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Abstract
Chain-of-Thought (CoT) prompting combined with large language models (LLM) has shown great potential in
improving performance on challenging reasoning tasks. While understanding why CoT prompting is effective is
crucial for the application and improvement of CoT prompting, few studies have addressed this issue. Besides,
almost no prior work has conducted theoretical analysis on CoT prompting in the context of black-box models. In this
paper, we approach the analysis of CoT prompting in black-box LLMs from an information-theoretic perspective.
Specifically, we propose a new metric, EPVI (Estimated Pointwise V-Information), which extends the concept
of pointwise V-information (Ethayarajh et al., 2022) to black-box models, quantifying the label-relevant new
information introduced by CoT prompting beyond the pre-existing information in the input. Based on this, we
conduct a series of experiments at both the task and instance levels to analyze CoT prompting, demonstrating
that the effectiveness of CoT prompting can be attributed to its capacity to influence the difficulty of model
inference by augmenting or reducing the model-usable information. Furthermore, we show that selecting high-
quality demonstrations of CoT reasoning based on EPVI can improve the downstream performance of reasoning tasks.

Keywords: Chain-of-Thought, V-information, Black-box Models

1. Introduction

The landscape of NLP has recently undergone a
revolution due to large language models (short
for “LLM”, Brown et al. (2020); Chowdhery et al.
(2022); Touvron et al. (2023); OpenAI (2023), in-
ter alia). These models have exhibited impressive
achievements across diverse NLP tasks, and the
increase in model size has further unveiled its ben-
efits. However, for specific challenging tasks like
arithmetic, commonsense reasoning and symbolic
reasoning, increasing the scale of models alone
has not shown adequate effectiveness in achiev-
ing superior performance (Rae et al., 2021). To
break this bottleneck, Wei et al. (2022) propose the
“Chain-of-Thought” (CoT) prompting, where LLMs
are prompted to generate step-by-step reasoning
chains before giving an answer. Various empiri-
cal findings have convincingly shown that utilizing
chain-of-thought prompting can lead to a signifi-
cant enhancement in model performance across a
range of multi-step reasoning tasks.

Continuing along the path of CoT, numerous stud-
ies have been dedicated to enhancing the vanilla
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CoT prompting (Wei et al., 2022). For example,
Kojima et al. (2022) propose a versatile and task-
agnostic method called Zero-shot-CoT, which ap-
pends a prompt at the end of the question to assist
the LLM in explicitly generating its reasoning chain.
Zhang et al. (2022) propose Auto-CoT, which sam-
ples questions with diversity and subsequently em-
ploys Zero-shot-CoT to generate reasoning chains
for constructing demonstrations.

Although there are many variants, the underlying
mechanism behind CoT largely remains enigmatic
and veiled in mystery. To unveil the mysterious
veil of CoT, several studies have been introduced
recently Wang et al. (2022a); Wu et al. (2023);
Lanham et al. (2023); Feng et al. (2023); Madaan
and Yazdanbakhsh (2022). Although these works
offer valuable perspectives on explaining how and
why CoT prompting is effective, they largely remain
heuristic and surface-related. Besides, while black-
box models like OpenAI’s GPT-4 (OpenAI, 2023)
have been of significant importance for enhancing
user efficiency, expanding deployment diversity,
and promoting usability, there has been a notable
scarcity of theoretical analysis in the context of CoT
prompting based on black-box models.

In this work, we overcome these shortcomings
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by introducing a more foundational approach to
assess CoT prompts and conducting a theoreti-
cal analysis of CoT prompting in black-box models
using this approach.

