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Abstract

Effective information retrieval (IR) in settings with limited training data, particularly for complex queries, remains a
challenging task. This paper introduces IR2, Information Regularization for Information Retrieval, a technique for
reducing overfitting during synthetic data generation. This approach, representing a novel application of regularization
techniques in synthetic data creation for IR, is tested on three recent IR tasks characterized by complex queries:
DORIS-MAE, ArguAna, and WhatsThatBook. Experimental results indicate that our regularization techniques not
only outperform previous synthetic query generation methods on the tasks considered but also reduce cost by up
to 50%. Furthermore, this paper categorizes and explores three regularization methods at different stages of the
query synthesis pipeline—input, prompt, and output—each offering varying degrees of performance improvement
compared to models where no regularization is applied. This provides a systematic approach for optimizing synthetic
data generation in data-limited, complex-query IR scenarios. All code, prompts and synthetic data are available at
https://github.com/Info-Regularization/Information-Regularization.

Keywords: Information Retrieval, Data Augmentation, Synthetic Query Generation, Regularization, Con-
trastive Learning, Large Language Models

1. Introduction

Users often submit complex queries to informa-
tion retrieval (IR) systems, expecting answers that
accurately address multiple, interconnected ques-
tions. These complex queries may involve ambigu-
ous language or multiple specific criteria, requir-
ing that IR systems decipher and respond to the
layered intents accurately to provide relevant re-
sults (Wang et al., 2023; Lin et al., 2023). Ensuring
that IR systems effectively handle the subtleties of
such queries is important, allowing these systems
to align with varied and nuanced user demands.

Effectively addressing complex queries in IR de-
pends on a model’s exposure to a wide range of
user queries during training. However, obtaining
diverse real-world training data is often constrained
by privacy concerns, availability, and resources.
Synthetic data, therefore, becomes crucial, offering
a means to expand training datasets, enabling mod-
els to learn from a broader spectrum of queries and
user intents (Ma et al., 2021; Liang et al., 2020).

Recent research exploits Large Language Mod-
els (LLMs) to generate synthetic data pairs, con-
structing synthetic queries from real passages, of-
ten derived from zero-shot or few-shot examples
(Bonifacio et al., 2022; Jeronymo et al., 2023; Meng
et al., 2022; Peng et al., 2023; Penha et al., 2023).

∗ Equal contribution
† Equal contribution

Addressing the challenges of complex query in-
formation retrieval (IR) tasks through LLM-based
synthetic data generation presents distinct difficul-
ties. While synthetic data improves model perfor-
mance across multiple tasks and metrics, gener-
ating queries from documents often results in syn-
thetic pairs that exhibit superficial textual patterns,
such as synonyms, matching keywords, and similar
organizational flow, see the Promptagator Query in
Figure 2 by a standard 8-shot synthetic query gen-
eration technique (Dai et al., 2022). Though this
might be effective for certain IR tasks, models may
overfit to more superficial features, preventing them
from understanding more conceptual relationships
between query and document.

This paper focuses on developing methods to
generate and utilize synthetic data to enhance the
retrieval capabilities of IR systems. To mitigate over-
fitting, we introduce IR2 (Information Regularization
for Information Retrieval), which creates queries
that have conceptual overlap with the original docu-
ment, but varied phrasing and structure. This yields
synthetic queries that have a less explicit relation-
ship with the document, see the Document Regu-
larization Query in Figure 2. We posit that training
models with such data can be advantageous by
nudging them towards understanding deeper se-
mantic relationships, resulting in improved retrieval
performance for complex queries.

In this paper, we make several contributions to

https://github.com/Info-Regularization/Information-Regularization
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Figure 1: Performance of synthetic data genera-
tion methods on complex IR benchmarks. The
△, □ (Gao et al., 2021), and O (Dai et al., 2022)
icons represent baselines. The other four icons

denote IR2 approaches, indicating
the performance of models after fine-tuning on
information-regularized synthetic datasets. Met-
rics are chosen based on standard practice for the
three benchmarks. Model performances are aver-
aged across all models used in experiments.

synthetic data generation for Information Retrieval.
First, we introduce three distinct regularization tech-
niques applied at various stages of the synthetic
data generation process. This approach addresses
models’ tendency to learn superficial and unnatu-
ral overlapping features between synthetic queries
and documents, which would hamper model per-
formance on complex query IR tasks

We also present a comprehensive analysis of
how different pretrained transformer-based embed-
ding models respond to these regularization tech-
niques (Wang et al., 2022c; Liu et al., 2019; Co-
han et al., 2020). Our empirical evidence demon-
strates consistent performance improvements with
our methods compared to non-regularized base-
lines (Gao et al., 2021; Dai et al., 2022).

Furthermore, we find that these IR2 regulariza-
tion techniques can be effectively combined, with
instruction and output regularization emerging as
the most potent pairing in our tests, as shown by

and in Figure 1, top right corner. This finding
paves the way for more effective strategies in data
augmentation for IR systems.

2. Related Work

In recent years, Information Retrieval has seen in-
creasing task complexity as well as advancements
in models designed to navigate this greater com-
plexity.

IR tasks have typically centered on retrieving
relevant passages to answer simple, sentence-
level queries, as seen in foundational datasets

like MS MARCO (Nguyen et al., 2016) and NQ
(Kwiatkowski et al., 2019). The BEIR dataset
(Thakur et al., 2021) combines 19 IR tasks, most
of which are sentence-level, including specific chal-
lenges like TREC-COVID (Voorhees et al., 2020)
and SCIFACT (Wadden et al., 2020). Several re-
cent datasets contain complex, paragraph-length
queries. DORIS-MAE (Wang et al., 2023) poses
the task of retrieving scientific abstracts given com-
plex scientific research questions. In the What-
sThatBook dataset (Lin et al., 2023), tip-of-the-
tongue user queries are used to retrieve book de-
scriptions. In ArguAna (Wachsmuth et al., 2018),
paragraph-length arguments are used to retrieve
counterarguments.

Lexicon-based methods such as TF-IDF
(Sparck Jones, 1972) and BM25 (Robertson et al.,
2009) retrieve based on keyword matching, and
are effective in scenarios with substantial token
overlap between queries and relevant passages.
However, their limitations became apparent as
tasks required deeper semantic comprehension,
especially in cases with minimal token overlap.

Transformer-based models, including various
cross-encoders and dual-encoders (Wang et al.,
2022c,b; Gao et al., 2021; Cohan et al., 2020; San-
thanam et al., 2022; Xiong et al., 2020; Formal et al.,
2021), have offered more nuanced document and
query representations. They have shown strong re-
sults on benchmarks like BEIR (Thakur et al., 2021)
but have struggled on complex query tasks.

Recently, improvements in LLMs, coupled with
prompting techniques such as Chain-of-Thought
(Kojima et al., 2022; Wei et al., 2022b) and In-
Context-Learning (Chowdhery et al., 2022; Wei
et al., 2022a), have influenced the field of Infor-
mation Retrieval (IR) in several directions. This
has included data annotation (Wang et al., 2023;
Gilardi et al., 2023; Wang et al., 2022a) as well
as retrieval and reranking processes (Sun et al.,
2023). Most relevant for the current work, LLMs
have been used for synthetic data generation, par-
ticularly in data-scarce conditions, outperforming
traditional augmentation methods (Izacard et al.,
2022). For instance, Ma et al. (2021); Liang et al.
(2020) applied LLMs for synthetic question genera-
tion in Question Answering (QA).

In IR tasks, since user-generated queries are
frequently difficult or expensive to obtain, much of
the work on synthetic data has focused on gener-
ating synthetic queries. This has included InPars
(Bonifacio et al., 2022; Jeronymo et al., 2023) and
Promptagator (Dai et al., 2022), the latter show-
casing significant success on the BEIR benchmark.
Augtriever (Meng et al., 2022) introduced meth-
ods for synthetic query generation using smaller
models, optimizing both time and cost. Peng et al.
(2023) used soft prompt-tuning to further enhance



9263

Figure 2: Sample synthetic query from Promptagator and a synthetic query generated with document
regularization. (Both queries are generated from the same abstract.) Red indicates overlaps between the
Promptagator query and the original abstract. Blue indicates overlaps between the document regularized
query and the original abstract. Green indicates overlap with both queries. The document regularized
query has less textual overlap with the original query.

the quality of generated queries.
Synthetic data generation also has applications

in other fields, including text classification (Li et al.,
2023), information extraction (Josifoski et al., 2023),
reinforcement learning for language model align-
ment (Yang et al., 2023), human-computer interac-
tion (Hämäläinen et al., 2023), and computational
social science (Veselovsky et al., 2023).

In addition to these LLM developments, there
has been an ongoing push to improve sentence
embeddings, including SimCSE (Gao et al., 2021),
which applies dropout masking as a data augmenta-
tion technique, and other variants such as DiffCSE
(Chuang et al., 2022), and RankCSE (Liu et al.,
2023). By using a contrastive learning objective,
these models have substantially increased the util-
ity of unlabeled data for retrieval systems.

