailyDialogue CornellMovie
Models BLEU ↑ GLEU ↑ METEOR ↑ BLEU ↑ GLEU ↑ METEOR ↑
Original 1.00 ± 0.15 2.33 ± 0.23 6.53 ± 0.52 3.25 ± 0.30 6.92 ± 0.27 15.76 ± 0.38
Full fine-tuning 1.99 ± 0.22 4.42 ± 0.39 9.82 ± 0.63 7.75 ± 0.37 12.72 ± 0.34 20.97 ± 0.48
Adapter (Lin et al., 2020b) 1.79 ± 0.18 4.13 ± 0.28 9.79 ± 0.74 7.74 ± 0.36 12.62 ± 0.42 20.92 ± 0.56
BitFit (Ben Zaken et al., 2022) 1.87 ± 0.23 3.96 ± 0.43 9.92 ± 0.93 7.88 ± 0.37 13.02 ± 0.94 22.76 ± 0.53
LoRA (Hu et al., 2022) 2.10 ± 0.41 4.89 ± 0.54 10.98 ± 1.03 6.93 ± 0.28 12.02 ± 0.94 20.76 ± 0.33
Ours 2.12 ± 0.33 4.72 ± 0.68 10.52 ± 1.08 8.93 ± 1.05 12.09 ± 1.01 21.58 ± 1.31
Ours (with adding Noise) 2.40 ± 0.28 4.90 ± 0.41 10.77 ± 0.68 10.12 ± 1.02 14.08 ± 0.96 27.05 ± 1.12

Table 1: The evaluation results with GPT-2 on two data sets (open-domain tasks) with 0.95 confidence
level. ‘Bitfit’ stands for Bias-only fitting. ‘LoRA’ stands for Low-rank adaptation.

Dataset DailyDialogue CornellMovie
Models BLEU ↑ GLEU ↑ METEOR ↑ BLEU ↑ GLEU ↑ METEOR ↑
Original 1.21 ± 0.17 3.53 ± 0.40 7.14 ± 0.89 3.75 ± 0.28 7.75 ± 0.56 8.53 ± 0.46
Full fine-tuning 2.03 ± 0.30 5.72 ± 0.48 10.86 ± 0.90 8.38 ± 0.46 13.95 ± 1.04 25.68 ± 0.84
Adapter (Lin et al., 2020b) 1.87 ± 0.28 5.33 ± 0.46 9.89 ± 0.66 7.74 ± 0.40 13.26 ± 0.50 21.87 ± 0.74
BitFit (Ben Zaken et al., 2022) 2.12 ± 0.32 5.85 ± 0.62 11.92 ± 1.21 8.46 ± 0.46 14.12 ± 1.25 23.64 ± 0.72
LoRA (Hu et al., 2022) 2.52 ± 0.83 6.30 ± 0.54 11.89 ± 1.45 8.27 ± 0.36 13.58 ± 1.17 23.52 ± 0.45
Ours 2.26 ± 0.75 6.28 ± 0.96 11.27 ± 1.87 10.46 ± 2.01 14.13 ± 2.53 23.28 ± 3.07
Ours (with adding Noise) 2.33 ± 0.67 6.86 ± 0.76 11.78 ± 0.84 10.96 ± 2.00 14.64 ± 2.17 23.83 ± 2.55

Table 2: The evaluation results with GPT-Neo on two data sets with 0.95 confidence level.

method of standard language models. However,
this fine-tuning approach may lead to lower per-
formance in our experiments than those reported
in works focused on specific domains.

4.3. Automated evaluation eMetric
Exact Match Score (EM) is used to evaluate the
prediction accuracy of a classification model. It
refers to the proportion of questions for which the
model provides the correct answer.
TheBilingual EvaluationUnderstud (BLEU) is
a metric used to evaluate the quality of genera-
tion (Papineni et al., 2002). We used the BLEU-
4 metric via NLTK (Bird et al., 2009) to quantita-
tively assess the similarity between machine out-
puts and human reference.
GLEU is designed to estimate text fluency solely
based on parser outputs (Mutton et al., 2007). The
metric was examined by analyzing its correlation
with human judgments of text fluency.
METEOR is a metric based on word-level exact
matching (Banerjee and Lavie, 2005). It considers
factors such as lexical overlap, word order differ-
ences, and stem changes between the generated
text and the reference text.

4.4. Manual evaluation
We employed three human annotators through the
crowdsourcing platform of MolarData to validate
our hypothesis. We randomly selected 100 ques-
tions from each of the two open-ended question-
answering datasets used and constructed four an-
swers for each question. Our evaluation includes
1. the similarity between human and automated
ranking and 2. the kappa (Cohen, 1960) consis-
tency coefficient among different annotators.