To achieve a more fundamental comprehension
of the effectiveness of CoT, we contemplate in-
troducing V-information for its assessment. The
V-information is widely employed to quantify the
amount of accessible information within input X re-
lated to label Y that is extracted through the utiliza-
tion of a model family V (Xu et al., 2020). Pointwise
V-information (PVI) further extends the concept of
V-information from dataset level to instance level
(Ethayarajh et al., 2022). Note that, the calcula-
tion of V-information requires information about all
tokens in the vocabulary, thus all prior research
on V-information has been conducted in the con-
text of a white-box model. In this work, we intro-
duce a metric called EPVI (Estimated Pointwise V-
Information), for quantifying the new label-relevant
information introduced by CoT prompting beyond
the pre-existing information in the input on black-
box models, like OpenAI API LLMs. Specifically,
in cases where the information of the desired to-
ken is missing from the black-box model’s output,
EPVI employs the Zipf-Mandelbrot distribution to
estimate the information associated with that token.

Based on the proposed EPVI, we conduct a the-
oretical analysis of black-box models at both task-
level and instance-level. The task-level analysis
assesses the CoT prompts across diverse test sam-
ples in the entire dataset, whereas the instance-
level analysis explores various CoT prompts on the
individual samples. At the task level, we analyze
the impact of CoT prompting on the difficulty of var-
ious samples and the variation in difficulty across
different datasets for the same model V during CoT
prompting. Moreover, we also investigate what cer-
tain types of errors in CoT significantly increase the
difficulty of sample inference. At the instance level,
we analyze the impact of CoTs of varying quality
on the inference difficulty of the same sample.

Various experiments have been conducted on
the tasks of commonsense question-answering
(CQA) and arithmetic reasoning (AR). The results
demonstrate the effectiveness of CoT prompting
stems from its ability to influence the model’s rea-
soning difficulty by increasing or decreasing the
amount of label-relevant information that can be
extracted by the model. Furthermore, we also
demonstrate that selecting high-scoring CoT based
on EPVI for composing demonstrations leads to
improved performance on downstream tasks.

The primary contributions of this work are:

1. We propose EPVI, a metric for evaluating the

chain of thought on black-box LLMs. To our
best knowledge, this is the first metric for eval-
uating CoT prompting on black-box models.

2. We conducted a comprehensive analysis of
CoT prompting at both the task level and the in-
stance level, and unveiled the effectiveness of
CoT from an information-theoretic perspective.

3. We further investigate the application of EPVI
on CoT prompting and show that EPVI can
be utilized to enhance the downstream perfor-
mance of reasoning tasks.

2. Related Work

2.1. Large Language Models
LLMs have emerged as a pivotal and versatile com-
ponent in a range of user-facing language technolo-
gies due to their outstanding performance. These
models, typically adopt the Transformer (Vaswani
et al., 2017) architecture, are trained on extensive
corpora and encompass hundreds of billions of pa-
rameters. Numerous studies have investigated the
performance limits by training increasingly larger
language models, such as GPT-3 (175B) (Brown
et al., 2020) and PaLM (540B) (Chowdhery et al.,
2022). Although scaling primarily involves enlarg-
ing the model size while maintaining similar archi-
tectures and pre-training tasks, these LLMs exhibit
distinct behaviors compared to smaller language
models (e.g., 330M BERT and 1.5B GPT-2) (Rad-
ford et al., 2019; Devlin et al., 2019) and demon-
strate remarkable capabilities often referred to as
"emergent capabilities" (Zoph et al., 2022).

2.2. Understanding Chain-of-Thought
Prompting

With the expansion in the scale of LLMs, standard
input-output prompting approaches have failed to
yield satisfactory improvements in addressing chal-
lenging tasks such as arithmetic, commonsense
reasoning, and symbolic reasoning (Rae et al.,
2021). To address this drawback, Wei et al. (2022)
introduces the Chain-of-Thought prompting, where
LLMs are elicited to generate step-by-step interme-
diate reasoning steps that lead to the final answer
to a question. CoT prompting has been demon-
strated to dramatically improve the performance of
LLMs in various challenging tasks.

Despite significant empirical success, the un-
derlying mechanisms and how CoT unleashes the
potential of LLM remain elusive. Several studies
have been proposed to examine how and why
CoT prompting works in recently. Wang et al.
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We can find the reduction by subtracting 96 from 120:
120-96=24 Now we need to find what percent 24 is of
120. We can do this by dividing 24 by 120: 24/120=0.2
We can turn 0.2 into a percent by moving the decimal
point two places to the right: 0.2*100=20%. Therefore,
the reduction percent is 20%.