3. Methodology

3.1. Synthetic Query Generation
The goal of IR systems is to match user queries,
which express the user’s information need, with
relevant documents that contain the desired infor-
mation. A typical IR system would benefit from
fine-tuning of pairs of query and relevant document
if sufficient data is available. However, real user
queries are difficult and costly to collect. In addition,
finding relevant documents for user queries also
requires careful annotations. Therefore, synthetic
query generation aims to improve IR system perfor-

mance when faced with challenges of the scarcity
of query data and the lack of supervised pairs of
query and relevant document. Since documents
are generally more readily available, by generating
artificial yet plausible user queries based on exist-
ing documents, we can create additional training
data for IR systems, helping them better under-
stand and respond to a wider range of potential
user queries.

In this research, we concentrate on methods for
generating synthetic queries that are relevant to
given documents. This involves not just creating
queries that a user might realistically pose, but also
ensuring that these queries are diverse enough to
train IR systems effectively. By using this synthetic
data for training, we aim to improve the systems’
overall ability to handle complex user queries, en-
hancing retrieval accuracy and efficiency.

3.2. Baseline Query Generation
Promptagator (Dai et al., 2022) proposes a few-
shot method for LLM synthetic query generation.
By providing an LLM with a small number of pairs
of relevant documents and queries, it will implicitly
learn the transformation from document to query.
When a new document is provided, the LLM will
transform it to a relevant query. We use di to de-
note a document and qi to denote a relevant query.
Promptagator uses 8-shot prompting of the follow-
ing form:

d1, q1, . . . , d8, q8, d9,
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(a) Document Regularization (b) Instruction Regularization (c) Query Regularization

Figure 3: Illustration of the three information regularization methods.

which includes the 8 example pairs as well as the
target document d9.

However, as shown in Figure 2, biases from
the LLM may result in suboptimal queries. In our
testing, we observed that queries frequently con-
tained an implausibly large number of details from
the documents, including highly similar phrasing
and mirroring structure. When these queries are
used for training downstream IR systems, they may
lead to overfitting, as the IR systems learn simple
phrase-matching heuristics between queries and
documents.

3.3. Information Regularization
In order to mitigate these potential problems in the
query generation process, we introduce IR2 (In-
formation Regularization for Information Retrieval).
These methods aim to reduce the number of super-
ficial features shared by documents and synthetic
queries, while still maintaining deeper semantic
relationships.

The three information regularization methods can
be categorized by the stage of the query generation
pipeline at which they are applied:

• Document Regularization is applied to the in-
put document di of LLM by intentionally with-
holding parts of the semantic information in
di.

• Instruction Regularization is applied to the
prompt. We design a specialized prompt for
the LLM, explicitly instructing it to avoid super-
ficial similarities between the query and docu-
ment.

• Query Regularization is applied to the syn-
thetic query which was generated by the LLM.
It is designed to summarize the synthetic query,
transforming it into a less complex sub-query.

Below we will discuss the motivation and in-
tended effects of each type of regularization.

3.3.1. Input Document Regularization

Document Regularization aims to address implau-
sibly high levels of phrase overlaps between doc-
uments and synthetic queries. This technique dis-
rupts phrase overlaps by partially masking the doc-
ument’s content before feeding it into the LLM. As
shown in Figure 3 (a), the system identifies key
semantic words in a document and hides a random
p% of them. The LLM, guided by the style of a
single example query, then generates a new query
based on this incomplete information.

This approach forces the LLM to generate
queries that diverge textually from the source doc-
ument while still remaining broadly relevant, and it
makes the resulting training data more challenging
for downstream IR systems. The method can be
straightforwardly adapted to different IR datasets,
and the p% parameter offers control over the de-
gree of regularization. Setting p = 0 defaults to the
original Promptagator approach, with no regular-
ization.

3.3.2. Instruction Regularization

This method involves guiding the LLM through a
structured thought process to generate queries
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from documents, emphasizing the extraction and
synthesis of key ideas while avoiding superficial
mimicry. The model is first instructed to break the
document into a sequence of aspects, each de-
scribing an important part of the document. Each
aspect is subsequently paraphrased. The LLM is
finally instructed to combine the paraphrased as-
pects into a natural query. The approach is detailed
in Figure 3 (b).

Due to the complexity of the prompt, we found
that GPT-3.5 was unable to perform this task, while
GPT-4 (which is used for our experiments) was able
to.

3.3.3. Output Query Regularization

As depicted in Figure 3 (c), this technique simplifies
synthetic queries, making them shorter and less
detailed yet still conceptually relevant to the source
document. The process challenges embedding
models to focus on deeper semantic understanding
rather than textual similarity.

Query regularization is straightforward, requires
a small context window, and can be combined with
our other synthetic generation techniques. In our
experiments, we investigate the effectiveness of
query regularization applied to synthetic queries
generated from document regularization and in-
struction regularization.

4. Experiments

To evaluate the effectiveness of information regular-
ization for synthetic query generation, we choose 3
complex-query based test benchmarks (DORIS-
MAE, ArguAna and WhatsThatBook) and 4 dif-
ferent embedding models (E5-Large-v2 (Wang
et al., 2022c), SimCSE-Large (Gao et al., 2021),
RoBERTa-Large (Liu et al., 2019), SPECTER-v2
(Cohan et al., 2020)). For each benchmark, we
generate 8 synthetic datasets:

• Document Regularization (p = 40%)

• Document Regularization (p = 60%)

• Document Regularization (p = 80%)

• Instruction Regularization

• Query Regularization ◦ Document Regulariza-
tion (p = 40%)

• Query Regularization ◦ Document Regulariza-
tion (p = 60%)

• Query Regularization ◦ Document Regulariza-
tion (p = 80%)

• Query Regularization ◦ Instruction Regulariza-
tion.

The notation ◦ indicates function composition.
In this section, we will discuss the details of

benchmark datasets, pretrained models, baseline
query generation methods, and regularization tech-
niques. All experiment code is publicly accessible.1

For model evaluations, we report the IR metrics
recommended by each benchmark’s associated pa-
per. Full experimental results with a more complete
set of metrics are reported in Appendix B.

4.1. Benchmarks
WhatsThatBook (WTB) (Lin et al., 2023) contains
14,441 queries from users trying to recall specific
books, paired with book titles and descriptions. The
task is to match each of the 1,445 test set queries
with the correct descriptions. We use descriptions
from 4,000 unique books, exclusive from the test
set, for synthetic query generation.

DORIS-MAE (Wang et al., 2023) includes 100
complex research queries in AI, CV, NLP, and ML,
split into 40 for training and 60 for testing. Each
query is associated with a candidate pool of ap-
proximately 100 research paper abstracts, with a
fine-grained ranking system. The candidate pools
are drawn from a corpus of approximately 360,000
computer science papers. We use 4,000 abstracts
from a 360,000 paper corpus for synthetic query
generation.

ArguAna (Wachsmuth et al., 2018) from BEIR
(Thakur et al., 2021) consists of 8,674 paragraph-
length arguments, and a test set of 1,406 argument-
counterargument pairs. The task is to retrieve the
correct counterargument for each test set argument.
We use 5,700 arguments, not part of the test set,
for synthetic counterargument generation. Due to
the symmetry between arguments and counterar-
guments, we can use our synthetic data to train for
retrieval of counterarguments given arguments.

4.2. Models
We experiment with four models: E5-Large-v2
(Wang et al., 2022c) (355M), SimCSE-Large (Gao
et al., 2021) (355M), RoBERTa-Large (Liu et al.,
2019) (355M), and SPECTER-v2 (Cohan et al.,
2020) (110M). E5-Large-v2 (denoted as E5), a
contrastively trained model, demonstrates perfor-
mance on par with the state-of-the-art ada-002
(Greene et al., 2022) on BEIR (Thakur et al., 2021).
For SimCSE-Large (denoted as SimCSE), which
uses self-supervised training with dropout masks,
we choose the top-performing checkpoint on the
STS benchmark (Agirre et al., 2013). RoBERTa-
Large is denoted as RoBERTa. SPECTER-v2 is

1https://github.com/
Info-Regularization/
Information-Regularization

https://github.com/Info-Regularization/Information-Regularization
https://github.com/Info-Regularization/Information-Regularization
https://github.com/Info-Regularization/Information-Regularization
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specialized for scientific document representation.
Embeddings are derived according to each model’s
specifications, using pooling strategies, and re-
trieval and reranking are based on similarity mea-
sures (L2 distance for SPECTER-v2; cosine simi-
larity for others).

4.3. Baselines
Three baseline types were used. First, the "Pre-
trained" baselines indicate performance of the pre-
trained checkpoints on each dataset. Second, a
"Contrastive Fine-tuning" approach, similar to Sim-
CSE (Gao et al., 2021), applies random dropout
masks to documents, creating self-supervised pairs
for fine-tuning all models. This is used as a domain
adaptation baseline. Third, we compare to Promp-
tagator (Dai et al., 2022), a few-shot synthetic query
generation method. Its synthetic data generation
process was replicated, using GPT-4 (gpt-4-0613)
instead of FLAN 137B (Wei et al., 2021).