5. Results and Discussion

5.1. Analysis
Table 1 and Table 2 present the comparative re-
sults of our fine-tuning method in the open-domain
question-answering task against the baselines.
Our two models achieved state-of-the-art (SOTA)
results in almost all evaluation metrics. Regard-
ing the GPT-2 model, our method performed sim-
ilarly to the LoRA algorithm while outperforming
the direct fine-tuning and BitFit algorithm by nearly
1 point in three evaluation metrics on the Dia-
logue dataset. Additionally, on the CornellMovie
dataset, our method achieved a significant im-
provement of almost 30% in BLEU and METEOR.
Furthermore, we surpassed the BitFit algorithm by
approximately five points in the text fluency met-
ric GLEU. Moreover, we discovered that introduc-
ing noise during the training of the reward model
led to improved performance. We attribute this
enhancement to the additional contrastive infor-
mation brought by the noise, which prevented the
model from generating incorrect answers to some
extent. For the GPT-Neo model, our model out-
performed the baselines with a relatively modest
advantage. This may be attributed to GPT-Neo
having more parameters and better performance
than GPT-2, resulting in a lower probability of gen-
erating incorrect answers and thus benefiting less
from our self-correction approach. Furthermore,
the GPT-Neo demonstrated superior performance
to the GPT-2, which may be attributed to its larger
size and pre-training data scale.
Table 3 and Table 4 present the measurement re-
sults on the SQuAD dataset. Our models outper-
formed baselines by approximately two points in
the EM metric and slightly surpassed the LoRA al-
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Dataset SQuAD v2.0
Models BLEU ↑ GLEU ↑ METEOR ↑ EM ↑ Precision ↑ Recall ↑ F1 ↑
Original 2.70±0.75 4.07±1.01 11.66±2.17 10.40% 0.06% 0.12% 0.08
Full fine-tuning 19.56±2.67 39.75±4.23 38.24±3.75 52.60% 50.64% 51.94% 0.51
Adapter (Lin et al., 2020b) 18.32±1.63 38.77±4.84 38.20±3.26 52.40% 50.76% 51.38% 0.51
BitFit (Ben Zaken et al., 2022) 18.42±1.99 36.27±3.58 38.40±3.77 53.20% 50.82% 51.63% 0.51
LoRA (Hu et al., 2022) 19.67±1.68 40.42±3.98 38.24±3.75 54.40% 52.63% 53.12% 0.53
Ours 19.33±2.64 40.00±4.25 38.44±3.76 55.60% 53.87% 52.19% 0.53
Ours (with adding Noise) 19.47±2.61 41.81±4.28 38.45±3.75 56.80% 54.23% 54.61% 0.54

Table 3: The test results with GPT-2 on SQuAD v2.0 (NLU task) with 0.95 confidence level.

Dataset SQuAD v2.0
Models BLEU ↑ GLEU ↑ METEOR ↑ EM ↑ Precision ↑ Recall ↑ F1 ↑
Original 3.95±0.88 7.64±2.12 23.23±3.98 12.20% 0.10% 0.18% 0.12
Full fine-tuning 22.23±4.00 41.76±5.68 40.72±4.25 54.20% 53.82% 52.97% 0.53
Adapter (Lin et al., 2020b) 16.97±2.33 34.98±5.60 38.05±4.62 52.40% 51.66% 52.88% 0.52
BitFit (Ben Zaken et al., 2022) 18.42±2.00 40.46±2.87 39.96±3.53 53.40% 53.20% 50.65% 0.52
LoRA (Hu et al., 2022) 22.58±3.66 43.82±4.38 40.24±4.75 55.80% 54.80% 55.20% 0.55
Ours 22.16±3.46 42.05±4.88 41.04±3.66 56.00% 53.67% 54.28% 0.54
Ours (with adding Noise) 22.67±3.73 41.88±5.32 41.04±3.46 57.20% 54.76% 55.25% 0.55

Table 4: The test results with GPT-Neo on SQuAD v2.0 (NLU task) with 0.95 confidence level.

gorithm in the F1 metric. Additionally, our model
outperformed baselines regarding text fluency and
semantic similarity with standard answers. Fur-
thermore, we found that our models exhibited
significant improvement in the SQuAD dataset.
We suppose this is because the SQuAD dataset
has deterministic answers, making it easier for
the model to learn a deterministic mapping func-
tion and achieve better performance during fine-
tuning. These findings indicate that our method
applies not only to dialogue systems but also
brings improvements in general NLP tasks.