120 is what percent of 96? To solve this, we can set up a
proportion: 120/96 = x/100. We can cross multiply to
solve for x: 120*100 = 96*x. 12000 = 96x125 = x.
Therefore, the answer is 125%

The difference between 120 and 96 is 24. To find the
percent reduction, we take 24 and divide it by 120. We
get 0.2, and when we move the decimal over two places
to the right, we get 20%.

If 120 is reduced to 96, what is the reduction percent?
options: (A) 30% (B) 40% (C) 20% (D) 10% (E) 5%

The answer is E

Zero-shot

ˆ ˆ ˆEPVI(z y|x) = -log g[x](y) + log g'[z,x](y)®

where  z ~ ( | )p z xq

EPVI
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Figure 1: Evaluation framework for different CoTs. z1, z2, z3 represent three CoTs generated by black-box
model using the Zero-shot-CoT paradigm and y1, y2, y3 are subsequently generated based on them.
Zero-shot paradigm directly produces y based on x. Our metric, EPVI, is able to quantify the new
information the CoT contains to support the label beyond the input x.

(2022a); Madaan and Yazdanbakhsh (2022) con-
centrated on perturbing CoT demonstrations in
few-shot prompting, to identify the key factors
contributing to the creation of high-quality CoT.
Lanham et al. (2023) investigate hypotheses for
how CoT reasoning may be unfaithful, by per-
turbing the model’s stated reasoning in different
ways. Wu et al. (2023) examine the impact of CoT
prompting on LLMs behavior through an analysis
of the salience scores associated with input to-
kens, where saliency scores computed by employ-
ing gradient-based feature attribution methods on
white-box LLMs. Feng et al. (2023) theoretically
analyze why CoT prompting is essential in solving
mathematical and decision-making problems from
a model-capacity perspective.

In addition to these studies, there have been ef-
forts to assess the properties of reasoning chains.
Prasad et al. (2023) introduce the RECEVAL frame-
work to evaluate the correctness and informative-
ness of reasoning chains from both inter and intra
perspectives. Chen et al. (2023) propose REV,
which measures the new information within the ra-
tionale that extends beyond what is available in the
input. Both of these studies conduct experiments
on white-box models. In this work, we focus on ana-
lyzing CoT prompting from an information-theoretic
perspective on black-box models. We first propose
a new metric for assessing CoT on black-box mod-
els and then analyze CoT prompting on black-box
models at both task and instance levels based on
this approach. Unlike Prasad et al. (2023); Chen
et al. (2023), which requires specifying input and
output on the white-box model, we directly employ

the model to generate CoT and subsequently ana-
lyze CoT prompting based on this.

3. EPVI: Information-Theoretic
Estimated of CoT Evaluation

We introduce a new metric, EPVI, Estimated
Pointwise V-Information. Based on the informa-
tion theoretic framework of pointwise V-information,
EPVI evaluates the CoT on black-box LLMs using
an estimation method. We first provide a brief intro-
duction of the pointwise V-information in the sec-
tion § 3.1. Next, in the section § 3.2, we employ the
Zipf-Mandelbrot distribution to estimate the prob-
abilities of unobserved tokens and introduce how
EPVI evaluates the CoT on black-box LLMs using
this approach.