To eliminate possible data confounds, all base-
lines use the same data as the regularization meth-
ods. For each benchmark, the regularization meth-
ods use a subset of documents for synthetic query
generation. For the Promptagator baseline, the
same documents are used for synthetic genera-
tion. For the Contrastive Fine-tuning baseline, the
embedding models are directly fine-tuned on the
same documents. Specifically, we train using 4000
documents from DORIS-MAE’s corpus, 5700 argu-
ments from ArguAna, and 4000 book descriptions
from WhatsThatBook. We removed documents
which were unusually short or long, and randomly
sampled from the remaining documents.

4.4. Implementation of Regularization
Input Document Regularization: We use gpt-
3.5-turbo-0301 to extract keywords/phrases from
a target document, subsequently redacting p% of
them. gpt-4-0613 then generates a query from this
redacted document, guided solely by an example
query format, without paired documents. (For Ar-
guAna, we do not provide an example query format,
since the LLM has sufficient prior knowledge of the
argument and counterargument format.)

Prompt Instruction Regularization: Refer to
Figure 3 (b) and Section 3.3.2. We use gpt-4-0613
with a prompt designed to elicit the breakdown and
paraphrasing of query aspects. All prompts are
available in the project GitHub repository.2

Output Query Regularization: gpt-3.5-turbo-
0301 is used to summarize the original query into

2https://github.com/
Info-Regularization/
Information-Regularization/tree/main/
prompt

a simpler query. This method was applied to both
document and instruction regularization outputs in
our tests.

For all prompts used for keyword extraction and
synthetic query generation, see Appendix A.

4.5. Training Methods
We fine-tuned each model on the different regular-
ized datasets for one epoch, utilizing the AdamW
optimizer (Loshchilov and Hutter, 2017) with an
initial learning rate of 1e-5, coupled with a cosine
annealing schedule. While various warm-up ratios
were tested, omitting the warm-up phase yielded
more stable training/validation loss curves and en-
hanced performance. No additional hyperparame-
ter tuning was done; hyperparameters were set to
their default values. To maintain consistent training
memory, texts exceeding 512 tokens were trun-
cated to their initial 512 tokens, a sufficient range
as most texts fell within this limit. We employed
the standard NT-Xent loss with in-batch negatives,
setting the temperature τ = 0.05 and a batch size
of 80, the maximum capacity for four 40G NVIDIA
A100 GPUs. To minimize gradient noise during
minibatch processing, we accumulated gradients
across 20 minibatches.

The synthetically generated query qi, the relevant
document di, and the batch size N are used as
inputs to an embedding function f with range in
Rn. The NT-Xent Loss (Chen et al., 2020) is then
defined as:

L = E
1≤i≤N

− log
e⟨f(qi),f(di)⟩/τ∑

1≤j≤N

e⟨f(qi),f(dj)⟩/τ

 (1)

All experiments were performed using 20 random
seeds, with the averaged results shown in Tables
1, 2 and 3. We use t-tests to compare the effec-
tiveness of our regularization strategies against the
8-shot Promptagator baseline. Because multiple
methods are being compared, we use Bonferroni
correction (Weisstein, 2004) with a correction factor
8 (the number of IR2 methods). Using the adjusted
p-value, colored arrows in the tables indicate statis-
tically significant increases or decreases (adjusted
p < 0.05) relative to the Promptagator baseline.

5. Results

5.1. Results on WhatsThatBook
Table 1 shows comparisons between the IR2 meth-
ods and the Promptagator baseline. Except for
Doc80% reg, RoBERTa and SPECTER-v2 show con-
sistent improvement with all regularization meth-
ods. For E5 and SimCSE, there is no clear signal

https://github.com/Info-Regularization/Information-Regularization/tree/main/prompt
https://github.com/Info-Regularization/Information-Regularization/tree/main/prompt
https://github.com/Info-Regularization/Information-Regularization/tree/main/prompt
https://github.com/Info-Regularization/Information-Regularization/tree/main/prompt
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E5-Large-v2 RoBERTa

Method R@5 R@20 NDCG@10 MRR@10 R@5 R@20 NDCG@10 MRR@10

Pretrained 18.41 27.06 15.25 13.07 2.84 5.33 2.17 1.73
Contrastive Fine-tuning 37.25 49.85 33.16 29.87 23.59 35.27 20.69 18.10

Promptagator 41.53 54.66 37.07 33.56 27.23 39.14 23.69 20.78

Doc40% reg 41.40 53.69 ↓ -0.97 37.01 33.72 28.30 ↑ 1.07 40.89 ↑ 1.75 24.79 ↑ 1.10 21.81 ↑ 1.03
Queryreg ◦ Doc40% reg 45.50 ↑ 3.97 58.08 ↑ 3.42 40.50 ↑ 3.43 37.01 ↑ 3.45 32.83 ↑ 5.60 46.38 ↑ 7.24 29.05 ↑ 5.36 25.82 ↑ 5.04
Doc60% reg 44.15 ↑ 2.62 55.69 ↑ 1.03 39.64 ↑ 2.57 36.16 ↑ 2.60 28.67 ↑ 1.44 41.49 ↑ 2.35 25.14 ↑ 1.45 22.06 ↑ 1.28
Queryreg ◦ Doc60% reg 46.23 ↑ 4.70 59.76 ↑ 5.10 41.58 ↑ 4.51 38.13 ↑ 4.57 34.30 ↑ 7.07 47.52 ↑ 8.38 30.15 ↑ 6.46 26.83 ↑ 6.05
Doc80% reg 28.30 ↓ -13.23 39.85 ↓ -14.81 24.05 ↓ -13.02 21.13 ↓ -12.43 21.74 ↓ -5.49 33.16 ↓ -5.98 18.91 ↓ -4.78 16.35 ↓ -4.43
Queryreg ◦ Doc80% reg 44.80 ↑ 3.27 58.21 ↑ 3.55 40.29 ↑ 3.22 36.94 ↑ 3.38 33.69 ↑ 6.46 46.23 ↑ 7.09 29.41 ↑ 5.72 26.20 ↑ 5.42

Instrreg 42.15 ↑ 0.62 53.02 ↓ -1.64 37.33 33.89 ↑ 0.33 28.12 ↑ 0.89 40.80 ↑ 1.66 24.51 ↑ 0.82 21.46 ↑ 0.68
Queryreg ◦ Instrreg 44.90 ↑ 3.37 56.28 ↑ 1.62 39.29 ↑ 2.22 35.79 ↑ 2.23 33.09 ↑ 5.86 46.09 ↑ 6.95 29.28 ↑ 5.59 26.06 ↑ 5.28

SimCSE SPECTER-v2

Method R@5 R@20 NDCG@10 MRR@10 R@5 R@20 NDCG@10 MRR@10

Pretrained 16.96 24.98 14.58 12.67 2.98 5.26 2.43 1.87
Contrastive Fine-tuning 26.78 37.15 23.11 20.42 7.85 12.56 6.36 5.35

Promptagator 30.97 44.26 27.15 23.99 6.56 11.81 5.72 4.88

Doc40% reg 32.10 ↑ 1.13 43.07 ↓ -1.19 28.30 ↑ 1.15 25.45 ↑ 1.46 9.98 ↑ 3.42 16.12 ↑ 4.31 8.55 ↑ 2.83 7.32 ↑ 2.44
Queryreg ◦ Doc40% reg 34.63 ↑ 3.66 47.44 ↑ 3.18 30.64 ↑ 3.49 27.51 ↑ 3.52 10.84 ↑ 4.28 16.26 ↑ 4.45 8.81 ↑ 3.09 7.57 ↑ 2.69
Doc60% reg 33.03 ↑ 2.06 43.96 28.87 ↑ 1.72 25.97 ↑ 1.98 8.64 ↑ 2.08 14.49 ↑ 2.68 7.46 ↑ 1.74 6.26 ↑ 1.38
Queryreg ◦ Doc60% reg 34.84 ↑ 3.87 47.08 ↑ 2.82 30.77 ↑ 3.62 27.64 ↑ 3.65 7.54 ↑ 0.98 13.29 ↑ 1.48 6.55 ↑ 0.83 5.48 ↑ 0.60
Doc80% reg 19.75 ↓ -11.22 29.89 ↓ -14.37 16.73 ↓ -10.42 14.33 ↓ -9.66 7.39 ↑ 0.83 13.19 ↑ 1.38 6.46 ↑ 0.74 5.31 ↑ 0.43
Queryreg ◦ Doc80% reg 33.76 ↑ 2.79 45.63 ↑ 1.37 29.34 ↑ 2.19 26.26 ↑ 2.27 8.14 ↑ 1.58 14.69 ↑ 2.88 7.33 ↑ 1.61 6.13 ↑ 1.25

Instrreg 33.81 ↑ 2.84 45.79 ↑ 1.53 29.74 ↑ 2.59 26.79 ↑ 2.80 10.49 ↑ 3.93 16.80 ↑ 4.99 9.30 ↑ 3.58 8.07 ↑ 3.19
Queryreg ◦ Instrreg 37.34 ↑ 6.37 50.45 ↑ 6.19 33.18 ↑ 6.03 30.02 ↑ 6.03 11.08 ↑ 4.52 17.36 ↑ 5.55 9.59 ↑ 3.87 8.28 ↑ 3.40

Table 1: Results for WhatsThatBook. The average of 20 random trials is reported for each
model/method/metric. Green arrow indicates a statistically significant (p < 0.05) increase over Promptaga-
tor baseline. Red arrow indicates a significant decrease.

of improvement from document or instruction reg-
ularization alone. However, query regularization,
combined with either document or instruction regu-
larization, improves performance across all models.

