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Abstract
We introduce ÌròyìnSpeech, a new corpus influenced by the desire to increase the amount of high quality,
contemporary Yorùbá speech data, which can be used for both Text-to-Speech (TTS) and Automatic Speech
Recognition (ASR) tasks. We curated about 23 000 text sentences from news and creative writing domains with
the open license CC-BY-4.0. To encourage a participatory approach to data creation, we provide 5 000 curated
sentences to the Mozilla Common Voice platform to crowd-source the recording and validation of Yorùbá speech data.
In total, we created about 42 hours of speech data recorded by 80 volunteers in-house, and 6 hours of validated
recordings on Mozilla Common Voice platform. Our TTS evaluation suggests that a high-fidelity, general domain,
single-speaker Yorùbá voice is possible with as little as 5 hours of speech. Similarly, for ASR we obtained a baseline
word error rate (WER) of 23.8.
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1. Introduction

Speakers of many African languages have no ac-
cess to voice-enabled applications in their native
languages. One reason is that these technolo-
gies all require models for speech recognition and
speech synthesis, trained on large datasets of high-
fidelity speech and text (Ritchie et al., 2022; Meyer
et al., 2022b).

To address this challenge, there have been sev-
eral efforts to build large-scale multilingual datasets
and models by automatically aligning speech and
text (Radford et al., 2023; Zhang et al., 2023; Pratap
et al., 2023). The results however, are often of poor
quality for low-resource African languages due to
the dearth of high-quality audio-text pairs and un-
satisfactory out-of-domain generalization. Other ef-
forts have focused on building benchmark datasets
for over 100 languages using high-quality but small-
scale training data (Conneau et al., 2023; Shi et al.,
2023a,b).

In this paper, we focus on Yorùbá, a West
African language with over 40 million L1 speakers,
yet under-represented in contemporary speech re-
search. There have been a number of efforts to
build datasets for Yorùbá speech tasks (Odéjobí
et al., 2004; Àjàdí, 2007; Akinwonmi and Alese,
2013; Afolabi et al., 2014; Dagba et al., 2016; van
Niekerk and Barnard, 2012; van Niekerk et al.,
2015; Gutkin et al., 2020a). The datasets are ei-
ther too small to do speech processing effectively
or are single speaker, single domain, as is the case
for BibleTTS (Meyer et al., 2022b). Our corpus
extends the scope of previous work to address mul-
tiple speech application domains.

We introduce the ÌròyìnSpeech— a new dataset

created to increase the amount of high quality, con-
temporary Yorùbá speech. The dataset has a total
of 42 hours of audio, recorded by 80 volunteers. We
curated text sentences from the news and creative
writing domains under an open license, CC-BY-
4.0. We also provide 5 000 sentences to the Com-
mon Voice (Ardila et al., 2020) platform to crowd-
source voice recordings online1. We provide ex-
tensive baseline experiments using state-of-the-art
approaches for TTS and ASR. The code and data
will be made freely available on https://github.
com/Niger-Volta-LTI/yoruba-voice.

2. The Yorùbá Language

The Yorùbá language is native to south-western
Nigeria, Republic of Benin, and Republic of Togo.
It is one of the national languages of Nigeria also
spoken in other countries like Ghana, Côte d’Ivoire,
Sierra Leone, Cuba and Brazil. The language be-
longs to the Niger-Congo family in the Volta-Niger
sub-group, and is spoken by over 40 million native
speakers (Eberhard et al., 2019), making it one of
the most widely spoken African languages.

Yorùbá has 25 letters without the Latin characters
(c, q, v, x and z) and with additional characters (e. ,
gb, s. , o. ). There are 18 consonants, seven oral
vowels (a, e, e. , i, o, o. , u), five nasal vowels, (an, e. n,
in, o. n, un) and syllabic nasals (m̀, ḿ, ǹ, ń). Yorùbá
is a tonal language with three tones: low, middle
and high. These tones are represented by the grave
(“\”), optional macron (“−”) and acute (“/”) accents
respectively. These tones are applied on vowels
and syllabic nasals, but the mid tone is usually

1https://commonvoice.mozilla.org/yo

https://github.com/Niger-Volta-LTI/yoruba-voice
https://github.com/Niger-Volta-LTI/yoruba-voice
https://commonvoice.mozilla.org/yo
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ignored in standard Yorùbá orthography. These
diacritics are important for correct pronunciation
and lexical disambiguation.