3.1. Preliminary
Let X and Y denote two random variables with
sample spaces X , Y respectively. The conditional
entropy between X and Y is defined as H(Y |X) =
E [− logP (Y |X)] (Shannon, 1948). However, this
computation necessitates knowledge of the actual
joint distribution of X and Y , which can be unfea-
sible in real-world scenarios. As an alternative, Xu
et al. (2020) propose conditional V-entropy using
a model family V that learns the mapping from X
to Y , which is defined as:

HV(Y |X) = inf
f∈V

E [− log f [X](Y )] (1)

where f [X] yield a probability distribution across

3
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Algorithm 1 Evaluating CoT on Black-Box Models
Using EPVI.
Input: held-out data Dtest = (input xi, label yi)

n
i=1,

Model V
do
g and g′ ← auto-regressive black-box PLMs
z ← chain-of-thought
HV(Y |X,Z),HV(Y |X)← 0, 0
for (xi, yi) ∈ Dtest do

zi ← zi ∼ pθ(zi | x, z1···i−1)
yi ∼ pCoT

θ (yi|xi, zi)
ŷi ← estimate based on Eq.5 if it cannot obtain
HV(Y |X,Z)←HV(Y |X,Z)− 1

n
log g′[zi, xi](ŷi)

HV(Y |X)← HV(Y |X)− 1
n
log g[xi](ŷi)

EPVI(zi→ŷi|xi)←− log g[xi](ŷi)+log g′[zi, xi](ŷi)
end for
IV(X → Ŷ |Z)← 1

|n|
∑

i EPVI(xi, yi, zi)

the labels. Let ∅ denote an empty input that im-
parts no information regarding Y . In a unique
circumstance, when X = ∅, the conditional V-
information is defined as:

HV(Y |∅) = inf
f∈V

E [− log f [∅](Y )] (2)

The goal of the models for f ∈ V is to maximize
the log-likelihood of the label data with and without
the input. Based on the content mentioned above,
Xu et al. (2020) propose a framework called V-
information. It generalizes Shannon information to
quantify the extractable information from X about
Y under the model family V , written as IV(X → Y ).
It is defined as:

IV(X → Y ) = HV(Y |∅)−HV(Y |X) (3)

In order to extend V-information framework from
dataset level to instance level, Ethayarajh et al.
(2022) propose pointwise V-information (PVI) to
quantify the extent of the information contained
within individual data points (x, y) as:

PVI(x → y) = − log g[∅](y) + log g′[x](y) (4)

where g and g′ are the models fine-tuned on the
same dataset with null-target pairs (∅, yi) and
input-target pairs (xi, yi), respectively.

3.2. Methodology: Informational
Evaluation of CoT using EPVI

Our aim is to employ the PVI on black-box models
for evaluating CoT from an information-theoretic
perspective. However, for black-box models, cal-
culating PVI becomes impossible when missing
the probabilities for the tokens corresponding to

label y. To address this issue, we utilize the Zipf-
Mandelbrot distribution to estimate the probabilities
of the desired tokens. Building upon this method,
we propose a new metric, EPVI, enabling informa-
tion assessment of CoT on black-box models.
Estimation of Token Probabilities with the Zipf-
Mandelbrot Distribution in Black-Box Models.
For each position in the black-box model’s output,
we typically have access to probabilities for only
a limited set of alternative tokens (i.e., an array of
probability objects, representing tokens most likely
to be used for the completion), rather than the prob-
abilities for all tokens in the entire vocabulary. Sim-
ilar to natural language text or corpora, where the
frequency of the most common words significantly
outweighs that of other words, the probability of
top-k alternative tokens returned by a black-box
model at each position is much higher than the
probability of the remaining tokens. Therefore, if
the probability of the desired token is not among
the top-k tokens returned by the black box model,
we can assume that its probability can be approxi-
mated by estimating the probability of the (k+ 1)th
token. Inspired by the applicability of Zipf’s law to
word frequency tables in natural language text or
corpora, we introduce the Zipf-Mandelbrot distri-
bution1 to estimate the probability of the desired
token. Zipf-Mandelbrot distribution is a discrete
probability distribution that represents a power-law
distribution of ranked data. Its probability mass
function is defined as:

f(k;N, q, s) =
1/(k + q)s

HN,q,s
(5)

where k is the rank of the element, N is the num-
ber of elements, and q, s are parameters of the
distribution. The HN,q,s can be considered as an
extension of the concept of a harmonic number,
which is defined as:

HN,q,s =

N∑
i

1

(i+ q)s
(6)

We approximate the probability of missing the de-
sired token by employing the Zipf-Mandelbrot dis-
tribution to predict the probabilities of the (k + 1)th
token at its position. Specifically, we estimate the
values of q and s in Eq.5 using the maximum likeli-
hood estimation method based on the probabilities
of the top-k tokens. Here, N represents the size of
the model’s vocabulary. Building upon the above,
we employ Eq.5 to calculate the probability of the
(k + 1)th token.