Not all models respond to fine-tuning on syn-
thetic datasets in the same way. SPECTER-v2 and
RoBERTa start from similar performance levels,
but RoBERTa reaches considerably higher perfor-
mance after fine-tuning. This suggests that the
effectiveness of synthetic data augmentation is
model-dependent. The SPECTER-v2 checkpoint
had been previously fine-tuned for scientific doc-
ument understanding, possibly interfering with its
performance on the WhatsThatBook dataset.

Document regularization with an 80% masking
ratio leads to synthetic queries that are either too
vague or contain misleading and false information.
Consequently, for E5, RoBERTa, and SimCSE, we
observed that document regularization with an 80%
mask resulted in significantly lower performances
compared to Promptagator. Results are stronger
with a masking level between 40% and 60%.

5.2. Results on DORIS-MAE
Table 2 shows that instruction regularization, alone
or combined with query regularization, consistently
enhances performance across various models and
metrics, surpassing the Promptagator’s synthetic
dataset, with minor exceptions within a 1% margin.
The strongest results across all models and data

synthesis methods are achieved by query regular-
ization combined with instruction regularization.

Document regularization has variable perfor-
mance depending on the mask percentage (p =
40%, 60%, 80%) and model. It has only a small
effect on the performance of E5-Large-v2 com-
pared to the Promptagator baseline, and under-
performs with SimCSE. However, it substantially
improves performance when applied to RoBERTa
and SPECTER-v2.

For E5, SimCSE, and RoBERTa, integrating
query regularization with document or instruction
regularization improves performance across all met-
rics. Query regularization decreases the textual
similarity between queries and their target docu-
ments, suggesting that models are learning deeper
semantic relationships between queries and docu-
ments.

5.3. Results on ArguAna

In Table 3, we observe that the regularized syn-
thetic datasets consistently outperform baseline
approaches. While instruction regularization con-
tinues to outperform baselines, all models achieve
the strongest performance when fine-tuning on doc-
ument regularized dataset. Similar to our observa-
tions in DORIS-MAE and WTB, query regulariza-
tion, when combined with another synthetic query
method, remains consistently strong.
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E5-Large-v2 RoBERTa

Method R@5 R@20 NDCG@10 MRR@10 R@5 R@20 NDCG@10 MRR@10

Pretrained 14.67 42.15 71.98 14.34 11.96 34.77 66.86 8.56
Contrastive Fine-tuning 15.28 39.87 72.51 13.43 14.75 43.32 73.55 20.79

Promptagator 16.18 45.59 73.95 14.83 13.03 42.88 72.23 16.82

Doc40% reg 14.90 ↓ -1.28 46.55 ↑ 0.96 74.28 ↑ 0.33 14.87 12.54 44.89 ↑ 2.01 72.94 ↑ 0.71 18.16 ↑ 1.34
Queryreg ◦ Doc40% reg 15.85 45.67 73.96 16.10 ↑ 1.27 14.66 ↑ 1.63 47.41 ↑ 4.53 74.04 ↑ 1.81 18.81 ↑ 1.99
Doc60% reg 15.23 ↓ -0.95 46.57 ↑ 0.98 74.98 ↑ 1.03 15.14 14.11 ↑ 1.08 43.99 ↑ 1.11 72.94 ↑ 0.71 16.84
Queryreg ◦ Doc60% reg 15.31 ↓ -0.87 48.16 ↑ 2.57 74.90 ↑ 0.95 15.43 ↑ 0.60 14.75 ↑ 1.72 47.25 ↑ 4.37 74.61 ↑ 2.38 20.48 ↑ 3.66
Doc80% reg 14.68 ↓ -1.50 43.89 ↓ -1.70 74.13 ↑ 0.18 13.51 ↓ -1.32 14.47 ↑ 1.44 42.47 72.61 ↑ 0.38 15.10 ↓ -1.72
Queryreg ◦ Doc80% reg 15.63 ↓ -0.55 46.75 ↑ 1.16 75.08 ↑ 1.13 16.62 ↑ 1.79 15.84 ↑ 2.81 46.96 ↑ 4.08 74.71 ↑ 2.48 20.49 ↑ 3.67

Instrreg 16.38 46.73 ↑ 1.14 74.42 ↑ 0.47 17.06 ↑ 2.23 13.80 ↑ 0.77 45.78 ↑ 2.90 73.53 ↑ 1.30 18.24 ↑ 1.42
Queryreg ◦ Instrreg 15.76 ↓ -0.42 48.46 ↑ 2.87 76.02 ↑ 2.07 20.86 ↑ 6.03 15.20 ↑ 2.17 47.44 ↑ 4.56 74.08 ↑ 1.85 19.31 ↑ 2.49

SimCSE SPECTER-v2

Method R@5 R@20 NDCG@10 MRR@10 R@5 R@20 NDCG@10 MRR@10

Pretrained 14.38 41.83 70.81 24.83 13.59 41.92 71.46 21.74
Contrastive Fine-tuning 15.60 44.99 73.18 22.41 14.56 45.64 71.46 20.49

Promptagator 16.35 46.69 73.97 16.54 14.13 39.22 71.55 22.37

Doc40% reg 17.70 ↑ 1.35 45.30 ↓ -1.39 74.49 ↑ 0.52 16.49 15.39 ↑ 1.26 43.39 ↑ 4.17 72.11 ↑ 0.56 21.66 ↓ -0.71
Queryreg ◦ Doc40% reg 16.06 45.46 ↓ -1.23 73.23 ↓ -0.74 16.56 14.19 42.66 ↑ 3.44 71.49 21.40 ↓ -0.97
Doc60% reg 17.08 ↑ 0.73 45.33 ↓ -1.36 74.70 ↑ 0.73 17.75 ↑ 1.21 15.41 ↑ 1.28 44.19 ↑ 4.97 72.81 ↑ 1.26 21.35 ↓ -1.02
Queryreg ◦ Doc60% reg 17.04 ↑ 0.69 46.68 74.65 ↑ 0.68 18.32 ↑ 1.78 14.95 ↑ 0.82 43.30 ↑ 4.08 72.19 ↑ 0.64 21.60 ↓ -0.77
Doc80% reg 15.01 ↓ -1.34 42.53 ↓ -4.16 73.69 ↓ -0.28 18.68 ↑ 2.14 17.02 ↑ 2.89 44.97 ↑ 5.75 73.94 ↑ 2.39 22.78 ↑ 0.41
Queryreg ◦ Doc80% reg 15.92 45.70 ↓ -0.99 73.86 18.54 ↑ 2.00 14.70 ↑ 0.57 44.66 ↑ 5.44 73.07 ↑ 1.52 22.65

Instrreg 16.50 46.68 75.60 ↑ 1.63 19.71 ↑ 3.17 14.73 ↑ 0.60 41.50 ↑ 2.28 73.06 ↑ 1.51 21.05 ↓ -1.32
Queryreg ◦ Instrreg 16.06 47.61 ↑ 0.92 75.43 ↑ 1.46 22.14 ↑ 5.60 14.50 ↑ 0.37 41.44 ↑ 2.22 72.46 ↑ 0.91 22.26

Table 2: Results for DORIS-MAE. See Table 1 caption for reporting conventions.

E5-Large-v2 RoBERTa

Method R@5 R@20 NDCG@10 MRR@10 R@5 R@20 NDCG@10 MRR@10

Pretrained 59.37 88.16 47.75 38.96 30.51 49.68 23.56 18.49
Contrastive Fine-tuning 70.69 94.77 56.15 47.13 59.12 84.67 47.57 39.65

Promptagator 69.41 94.11 55.14 46.67 61.51 88.19 49.80 41.85

Doc40% reg 78.72 ↑ 9.31 96.46 ↑ 2.35 64.24 ↑ 9.10 56.45 ↑ 9.78 67.38 ↑ 5.87 91.03 ↑ 2.84 54.54 ↑ 4.74 46.43 ↑ 4.58
Queryreg ◦ Doc40% reg 77.76 ↑ 8.35 96.21 ↑ 2.10 63.00 ↑ 7.86 55.24 ↑ 8.57 67.29 ↑ 5.78 91.08 ↑ 2.89 54.04 ↑ 4.24 45.85 ↑ 4.00
Doc60% reg 78.16 ↑ 8.75 96.41 ↑ 2.30 64.41 ↑ 9.27 56.57 ↑ 9.90 67.51 ↑ 6.00 90.77 ↑ 2.58 54.85 ↑ 5.05 46.85 ↑ 5.00
Queryreg ◦ Doc60% reg 78.34 ↑ 8.93 96.37 ↑ 2.26 64.10 ↑ 8.96 56.24 ↑ 9.57 67.71 ↑ 6.20 90.99 ↑ 2.80 54.41 ↑ 4.61 46.34 ↑ 4.49
Doc80% reg 77.37 ↑ 7.96 95.57 ↑ 1.46 63.14 ↑ 8.00 55.16 ↑ 8.49 67.82 ↑ 6.31 90.18 ↑ 1.99 54.62 ↑ 4.82 46.79 ↑ 4.94
Queryreg ◦ Doc80% reg 78.44 ↑ 9.03 96.25 ↑ 2.14 64.36 ↑ 9.22 56.49 ↑ 9.82 67.38 ↑ 5.87 90.70 ↑ 2.51 54.53 ↑ 4.73 46.59 ↑ 4.74