3. The ÌròyìnSpeech Corpus

3.1. Preparation of text sentences
In contrast to other Yorùbá datasets based on Bib-
lical or religious texts, our goal was to combine
news data and fictional texts to create a modern,
multi-purpose speech dataset (Gutkin et al., 2020b;
Meyer et al., 2022a). The corpus text was ob-
tained from two sources, firstly the MENYO-20k
dataset (Adelani et al., 2021), an open-source,
multi-domain English-Yorùbá machine translation
corpus and secondly, the Yorùbá portion of the
MasakhaNER 2.0 dataset (Adelani et al., 2022) (i.e
MasakhaNER-YOR) based on the Asejere news-
paper2. The primary source of the MENYO-20k
dataset is the Voice of Nigeria newspaper3, pub-
lished by the Nigerian government. We restrict
our selection of corpus text to the above published
datasets for two reasons (1) they have a non-
restrictive license, and (2) the Yorùbá sentences
have been further verified for quality issues, for
example missing diacritics in the original crawled
Asejere and Voice of Nigeria articles. Overall, we
obtained 3 048 sentences from Voice of Nigeria,
2 932 sentences from Global Voices, and 5 135 sen-
tences from Asejere. In total, this gives us 11 115
sentences.

In order to obtain more sentences to reach our
goal of 40 hours of speech, we added sentences
extracted and modified from unpublished short sto-
ries previously translated into Yorùbá by the second
author. These texts were selected to broaden the
domain of the vocabulary used in the dataset. In
addition, we split-up long sentences and asked vol-
unteers to manually generate new sentences with
similar themes or context as the original seed sen-
tences. They also cross-checked each sentence for
errors. In total, we had to manually generate about
12 000 sentences. We then cleaned up the data to
create a final script. To ensure the sentences were
of high-quality, we verified that diacritics were prop-
erly applied on each word and revised offensive or
divisive religious terms within the text to reflect a
neutral tone. Next, we modified the text for clarity
and length to facilitate pronunciation, and localized
non-Yorùbá words into Yorùbá. We list below a
few examples of the types of names and places
which were localized: Kaduna to Ò. yó. , Zamfara to
Oǹdó, United States to Ìlú O. ba, Buhari to Bùhárí
and Kenya to Ké.ńyà.

2https://www.asejere.net/
3https://yoruba.von.gov.ng/

3.2. Recording of text sentences

3.2.1. Corpus partitions

Table 1 provides the details of the recorded utter-
ances and text preparation. Our text preparation
yielded a total of 23 000 sentences which were used
to record audio of both ASR and TTS. Our initial
setup divided the corpus into two parts: (1) Par-
tition A, contains 20 000 sentences, primarily for
the recording of ASR audio and (2) Partition B,
contains 3 000 reserved for TTS recordings.

ASR recording We recorded in-house all 20 000
sentences in Partition A, or some 26 hours for
ASR. They were recorded by 80 different volun-
teers, each recording 250 lines during one-hour
studio sessions. Additionally, we added 5 000
sentences to the Mozilla Common Voice crowd-
sourcing platform, which were recorded by 108 vol-
unteers on the Common Voice website, yielding 6
hours of speech. The sentences used to record on
Common Voice were selected from the sentences
in Partition A. We note for completeness, that the
ASR experiments in this study did not yet make use
of these 6 hours. We hope that by setting up Com-
mon Voice for Yorùbá, native speakers everywhere
will be encouraged contribute.