5.2. Analysis of manual evaluation
Due to the relatively poor performance of our GPT-
2-based generative policy, we conducted a man-
ual evaluation for the ability of answer ranking of
the reward model used. Our manual evaluation
demonstrated that the reward model achieved an
83.33% probability of ranking answers in the same
order as the human beings on the DailyDialogue
dataset, and a 63.00% of that was observed on the
Movie dataset. Notably, the figure of that was only
4.17% for random ranking. Consequently, our re-
ward model exhibited a high level of consistency
with human judgments of answer quality and can
serve as a substitute for manual annotation to a
significant extent.
Furthermore, as an ablation study, we observed
that human annotators achieved higher agree-
ment coefficients when ranking answers gener-
ated with ISODATA. Specifically, on the DailyDi-
alog dataset, the kappa coefficient of the three an-
notators for ranking filtered answers was 46.67. In
contrast, the kappa coefficient for unfiltered an-
swers was only 26.67. Similarly, on the Cor-

nellMovie dataset, the corresponding kappa co-
efficients for filtered and unfiltered answers were
18.51 and 11.11, respectively. Our analysis sug-
gests that using the ISODATA algorithm can en-
hance the representativeness of the answers gen-
erated by our method.

5.3. Additional study
Can we observe clusters of answers in the
semantic space? We conducted an additional
experiment with GPT-2 to validate our hypothe-
sis in Section 3.3, i.e., clusters of answers gen-
erated exist in the semantic space. Specifically,
we randomly selected a question from the SQuAD
dataset and applied principal component analy-
sis (Pearson, 1901) and singular value decom-
position (Golub and Kahan, 1965) to visualize
semantic vectors of answers generated, as il-
lustrated in Figure 2. Here, we used a BERT
model (Devlin et al., 2019) not utilized in the above
experiments to embed these answers to prevent
possible information leakage.
Our analysis indicates that most of the answers
generated exhibit apparent clustering. At the
same time, the scattered data points are irrelevant
or incorrect answers generated with relatively high
probabilities during decoding. These low-quality
answers were ranked lower as negative samples
for training the reward model. Furthermore, we
observed that the cluster centers obtained by the
ISODATA algorithm can represent the distribution
pattern of the answers.

6. Limitations
While our model outperforms the baseline on var-
ious evaluation metrics, our fine-tuning approach
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Figure 2: We applied principal component analy-
sis and singular value decomposition to the BERT
embeddings of answers generated by GPT-2.

first exhibits higher computational complexity. Re-
garding space complexity, the proposed method
requires using three pre-trainedmodels simultane-
ously when applying the PPO: a reward model, a
PLM for the generative policy, and another PLM for
the sampling policy. Since the space complexity
counts three times that of the fine-tuned PLMs, our
method is much more computationally demand-
ing than the baselines. Regarding the time com-
plexity, all fine-tuning approaches presented in
this study exhibit a linear one, i.e., proportional
to the sequence’s length. However, in practi-
cal training, our training time is more than twice
that required for full fine-tuning since the input se-
quences should be input to three models for loss
computation. Compared to non-full-parameter
fine-tuning methods like LoRA, although our ap-
proach has improved performance, it may also re-
quire more noticeable resource consumption.
Secondly, the extensive knowledge base of large
language models may result in not generating an-
swers with noticeable deviations, i.e., error points,
in the semantic distribution when developing an-
swers. This also makes the three noise introduc-
tion rules we proposed unable to create negative

samples that could significantly improve their per-
formance. Due to limitations in our computational
resources, we can only make theoretical assump-
tions the proposed approach yields performance
improvements whenwe apply it to advanced large-
scale PLMs. In summary, while the limitations
exist, our approach addressed the reliance on
human labor in the RLHF training pipeline and
demonstrated its effectiveness on popular PLMs
with relatively fewer parameters.

7. Conclusion
This paper introduces STR, a self-supervised
pipeline that leverages proximal policy optimiza-
tion for fine-tuning language models. We aim to
reduce the need for manual labor, making RLHF-
based algorithms more accessible and practical
for researchers. Experimental results with two
models across three tasks show that our fine-
tuning method improves three points over the
baselines regarding BLEU, ROUGE, and ME-
TEOR. Additionally, manual evaluations indicate
that our proposed text ranking algorithm gen-
erates annotations similar to human-generated
ones. This discovery provides a cost-effective
framework for future PPO-guided models to auto-
matically generate training data. As a result, our
research contributes to the advancement of self-
supervised learning in fine-tuning pre-trained lan-
guagemodels, opening up new possibilities for ap-
plying reinforcement learning in natural language
processing.
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