Instrreg 72.06 ↑ 2.65 95.70 ↑ 1.59 57.76 ↑ 2.62 49.17 ↑ 2.50 64.47 ↑ 2.96 90.09 ↑ 1.90 51.49 ↑ 1.69 43.20 ↑ 1.35
Queryreg ◦ Instrreg 71.59 ↑ 2.18 95.18 ↑ 1.07 56.89 ↑ 1.75 48.37 ↑ 1.70 65.14 ↑ 3.63 90.26 ↑ 2.07 52.25 ↑ 2.45 43.89 ↑ 2.04

SimCSE SPECTER-v2

Method R@5 R@20 NDCG@10 MRR@10 R@5 R@20 NDCG@10 MRR@10

Pretrained 49.03 81.12 39.23 30.35 38.91 71.79 30.91 23.23
Contrastive Fine-tuning 36.70 64.79 28.85 22.12 41.90 75.70 33.20 25.26

Promptagator 69.49 92.54 56.38 47.97 38.64 75.15 30.24 21.77

Doc40% reg 74.92 ↑ 5.43 93.36 ↑ 0.82 60.24 ↑ 3.86 52.42 ↑ 4.45 56.09 ↑ 17.45 86.32 ↑ 11.17 45.00 ↑ 14.76 36.30 ↑ 14.53
Queryreg ◦ Doc40% reg 76.07 ↑ 6.58 93.97 ↑ 1.43 61.38 ↑ 5.00 53.57 ↑ 5.60 51.28 ↑ 12.64 83.33 ↑ 8.18 40.59 ↑ 10.35 31.81 ↑ 10.04
Doc60% reg 73.20 ↑ 3.71 92.10 58.46 ↑ 2.08 50.58 ↑ 2.61 58.87 ↑ 20.23 86.93 ↑ 11.78 46.55 ↑ 16.31 37.88 ↑ 16.11
Queryreg ◦ Doc60% reg 75.75 ↑ 6.26 93.19 ↑ 0.65 60.94 ↑ 4.56 53.24 ↑ 5.27 54.22 ↑ 15.58 84.97 ↑ 9.82 42.90 ↑ 12.66 34.21 ↑ 12.44
Doc80% reg 70.38 89.67 ↓ -2.87 55.76 47.97 61.02 ↑ 22.38 87.48 ↑ 12.33 48.68 ↑ 18.44 40.24 ↑ 18.47
Queryreg ◦ Doc80% reg 74.10 ↑ 4.61 92.59 59.79 ↑ 3.41 52.18 ↑ 4.21 57.55 ↑ 18.91 86.65 ↑ 11.50 46.01 ↑ 15.77 37.44 ↑ 15.67

Instrreg 70.97 93.91 ↑ 1.37 57.41 48.80 43.26 ↑ 4.62 80.16 ↑ 5.01 34.80 ↑ 4.56 26.07 ↑ 4.30
Queryreg ◦ Instrreg 71.46 ↑ 1.97 93.78 ↑ 1.24 58.16 ↑ 1.78 49.78 ↑ 1.81 38.57 77.12 ↑ 1.97 31.72 ↑ 1.48 23.15 ↑ 1.38

Table 3: Results for ArguAna. See Table 1 caption for reporting conventions.

5.4. Analysis and Discussion

Our experiments demonstrate substantial improve-
ments from regularizing synthetic queries in IR
tasks. Rather than simply altering task difficulty,
these methods refine the model’s ability to discern
and process relevant information, an advancement
over existing strategies. Specifically, integrating

query and instruction regularization emerges as
a robust method, enhancing the model’s perfor-
mance consistently.

Models trained with the proposed regularized
synthetic data generation strategies not only outper-
form pretrained counterparts but also exhibit consid-
erable gains over existing synthetic data methods
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like Promptagator. This is shown across various
metrics and models.

The practical implications of these methods ex-
tend beyond improved model performance. They
point toward a greater adaptability in handling com-
plex information retrieval tasks, a critical compo-
nent given the variability of real-world applications.
Moreover, the insights gained from this research
contribute to the broader discourse on the role of
synthetic data in model training, especially in sce-
narios where data scarcity is a challenge.

Though IR2 improves over prior methods, there
are several caveats. The document regularization
method, which masks part of the input document
and generates a query from this masked docu-
ment, sometimes results in hallucinations in the
queries. We hypothesize that performance differ-
ences across datasets are due to varying task sen-
sitivity to these hallucinations. Performance was
generally weaker with a mask ratio above 60%.

As shown in Table 1, document regularization
had weaker performance on the WhatsThatBook
dataset. This task requires a match between fine-
grained details in the query and document. In con-
trast, for the ArguAna dataset in Table 3, where
the task involves pairing arguments with counter-
arguments, the method had stronger performance.
Thematic similarity is sufficient for this task.

5.5. Cost Analysis
Instruction Regularization, which costs $100-200
per dataset, is the most expensive of the three regu-
larization methods. Due to longer prompts with the
inclusion of 8 example pairs, the baseline method
Promptagator costs $400-$600 per dataset.

We attempted to generate synthetic queries by
hand to estimate human labor costs, and required
at least 5 minutes per query. Assuming a wage
of $15 per hour, human generation costs at least
$5,000 per dataset. This suggests substantial sav-
ings by using GPT-4.

6. Acknowledgement
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7. Limitations

The effectiveness of our regularization strategies
does show variability across different models, sig-
naling that these methods may be more suited to
certain architectures or training setups. Future work
could delve deeper into this aspect, aiming to iden-
tify the underpinning factors that contribute to these
discrepancies.

Expanding on the current research, there is an
opportunity to explore information regularization in
a more granular context, possibly by introducing
more sophisticated measures than the existing p%
parameter. Understanding the synergy between
different regularization strategies could also unveil
new insights into optimal model training practices.

Our experiments relied on models which were
accessed through API. We use stable checkpoints
for these models, gpt-4-0613 and gpt-3.5-turbo-
0301, which will allow for reproducibility as long as
these checkpoints are maintained.
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A. Prompt Design

A.1. DORIS-MAE Prompt
Note, Query Regularization for DORIS-MAE will
generate 4 shorter synthetic queries per document,
we randomly choose one for later training.

• Figure 4 for Instruction Regularization prompt

• Figure 5 for Query Regularization on Instruc-
tion Regularization prompt

• Figure 6 for Document Regularization 40%,
60% prompt

• Figure 7 for Document Regularization 80%
prompt

• Figure 8 for Query Regularization on synthetic
queries from Doc Reg 40%, 60%, and 80%

• Figure 9 for keywords extraction prompt

• Figure 10 for Promptagator prompt example

A.2. ArguAna Prompt
• Figure 11 for Instruction Regularization prompt

• Figure 12 for Query Regularization on Instruc-
tion Regularization prompt

• Figure 13 for Document Regularization 40%,
60%, and 80% prompt

• Figure 14 for Query Regularization on syn-
thetic queries from Doc Reg 40%, 60%, and
80%

• Figure 15 for keywords extraction prompt

• Figure 16 for Promptagator prompt example

A.3. WhatsThatBook Prompt
• Figure 17 for Instruction Regularization prompt

• Figure 18 for Query Regularization on Instruc-
tion Regularization prompt

• Figure 19 for Document Regularization 40%
prompt

• Figure 20 for Document Regularization 60%,
80% prompt

• Figure 21 for Query Regularization on syn-
thetic queries from Doc Reg 40%, 60%, and
80%

• Figure 22 for keywords extraction prompt

• Figure 23 for Promptagator prompt example

B. Experiment Details

We provide the experimental results on the three
datasets in Table 4, 5, 6 with a more complete set
of metrics. The results are consistent with those
reported in Section 5.
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Figure 4: DORIS-MAE Instruction Regularization Prompt

Figure 5: DORIS-MAE Query Regularization on Instruction Regularization Prompt

Figure 6: DORIS-MAE Document Regularization 40%, 60% Prompt
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Figure 7: DORIS-MAE Document Regularization 80% Prompt

Figure 8: DORIS-MAE Query Regularization on synthetic queries from Doc Reg 40%, 60%, and 80%

Figure 9: DORIS-MAE Keywords Extraction Prompt
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Figure 10: DORIS-MAE Promptagator Prompt

Figure 11: ArguAna Instruction Regularization Prompt
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Figure 12: ArguAna Query Regularization on Instruction Regularization Prompt

Figure 13: ArguAna Document Regularization 40%, 60%, and 80% Prompt

Figure 14: ArguAna Query Regularization on synthetic queries from Doc Reg 40%, 60%, and 80%