1https://en.wikipedia.org/wiki/Zipf–Mandelbrot_law

4
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Computing EPVI for CoT Evaluation on Black-
Box Models. In order to evaluate the effect of
chain-of-thought from an information-theoretic per-
spective, we employ the pointwise V-information
for evaluating CoT within individual samples, de-
noted as:

PVI(z → y|x) = − log g[x](y) + log g′[z, x](y) (7)
The models g and g′ we used are the same auto-
regressive pre-trained language models, employed
to compute HV(Y |X,Z) and HV(Y |X), respec-
tively. Specifically, the model g and g′ gener-
ate label y under different scenarios where the
input either contains or does not contain CoT z.
Building upon the aforementioned content, we pro-
pose a new metric EPVI, Estimated Pointwise
V-Information, to evaluate the CoT on black-box
LLMs, which is defined as:
EPVI(z → ŷ|x) = − log g[x](ŷ)+log g′[z, x](ŷ) (8)

The V-information of the test data Dtest on black-
box models can be computed using the average
EPVI:

IV(X → Ŷ |Z) =
1

|Dtest|
∑
i

EPVI(xi, yi, zi) (9)

where ŷ and Ŷ represent the estimated probabili-
ties of the label at the instance and dataset levels,
respectively. We compute EPVI on an individual
sample (x, z, y). As illustrated in Figure 1, z is gen-
erated based on x, while y is generated with or with-
out z in the input. When the probability of tokens
related to label y can be obtained from the output,
our calculation of EPVI is similar to the calculation
of PVI. In instances where such probabilities are
unavailable, we calculate EPVI by estimating the
probability of ŷ with the Zipf-Mandelbrot distribu-
tion. Algorithm 1 shows our computation of EPVI
and V-information on black-box models.

For any f ∈ V, a positive EPVI signifies that
CoT provides more information to support the label.
The larger the EPVI, the easier the sample is for
V. A negative EPVI indicates that CoT contains
additional information that does not support the
label. Figure 1 illustrates this phenomenon via an
example. EPVI can assign a positive score for
an incorrect prediction if the CoT can supply more
useful information to support the label y beyond
the input. Therefore, unlike accuracy, EPVI can
provide a better explanation of the effectiveness of
CoT.

4. Is EPVI a good estimator for PVI?

Our goal is to validate whether EPVI is a good esti-
mator for PVI. To this end, we calculate EPVI and

PVI for various datasets on a series of white-box
LLMs and employ a null-hypothesis significance
test to determine if there is a statistically significant
difference between EPVI and PVI. It is worth noting
that we simulate the black-box environment and
calculate EPVI under such circumstances.