TTS recording We recorded all 3 000 sentences
in Partition B by two speakers, one male and one
female, ages 25 to 30. This resulted in 3 hours
35 minutes of data, which was below our goal of
10 hours. Since there were no additional curated
sentences, we decided to record supplementary
sentences obtained from Partition A to reach our
10 hour goal. The final TTS corpus contains 9 000
sentences yielding 10 hours 11 minutes of speech.

All volunteers, speakers of standard North West
Yorùbá4, were screened for dialect uniformity, and
ranged in age from 18 to 69 years. The 9 000 lines
for the single speaker (TTS) partition had one male
and one female volunteer, while the 20 000 lines
multi-speaker (ASR) partition had 80 volunteers, 37
male and 43 female. The studio volunteers were
each provided with a token gift, as a gesture of
appreciation of their time and efforts recording.

3.2.2. Recording

To create an acoustically suitable environment for
recording, we obtained a portable vocal booth. The
recording equipment comprised an AT 2020+ USB
microphone, USB cables, and a 2022 M1-Series
Macbook Pro.

4http://www.africa.uga.edu/Yoruba/
yorubabout.html

https://www.asejere.net/
https://yoruba.von.gov.ng/
http://www.africa.uga.edu/Yoruba/yorubabout.html
http://www.africa.uga.edu/Yoruba/yorubabout.html
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# hours # utterances Corpus partitions used # Unique sentences used
In-house ASR 26h 00m 20 000 Partition A 20 000

Common Voice ASR 6h 00m 5 000 Partition A -
In-house TTS 10h 11m 9 000 Partition A & Partition B 3 000

Total 42h 11m 34 000 - 23 000

Table 1: A summary of dataset statistics. Some of the utterances used for TTS recording (i.e. 6K
utterances) and for Common Voice (5K utterances) are subsets of the Partition A.

The first five hours of audio were recorded with
Audacity, a free, open-source digital audio edi-
tor and recording application. To divide each of
these hour-long recordings into a short file for each
sentence required many more additional hours
of manual post-editing work. To solve this prob-
lem, the team developed a custom application for
creating speech corpora, dubbed Yorùbá Voice
SpeechRecorder5 (Orife et al., 2022).

The app works by reading a prepared text file,
usually with 250 sentences and displays each line
of text to be read in order. It also provides trans-
port controls to enable recording, playback and
file-management or deletion, in the case of multiple
takes. Finally, the tool saves individual audio files
to the hard-drive, for each sentence, and updates a
metadata index, which can be used to programmat-
ically prepare training examples. Over 65% of the
total lines recorded in-house were recorded using
the SpeechRecorder app.

3.2.3. Post-production

We had four forms of post-processing. Where pos-
sible, recordings that had issues which could be
manually fixed, were repaired by removing simple
audio artifacts and speech disfluencies. In situa-
tions where the recording did not correspond with
the text but the utterance remained grammatical,
we did not rerecord the utterance but rather edited
the text sentence to match the audio.

We also fixed tone marking, spelling, or semantic
mismatches. Words like “ní ilé” (into the house)
or “sí ibè. ” (to there) are often contracted to “nílé”
and “síbè. ” respectively in spoken Yorùbá and were
amended in the text sentence accordingly.

If the audio files had any issues which rendered
them unusable, then we re-recorded, usually with
a different volunteer of the same gender, introduc-
ing thusly, a new, different speaker ID. Some of
the issues encountered include: (1) Disfluencies:
hesitations, stammers, clicks, sniffs, etc. (2) Exter-
nal noises: paper rustling, microphone touching,
intrusive voices, electronic notification beeps, etc
(3) Audio fidelity: low or uneven audio levels, clip-
ping or distortion, or otherwise unintelligible words

5https://github.com/Niger-Volta-LTI/
yoruba-voice-speech-recorder

(4) Incorrect dictation which could not be fixed by
changing the script.

4. Speech Synthesis Experiments

We train speech synthesis models using the single-
speaker TTS partition of our dataset, resulting in
both male and female voices. The 9 000 utterances
described in Table 1, are split evenly between the
male and female speakers, employing 4 500 ut-
terances for each. We train and evaluate three
variants of the VITS (Variational Inference with ad-
versarial learning for end-to-end Text-to-Speech)
model6 as follows:

• Domain adaptation from existing BibleTTS
Yorùbá checkpoints (Meyer et al., 2022b).