Figure 15: ArguAna Keywords Extraction Prompt
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Figure 16: ArguAna Promptagator Prompt
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Figure 17: WhatsThatBook Instruction Regularization Prompt

Figure 18: WhatsThatBook Query Regularization on Instruction Regularization Prompt

Figure 19: WhatsThatBook Document Regularization 40% Prompt
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Figure 20: WhatsThatBook Document regularization 60%, 80% Prompt

Figure 21: WhatsThatBook Query Regularization on synthetic queries from Doc Reg 40%, 60%, and 80%

Figure 22: WhatsThatBook Keywords Extraction Prompt
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Figure 23: WhatsThatBook Promptagator Prompt
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Model (Method) R@5 R@10 R@20 RP NDCG@10 MRR@10 MAP

E5-Large-v2

Pretrained 14.67 25.98 42.15 38.18 71.98 14.34 40.52
Contrastive Fine-tuning 15.28 25.97 39.87 34.73 72.51 13.43 38.87

Promptagator 16.18 26.58 45.59 38.99 73.95 14.83 42.69

Document40% reg 14.90 ↓ -1.28 27.65 ↑ 1.07 46.55 ↑ 0.96 39.33 74.28 ↑ 0.33 14.87 43.10 ↑ 0.41
Queryreg ◦ Document40% reg 15.85 27.44 ↑ 0.86 45.67 39.73 ↑ 0.74 73.96 16.10 ↑ 1.27 43.06 ↑ 0.37
Document60% reg 15.23 ↓ -0.95 27.68 ↑ 1.10 46.57 ↑ 0.98 38.86 74.98 ↑ 1.03 15.14 43.26 ↑ 0.57
Queryreg ◦ Document60% reg 15.31 ↓ -0.87 27.74 ↑ 1.16 48.16 ↑ 2.57 39.60 ↑ 0.61 74.90 ↑ 0.95 15.43 ↑ 0.60 44.48 ↑ 1.79
Document80% reg 14.68 ↓ -1.50 25.02 ↓ -1.56 43.89 ↓ -1.70 38.91 74.13 ↑ 0.18 13.51 ↓ -1.32 43.31 ↑ 0.62
Queryreg ◦ Document80% reg 15.63 ↓ -0.55 27.93 ↑ 1.35 46.75 ↑ 1.16 39.37 75.08 ↑ 1.13 16.62 ↑ 1.79 44.24 ↑ 1.55
Instrreg 16.38 26.26 46.73 ↑ 1.14 40.31 ↑ 1.32 74.42 ↑ 0.47 17.06 ↑ 2.23 44.84 ↑ 2.15
Queryreg ◦ Instrreg 15.76 ↓ -0.42 30.56 ↑ 3.98 48.46 ↑ 2.87 42.25 ↑ 3.26 76.02 ↑ 2.07 20.86 ↑ 6.03 46.29 ↑ 3.60

SimCSE

Pretrained 14.38 23.24 41.83 36.27 70.81 24.83 42.02
Contrastive Fine-tuning 15.60 27.70 44.99 39.06 73.18 22.41 42.87

Promptagator 16.35 28.98 46.69 40.64 73.97 16.54 44.12

Document40% reg 17.70 ↑ 1.35 29.85 ↑ 0.87 45.30 ↓ -1.39 40.43 74.49 ↑ 0.52 16.49 44.67 ↑ 0.55
Queryreg ◦ Document40% reg 16.06 28.77 45.46 ↓ -1.23 40.41 73.23 ↓ -0.74 16.56 43.70 ↓ -0.42
Document60% reg 17.08 ↑ 0.73 28.80 45.33 ↓ -1.36 39.91 ↓ -0.73 74.70 ↑ 0.73 17.75 ↑ 1.21 44.50 ↑ 0.38
Queryreg ◦ Document60% reg 17.04 ↑ 0.69 28.63 46.68 40.59 74.65 ↑ 0.68 18.32 ↑ 1.78 45.05 ↑ 0.93
Document80% reg 15.01 ↓ -1.34 26.37 ↓ -2.61 42.53 ↓ -4.16 38.32 ↓ -2.32 73.69 ↓ -0.28 18.68 ↑ 2.14 42.22 ↓ -1.90
Queryreg ◦ Document80% reg 15.92 27.32 ↓ -1.66 45.70 ↓ -0.99 39.59 ↓ -1.05 73.86 18.54 ↑ 2.00 43.96
Instrreg 16.50 27.81 ↓ -1.17 46.68 40.71 75.60 ↑ 1.63 19.71 ↑ 3.17 45.85 ↑ 1.73
Queryreg ◦ Instrreg 16.06 28.25 ↓ -0.73 47.61 ↑ 0.92 39.88 ↓ -0.76 75.43 ↑ 1.46 22.14 ↑ 5.60 45.52 ↑ 1.40

RoBERTa

Pretrained 11.96 21.45 34.77 30.68 66.86 8.56 34.14
Contrastive Fine-tuning 14.75 25.95 43.32 37.68 73.55 20.79 41.67

Promptagator 13.03 24.50 42.88 36.65 72.23 16.82 40.19

Document40% reg 12.54 24.94 44.89 ↑ 2.01 36.86 72.94 ↑ 0.71 18.16 ↑ 1.34 41.65 ↑ 1.46
Queryreg ◦ Document40% reg 14.66 ↑ 1.63 27.58 ↑ 3.08 47.41 ↑ 4.53 38.54 ↑ 1.89 74.04 ↑ 1.81 18.81 ↑ 1.99 42.45 ↑ 2.26
Document60% reg 14.11 ↑ 1.08 25.80 ↑ 1.30 43.99 ↑ 1.11 37.03 72.94 ↑ 0.71 16.84 41.77 ↑ 1.58
Queryreg ◦ Document60% reg 14.75 ↑ 1.72 28.34 ↑ 3.84 47.25 ↑ 4.37 39.43 ↑ 2.78 74.61 ↑ 2.38 20.48 ↑ 3.66 43.33 ↑ 3.14
Document80% reg 14.47 ↑ 1.44 25.53 ↑ 1.03 42.47 37.57 ↑ 0.92 72.61 ↑ 0.38 15.10 ↓ -1.72 41.55 ↑ 1.36
Queryreg ◦ Document80% reg 15.84 ↑ 2.81 27.96 ↑ 3.46 46.96 ↑ 4.08 39.09 ↑ 2.44 74.71 ↑ 2.48 20.49 ↑ 3.67 43.41 ↑ 3.22
Instrreg 13.80 ↑ 0.77 25.00 45.78 ↑ 2.90 36.29 73.53 ↑ 1.30 18.24 ↑ 1.42 41.87 ↑ 1.68
Queryreg ◦ Instrreg 15.20 ↑ 2.17 26.88 ↑ 2.38 47.44 ↑ 4.56 39.38 ↑ 2.73 74.08 ↑ 1.85 19.31 ↑ 2.49 42.52 ↑ 2.33

SPECTER-v2

Pretrained 13.59 25.63 41.92 35.91 71.46 21.74 38.84
Contrastive Fine-tuning 14.56 25.18 45.64 36.76 71.46 20.49 40.45

Promptagator 14.13 23.67 39.22 36.70 71.55 22.37 39.10

Document40% reg 15.39 ↑ 1.26 25.15 ↑ 1.48 43.39 ↑ 4.17 36.89 72.11 ↑ 0.56 21.66 ↓ -0.71 40.48 ↑ 1.38
Queryreg ◦ Document40% reg 14.19 24.99 ↑ 1.32 42.66 ↑ 3.44 36.39 71.49 21.40 ↓ -0.97 39.77 ↑ 0.67
Document60% reg 15.41 ↑ 1.28 26.79 ↑ 3.12 44.19 ↑ 4.97 36.90 72.81 ↑ 1.26 21.35 ↓ -1.02 41.07 ↑ 1.97
Queryreg ◦ Document60% reg 14.95 ↑ 0.82 25.81 ↑ 2.14 43.30 ↑ 4.08 38.38 ↑ 1.68 72.19 ↑ 0.64 21.60 ↓ -0.77 40.55 ↑ 1.45
Document80% reg 17.02 ↑ 2.89 28.63 ↑ 4.96 44.97 ↑ 5.75 38.35 ↑ 1.65 73.94 ↑ 2.39 22.78 ↑ 0.41 42.37 ↑ 3.27
Queryreg ◦ Document80% reg 14.70 ↑ 0.57 26.85 ↑ 3.18 44.66 ↑ 5.44 37.61 ↑ 0.91 73.07 ↑ 1.52 22.65 41.70 ↑ 2.60
Instrreg 14.73 ↑ 0.60 25.82 ↑ 2.15 41.50 ↑ 2.28 35.91 ↓ -0.79 73.06 ↑ 1.51 21.05 ↓ -1.32 39.24 ↑ 0.14
Queryreg ◦ Instrreg 14.50 ↑ 0.37 25.32 ↑ 1.65 41.44 ↑ 2.22 36.01 ↓ -0.69 72.46 ↑ 0.91 22.26 39.19

Table 4: DORIS-MAE Full Experimental Results
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Model (Method) R@5 R@10 R@20 RP NDCG@10 MRR@10 MAP

E5-Large-v2

Pretrained 59.37 76.74 88.16 23.33 47.75 38.96 39.84
Contrastive Fine-tuning 70.69 85.86 94.77 29.34 56.15 47.13 47.57

Promptagator 69.41 83.35 94.11 30.38 55.14 46.67 47.24

Document40% reg 78.72 ↑ 9.31 90.43 ↑ 7.08 96.46 ↑ 2.35 39.40 ↑ 9.02 64.24 ↑ 9.10 56.45 ↑ 9.78 56.46 ↑ 9.22
Queryreg ◦ Document40% reg 77.76 ↑ 8.35 88.89 ↑ 5.54 96.21 ↑ 2.10 38.20 ↑ 7.82 63.00 ↑ 7.86 55.24 ↑ 8.57 55.38 ↑ 8.14
Document60% reg 78.16 ↑ 8.75 90.85 ↑ 7.50 96.41 ↑ 2.30 39.63 ↑ 9.25 64.41 ↑ 9.27 56.57 ↑ 9.90 56.53 ↑ 9.29
Queryreg ◦ Document60% reg 78.34 ↑ 8.93 90.52 ↑ 7.17 96.37 ↑ 2.26 39.06 ↑ 8.68 64.10 ↑ 8.96 56.24 ↑ 9.57 56.24 ↑ 9.00
Document80% reg 77.37 ↑ 7.96 89.81 ↑ 6.46 95.57 ↑ 1.46 38.14 ↑ 7.76 63.14 ↑ 8.00 55.16 ↑ 8.49 55.21 ↑ 7.97
Queryreg ◦ Document80% reg 78.44 ↑ 9.03 90.82 ↑ 7.47 96.25 ↑ 2.14 39.69 ↑ 9.31 64.36 ↑ 9.22 56.49 ↑ 9.82 56.45 ↑ 9.21
Instrreg 72.06 ↑ 2.65 86.23 ↑ 2.88 95.70 ↑ 1.59 32.14 ↑ 1.76 57.76 ↑ 2.62 49.17 ↑ 2.50 49.58 ↑ 2.34
Queryreg ◦ Instrreg 71.59 ↑ 2.18 85.12 ↑ 1.77 95.18 ↑ 1.07 31.65 ↑ 1.27 56.89 ↑ 1.75 48.37 ↑ 1.70 48.86 ↑ 1.62

SimCSE

Pretrained 49.03 68.92 81.12 15.65 39.23 30.35 31.42
Contrastive Fine-tuning 36.70 51.22 64.79 11.18 28.85 22.12 23.57

Promptagator 69.49 84.45 92.54 31.91 56.38 47.97 48.36

Document40% reg 74.92 ↑ 5.43 86.37 ↑ 1.92 93.36 ↑ 0.82 35.54 ↑ 3.63 60.24 ↑ 3.86 52.42 ↑ 4.45 52.60 ↑ 4.24
Queryreg ◦ Document40% reg 76.07 ↑ 6.58 87.46 ↑ 3.01 93.97 ↑ 1.43 36.96 ↑ 5.05 61.38 ↑ 5.00 53.57 ↑ 5.60 53.73 ↑ 5.37
Document60% reg 73.20 ↑ 3.71 84.71 92.10 33.47 ↑ 1.56 58.46 ↑ 2.08 50.58 ↑ 2.61 50.84 ↑ 2.48
Queryreg ◦ Document60% reg 75.75 ↑ 6.26 86.58 ↑ 2.13 93.19 ↑ 0.65 36.68 ↑ 4.77 60.94 ↑ 4.56 53.24 ↑ 5.27 53.44 ↑ 5.08
Document80% reg 70.38 81.60 ↓ -2.85 89.67 ↓ -2.87 31.42 55.76 47.97 48.39
Queryreg ◦ Document80% reg 74.10 ↑ 4.61 85.13 92.59 35.71 ↑ 3.80 59.79 ↑ 3.41 52.18 ↑ 4.21 52.45 ↑ 4.09
Instrreg 70.97 86.14 ↑ 1.69 93.91 ↑ 1.37 32.18 57.41 48.80 49.14
Queryreg ◦ Instrreg 71.46 ↑ 1.97 86.34 ↑ 1.89 93.78 ↑ 1.24 33.18 ↑ 1.27 58.16 ↑ 1.78 49.78 ↑ 1.81 50.04 ↑ 1.68

RoBERTa

Pretrained 30.51 40.56 49.68 9.84 23.56 18.49 19.54
Contrastive Fine-tuning 59.12 74.36 84.67 24.33 47.57 39.65 40.29

Promptagator 61.51 76.67 88.19 26.16 49.80 41.85 42.51

Document40% reg 67.38 ↑ 5.87 81.87 ↑ 5.20 91.03 ↑ 2.84 30.26 ↑ 4.10 54.54 ↑ 4.74 46.43 ↑ 4.58 46.85 ↑ 4.34
Queryreg ◦ Document40% reg 67.29 ↑ 5.78 81.64 ↑ 4.97 91.08 ↑ 2.89 29.21 ↑ 3.05 54.04 ↑ 4.24 45.85 ↑ 4.00 46.27 ↑ 3.76
Document60% reg 67.51 ↑ 6.00 81.78 ↑ 5.11 90.77 ↑ 2.58 30.50 ↑ 4.34 54.85 ↑ 5.05 46.85 ↑ 5.00 47.26 ↑ 4.75
Queryreg ◦ Document60% reg 67.71 ↑ 6.20 81.71 ↑ 5.04 90.99 ↑ 2.80 29.74 ↑ 3.58 54.41 ↑ 4.61 46.34 ↑ 4.49 46.73 ↑ 4.22
Document80% reg 67.82 ↑ 6.31 80.97 ↑ 4.30 90.18 ↑ 1.99 30.47 ↑ 4.31 54.62 ↑ 4.82 46.79 ↑ 4.94 47.20 ↑ 4.69
Queryreg ◦ Document80% reg 67.38 ↑ 5.87 81.42 ↑ 4.75 90.70 ↑ 2.51 30.09 ↑ 3.93 54.53 ↑ 4.73 46.59 ↑ 4.74 46.97 ↑ 4.46
Instrreg 64.47 ↑ 2.96 79.29 ↑ 2.62 90.09 ↑ 1.90 26.77 ↑ 0.61 51.49 ↑ 1.69 43.20 ↑ 1.35 43.78 ↑ 1.27
Queryreg ◦ Instrreg 65.14 ↑ 3.63 80.38 ↑ 3.71 90.26 ↑ 2.07 27.59 ↑ 1.43 52.25 ↑ 2.45 43.89 ↑ 2.04 44.39 ↑ 1.88

SPECTER-v2

Pretrained 38.91 56.57 71.79 11.06 30.91 23.23 24.65
Contrastive Fine-tuning 41.90 59.65 75.70 12.25 33.20 25.26 26.75

Promptagator 38.64 58.34 75.15 9.59 30.24 21.77 23.40

Document40% reg 56.09 ↑ 17.45 74.12 ↑ 15.78 86.32 ↑ 11.17 21.02 ↑ 11.43 45.00 ↑ 14.76 36.30 ↑ 14.53 37.18 ↑ 13.78
Queryreg ◦ Document40% reg 51.28 ↑ 12.64 69.75 ↑ 11.41 83.33 ↑ 8.18 17.57 ↑ 7.98 40.59 ↑ 10.35 31.81 ↑ 10.04 32.96 ↑ 9.56
Document60% reg 58.87 ↑ 20.23 75.45 ↑ 17.11 86.93 ↑ 11.78 22.11 ↑ 12.52 46.55 ↑ 16.31 37.88 ↑ 16.11 38.69 ↑ 15.29
Queryreg ◦ Document60% reg 54.22 ↑ 15.58 71.81 ↑ 13.47 84.97 ↑ 9.82 19.35 ↑ 9.76 42.90 ↑ 12.66 34.21 ↑ 12.44 35.26 ↑ 11.86
Document80% reg 61.02 ↑ 22.38 76.84 ↑ 18.50 87.48 ↑ 12.33 24.39 ↑ 14.80 48.68 ↑ 18.44 40.24 ↑ 18.47 40.94 ↑ 17.54
Queryreg ◦ Document80% reg 57.55 ↑ 18.91 74.67 ↑ 16.33 86.65 ↑ 11.50 22.00 ↑ 12.41 46.01 ↑ 15.77 37.44 ↑ 15.67 38.27 ↑ 14.87
Instrreg 43.26 ↑ 4.62 63.89 ↑ 5.55 80.16 ↑ 5.01 12.95 ↑ 3.36 34.80 ↑ 4.56 26.07 ↑ 4.30 27.50 ↑ 4.10
Queryreg ◦ Instrreg 38.57 60.47 ↑ 2.13 77.12 ↑ 1.97 10.72 ↑ 1.13 31.72 ↑ 1.48 23.15 ↑ 1.38 24.69 ↑ 1.29