• Training a VITS model end-to-end from scratch
with 5 hours of data

• Training VITS models from scratch without di-
acritics in the training text

• Training a VITS model end-to-end from scratch
with different data scales i.e. number of utter-
ances: 100, 500, 1 000, 2 000 and 4 500.

Model training We trained the VITS models us-
ing the Coqui TTS toolkit (Meyer et al., 2022b). We
use the AdamW optimizer (Loshchilov and Hutter,
2019) with betas {0.8, 0.99}, weight decay of 0.01,
an initial learning rate of 0.0002 decaying exponen-
tially by a gamma of 0.999875. The models were
trained with a batch size of 16 using an NVIDIA A10
GPU with 24GB of GPU memory. For the domain
adaptation, we fine-tuned for 100K iterations steps,
while when training from scratch, 500K iterations
steps were required. Finally, for the last experi-
ments, all models were trained for 100K iterations
steps since the model performance had typically
started to converge.

Model evaluation For subjective evaluation, we
ran Mean Opinion Score (MOS) and MUSHRA tests
(ITU-RBS.1534, 2014) via an online web applica-
tion, with 70 participants. We also did objective

6But also release Tacotron2-DCA and Glow TTS mod-
els trained with the same data

https://github.com/Niger-Volta-LTI/yoruba-voice-speech-recorder
https://github.com/Niger-Volta-LTI/yoruba-voice-speech-recorder
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evaluation of the models’ output, measuring the
mean Mel Cepstral Distortion (Kominek et al., 2008)
of selected utterances for each model. Our evalua-
tion data is also based on the news domain but on
samples unseen during training.

4.1. Does training with diacritics affect
synthesised voices?

The importance of tone, represented orthograph-
ically by diacritics in Yorùbá led us to question
whether there would be a difference between the
speech produced by models trained with or without
diacritics. For the male and female voices, we train
TTS models from scratch with and without diacritics,
presenting the results in Table 2.

Model MOS↑ MUSHRA↑ MCD↓
With diacritics, Male 3.98 60.91 7.47
No diacritics, Male 1.86 18.97 8.93
With diacritics, Female 2.82 48.24 6.26
No diacritics, Female 1.50 19.02 11.88

Table 2: Results of experiments training TTS mod-
els with and without diacritics. The Mean Opinion
Scores (MOS), MUSHRA scores and Mel-Cepstral
Distortion (MCD) is measured. Across the board,
models trained with diacritics perform better than
those not trained with diacritics.

Across voices and evaluation metrics, we find
that training models with diacritics leads to more
natural sounding speech. The female voice does
not have as high a MOS or MUSHRA score as the
male voice, indicating a less natural sounding voice
in comparison.

4.2. Does continued pre-training result in
a more natural voice?

The availability of BibleTTS models (Meyer et al.,
2022b) in Yorùbá provided the opportunity to use
our dataset to continue pre-training TTS models
which already produce natural sounding speech.
The BibleTTS Yorùbá voice uses a single male
voice. We wanted to observe whether starting from
a trained TTS model would lead to a more natural
sounding voice than using our data alone. To test
this hypothesis, we trained models from scratch
and continued pre-training the BibleTTS Yorùbá
checkpoint. Results of the model evaluation are in
Table 3.

For the female voice, we see that training from
scratch leads to the best performance across ob-
jective and subjective metrics. This is likely due to
the BibleTTS voice being male, and thus a more dif-
ficult adaptation during continued pre-training. For
the male voice, the results are mixed. Although the
MOS score is higher for the continued pre-training
voice, the MUSHRA and MCD scores are higher for

Model MOS↑ MUSHRA↑ MCD↓
Male 3.98 60.91 7.47

BibleTTS → Male 4.22 52.59 8.86
Female 2.82 48.24 6.26

BibleTTS → Female 2.57 41.63 8.93

Table 3: Subjective {MOS, MUSHRA} and Objec-
tive {MCD} evaluation results of voices trained from
scratch (Male, Female) and continued pre-training
(BibleTTS → Male, BibleTTS → Female).

the model where we train from scratch. This means
that when compared to the continued pre-training
model, the from-scratch model is rated more natu-
ral.