Table 5: ArguAna Full Experimental Results
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Model (Method) R@5 R@10 R@20 RP NDCG@10 MRR@10 MAP

E5-Large-v2

Pretrained 18.41 22.21 27.06 9.34 15.25 13.07 13.84
Contrastive Fine-tuning 37.25 43.79 49.85 24.29 33.16 29.87 30.74

Promptagator 41.53 48.34 54.66 27.23 37.07 33.56 34.43

Document40% reg 41.40 47.56 ↓ -0.78 53.69 ↓ -0.97 27.83 ↑ 0.60 37.01 33.72 34.56
Queryreg ◦ Document40% reg 45.50 ↑ 3.97 51.65 ↑ 3.31 58.08 ↑ 3.42 30.58 ↑ 3.35 40.50 ↑ 3.43 37.01 ↑ 3.45 37.86 ↑ 3.43
Document60% reg 44.15 ↑ 2.62 50.84 ↑ 2.50 55.69 ↑ 1.03 30.07 ↑ 2.84 39.64 ↑ 2.57 36.16 ↑ 2.60 36.93 ↑ 2.50
Queryreg ◦ Document60% reg 46.23 ↑ 4.70 52.61 ↑ 4.27 59.76 ↑ 5.10 31.75 ↑ 4.52 41.58 ↑ 4.51 38.13 ↑ 4.57 39.02 ↑ 4.59
Document80% reg 28.30 ↓ -13.23 33.42 ↓ -14.92 39.85 ↓ -14.81 16.04 ↓ -11.19 24.05 ↓ -13.02 21.13 ↓ -12.43 22.07 ↓ -12.36
Queryreg ◦ Document80% reg 44.80 ↑ 3.27 51.04 ↑ 2.70 58.21 ↑ 3.55 30.87 ↑ 3.64 40.29 ↑ 3.22 36.94 ↑ 3.38 37.85 ↑ 3.42
Instrreg 42.15 ↑ 0.62 48.33 53.02 ↓ -1.64 27.57 37.33 33.89 ↑ 0.33 34.67
Queryreg ◦ Instrreg 44.90 ↑ 3.37 50.38 ↑ 2.04 56.28 ↑ 1.62 29.07 ↑ 1.84 39.29 ↑ 2.22 35.79 ↑ 2.23 36.66 ↑ 2.23

SimCSE

Pretrained 16.96 20.76 24.98 9.62 14.58 12.67 13.44
Contrastive Fine-tuning 26.78 31.74 37.15 15.73 23.11 20.42 21.28

Promptagator 30.97 37.35 44.26 18.57 27.15 23.99 24.95

Document40% reg 32.10 ↑ 1.13 37.43 43.07 ↓ -1.19 20.29 ↑ 1.72 28.30 ↑ 1.15 25.45 ↑ 1.46 26.34 ↑ 1.39
Queryreg ◦ Document40% reg 34.63 ↑ 3.66 40.71 ↑ 3.36 47.44 ↑ 3.18 22.03 ↑ 3.46 30.64 ↑ 3.49 27.51 ↑ 3.52 28.46 ↑ 3.51
Document60% reg 33.03 ↑ 2.06 38.09 43.96 20.47 ↑ 1.90 28.87 ↑ 1.72 25.97 ↑ 1.98 26.89 ↑ 1.94
Queryreg ◦ Document60% reg 34.84 ↑ 3.87 40.84 ↑ 3.49 47.08 ↑ 2.82 22.16 ↑ 3.59 30.77 ↑ 3.62 27.64 ↑ 3.65 28.58 ↑ 3.63
Document80% reg 19.75 ↓ -11.22 24.46 ↓ -12.89 29.89 ↓ -14.37 10.20 ↓ -8.37 16.73 ↓ -10.42 14.33 ↓ -9.66 15.20 ↓ -9.75
Queryreg ◦ Document80% reg 33.76 ↑ 2.79 39.17 ↑ 1.82 45.63 ↑ 1.37 20.71 ↑ 2.14 29.34 ↑ 2.19 26.26 ↑ 2.27 27.21 ↑ 2.26
Instrreg 33.81 ↑ 2.84 39.23 ↑ 1.88 45.79 ↑ 1.53 21.61 ↑ 3.04 29.74 ↑ 2.59 26.79 ↑ 2.80 27.72 ↑ 2.77
Queryreg ◦ Instrreg 37.34 ↑ 6.37 43.37 ↑ 6.02 50.45 ↑ 6.19 24.57 ↑ 6.00 33.18 ↑ 6.03 30.02 ↑ 6.03 30.99 ↑ 6.04

RoBERTa

Pretrained 2.84 3.60 5.33 1.11 2.17 1.73 2.10
Contrastive Fine-tuning 23.59 29.09 35.27 13.80 20.69 18.10 19.05

Promptagator 27.23 33.07 39.14 15.83 23.69 20.78 21.74

Document40% reg 28.30 ↑ 1.07 34.47 ↑ 1.40 40.89 ↑ 1.75 16.94 ↑ 1.11 24.79 ↑ 1.10 21.81 ↑ 1.03 22.77 ↑ 1.03
Queryreg ◦ Document40% reg 32.83 ↑ 5.60 39.55 ↑ 6.48 46.38 ↑ 7.24 20.55 ↑ 4.72 29.05 ↑ 5.36 25.82 ↑ 5.04 26.79 ↑ 5.05
Document60% reg 28.67 ↑ 1.44 35.14 ↑ 2.07 41.49 ↑ 2.35 17.00 ↑ 1.17 25.14 ↑ 1.45 22.06 ↑ 1.28 23.03 ↑ 1.29
Queryreg ◦ Document60% reg 34.30 ↑ 7.07 40.86 ↑ 7.79 47.52 ↑ 8.38 21.29 ↑ 5.46 30.15 ↑ 6.46 26.83 ↑ 6.05 27.82 ↑ 6.08
Document80% reg 21.74 ↓ -5.49 27.23 ↓ -5.84 33.16 ↓ -5.98 12.11 ↓ -3.72 18.91 ↓ -4.78 16.35 ↓ -4.43 17.23 ↓ -4.51
Queryreg ◦ Document80% reg 33.69 ↑ 6.46 39.74 ↑ 6.67 46.23 ↑ 7.09 20.69 ↑ 4.86 29.41 ↑ 5.72 26.20 ↑ 5.42 27.18 ↑ 5.44
Instrreg 28.12 ↑ 0.89 34.36 ↑ 1.29 40.80 ↑ 1.66 16.28 ↑ 0.45 24.51 ↑ 0.82 21.46 ↑ 0.68 22.43 ↑ 0.69
Queryreg ◦ Instrreg 33.09 ↑ 5.86 39.65 ↑ 6.58 46.09 ↑ 6.95 20.57 ↑ 4.74 29.28 ↑ 5.59 26.06 ↑ 5.28 27.03 ↑ 5.29

SPECTER-v2

Pretrained 2.98 4.22 5.26 0.97 2.43 1.87 2.18
Contrastive Fine-tuning 7.85 9.60 12.56 3.72 6.36 5.35 5.89

Promptagator 6.56 8.46 11.81 3.60 5.72 4.88 5.40

Document40% reg 9.98 ↑ 3.42 12.52 ↑ 4.06 16.12 ↑ 4.31 4.99 ↑ 1.39 8.55 ↑ 2.83 7.32 ↑ 2.44 7.92 ↑ 2.52
Queryreg ◦ Document40% reg 10.84 ↑ 4.28 12.76 ↑ 4.30 16.26 ↑ 4.45 5.30 ↑ 1.70 8.81 ↑ 3.09 7.57 ↑ 2.69 8.18 ↑ 2.78
Document60% reg 8.64 ↑ 2.08 11.42 ↑ 2.96 14.49 ↑ 2.68 4.51 ↑ 0.91 7.46 ↑ 1.74 6.26 ↑ 1.38 6.80 ↑ 1.40
Queryreg ◦ Document60% reg 7.54 ↑ 0.98 10.09 ↑ 1.63 13.29 ↑ 1.48 4.03 ↑ 0.43 6.55 ↑ 0.83 5.48 ↑ 0.60 6.01 ↑ 0.61
Document80% reg 7.39 ↑ 0.83 10.27 ↑ 1.81 13.19 ↑ 1.38 3.62 6.46 ↑ 0.74 5.31 ↑ 0.43 5.87 ↑ 0.47
Queryreg ◦ Document80% reg 8.14 ↑ 1.58 11.28 ↑ 2.82 14.69 ↑ 2.88 4.43 ↑ 0.83 7.33 ↑ 1.61 6.13 ↑ 1.25 6.69 ↑ 1.29
Instrreg 10.49 ↑ 3.93 13.30 ↑ 4.84 16.80 ↑ 4.99 6.05 ↑ 2.45 9.30 ↑ 3.58 8.07 ↑ 3.19 8.67 ↑ 3.27
Queryreg ◦ Instrreg 11.08 ↑ 4.52 13.83 ↑ 5.37 17.36 ↑ 5.55 6.09 ↑ 2.49 9.59 ↑ 3.87 8.28 ↑ 3.40 8.91 ↑ 3.51

Table 6: WhatsThatBook Full Experimental Results
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