4.3. How much data is required to train a
synthetic voice?

Given the low-resource setting we work in, we ex-
periment how far we the push the limit of a few re-
sources. We test how many utterances are required
to train a model that produces natural speech. Due
to the number of models already trained, we mea-
sure this solely through objective evaluation with
MCD.

Number of utts. MCD↓
100 utterances 7.49
500 utterances 6.99
1000 utterances 7.11
2000 utterances 7.09
4500 utterances 6.85

Table 4: MCD of TTS models trained with varying
numbers of utterances, ranging from 100 to 4 500.
The model trained with the most utterances has the
best performance.

The results for this experiment are in Table 4.
The Mel Cepstral Distortion is highest for the model
trained with the fewest utterances (7.49) and low-
est for the model trained with the most utterances
(6.85). Although the MCD does not decrease mono-
tonically as the number of utterances increases,
there is evidence that more data is better. Overall,
based solely on this objective evaluation, one may
reason that only 500 utterances are necessary to
train a satisfactory Yorùbá VITS model.

5. Automatic Speech Recognition
Experiments

To evaluate our corpus for speech recognition tasks,
we train several baseline ASR models, with the
following data split of 15 000 / 1 000 / 4 000 for
training, development and test respectively. We
explore training a conformer model end-to-end and
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finetuning self-supervised speech representations.
The results of these experiments are in Table 5.

5.1. End-to-End Conformer model
We use ESPNet to train a 12-layer Conformer
model end-to-end with an RNN language model
(LM) for decoding. We use unigram tokenization
and have a perplexity of 54.0 on the held-out vali-
dation set.

5.2. Finetuning wav2vec 2.0
We finetune wav2vec 2.0 XLSR-300m (Babu et al.,
2022) and train an end-to-end Conformer model
(Gulati et al., 2020). For wav2vec 2.0 XLSR-300m,
a massive multilingual model, pretrained for speech
tasks on 128 languages, we finetune for 20 000
steps, equating to 10.67 epochs.

Model WER↓
Conformer + RNN LM 69.7
wav2vec 2.0 finetuned 40.6

+bigram model 27.6
+trigram model 23.8

Table 5: Word-error-rate (WER) for end-to-end Con-
former model and finetuned wav2vec 2.0. Finertun-
ing wav2vec 2.0 outperforms training an end-to-end
Conformer model from scratch.

We observe that finetuning wav2vec 2.0 leads to
significantly better performance versus training the
Conformer model end-to-end. The addition of an n-
gram language model further lowers the error-rate,
with the trigram LM model prevailing.

Overall, a more substantial evaluation, beyond
these initial baselines, will be required to better un-
derstand the benefits of finetuning a multilingual
model versus training a simpler monolingual model.
Finally, we hope that these initial results will encour-
age the inclusion of the Yorùbá language in more
multilingual ASR evaluation benchmarks.

6. Conclusion

In this work we present an open dataset of 42
hours of high quality Yorùbá speech data to be
used for both Speech Synthesis and Automatic
Speech Recognition research. For TTS, we remark
that models trained with diactrics generate speech
that is perceived as more natural than those trained
without diacritcs, while models continually trained
from existing models may not always sound more
natural than those trained from scratch. In ASR,
we see that finetuning wav2vec 2.0 with a trigram
model leads to the lowest word error rate. This data
will be made freely available in the hope that it will

invigorate speech research and accelerate the de-
velopment of technology for the Yorùbá language.

7. Ethics Statement

For this project, we obtained the consent of all the
volunteers that contributed their voice recording
to the ÌròyìnSpeech project. Also, our recording
does not include private or sensitive conversations
that can violate our volunteers privacy since the
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