4.1. Experimental Setup

Datasets. We consider the following two math
word problem benchmarks: (1) the GSM8k bench-
mark of math word problems (Cobbe et al., 2021),
(2) the AQuA(Ling et al., 2017) dataset of alge-
braic word problems. Besides, we explore a mul-
timodal commonsense reasoning dataset: SCI-
ENCEQA(Lu et al., 2022). For SCIENCEQA, in ac-
cordance with the configuration of Lu et al. (2022),
we use the question, options, and context text as
the input, with the context also encompassing the
caption extracted from the image.
Metrics. We employed the Paired Samples T-Test
to assess the consistency of the distribution of EPVI
and PVI. The Paired Samples T-Test is employed
to assess the statistical difference in means be-
tween two sample groups under the null hypothe-
sis, where each individual observation in one sam-
ple can be paired with an observation in the other
sample. The null hypothesis is the claim that no
relationship exists between two sets of data being
analyzed. In the Paired Samples T-Test, it indicates
that there is no significant mean difference between
the two related samples. Paired Samples T-Test re-
turns two values, statistic and p-value. The p-value
represents the probability of obtaining test results
at least as extreme as the result actually observed,
assuming that the null hypothesis is correct. When
the p-value is lower than 0.05, it indicates that there
is statistical significance in the differences between
the two computational methods. We also calculate
the effect size of the Paired Samples T-Test. The
effect size in the Paired Samples T-Test indicates
the strength of the difference between the groups.
When the effect size is less than 0.2, it means
that the difference between the means of the two
groups does not exceed 0.2 standard deviations,
indicating a negligible difference.
Implementation. To simulate the situation where
only a limited set of token probabilities is available
in a black-box model, we constrain the white-box
models to return only the top five tokens with the
highest probabilities at each position. We then
compute EPVI under such circumstances, which
aligns with the return behavior of models from the
GPT series black-box models. For PVI, we supply
the probabilities of every token in the vocabulary

5
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Model Parm GSM8k AQuA SCIENCEQA

LLaMA-1-7B
Statistic 0.760 0.301 1.113
p-value 0.447 0.763 0.265

Effect size 0.010 0.021 0.046

LLaMA-1-13B
Statistic 1.781 1.625 -0.866
p-value 0.075 0.105 0.386

Effect size 0.027 0.090 0.001

LLaMA-1-30B
Statistic 1.914 -0.696 1.620
p-value 0.056 0.487 0.105

Effect size 0.022 -0.047 0.003

Table 1: Paired Samples T-Test on three datasets
across three LLMs of varying sizes.

at each position. We utilize the LLMs to generate
answers under two paradigms: Zero-shot-CoT and
Zero-shot (e.g., the example shown in Figure 1).
We calculate PVI and EPVI using Eq.7 and Eq.8,
respectively, and conduct experiments on LLaMA-
1 (Touvron et al., 2023) at three different scales:
LLaMA-1-7B, LLaMA-1-13B, LLaMA-1-30B.

4.2. Results
We perform the Paired Samples T-Test using the
corresponding EPVI and PVI values for each group.
Table 1 presents the corresponding results on three
datasets from two categories of reasoning tasks.
The results indicate that, in all cases, the p-value
is greater than 0.05, suggesting that there is no
statistically significant difference between PVI and
EPVI. Furthermore, in all cases, the effect size
smaller than 0.2 implies that the difference between
PVI and EPVI is negligible. Therefore, in scenarios
where a limited token probability distribution set is
employed, such as in black-box models, EPVI is a
good estimator for PVI.

5. Analyzing the effect of CoT on
black-box models

Due to the inability of black-box models to be
trained and obtain probabilities for every token in
the vocabulary, there has been almost no research
on utilizing black-box models for theoretical analy-
sis of CoT prompting. To further advance research
on CoT prompting based on black-box models and
conduct a more fundamental theoretical analysis
of why CoT prompting is effective, we employ EPVI
to analyze the impact of CoT prompting at both
the task level and the instance level on black-box
models.

5.1. Experimental Setup
Datasets. The CoT prompting is most helpful when

Approach GSM8k AQuA MultiArith
Highest-EPVI 69.30 63.78 98.50
Greedy 45.35 33.50 78.00
Random 38.52 32.87 74.50

Table 2: Experimental results of different CoT sam-
pling approaches on GSM8k, AQuA and MultiArith
datasets.

applied to a challenging, multi-step reasoning task
involving a large language model (Wei et al., 2022).
Therefore, for a clearer analysis of CoT prompting,
we instantiate this analysis using data from three
arithmetic reasoning benchmarks: GSM8k, AQuA
and MultiArith(Roy and Roth, 2015).
Implementation. For LLM, we conduct experi-
ments with text-davinci-002 model (175B) from
GPT-3(Brown et al., 2020), where this model has
strong CoT reasoning performance as reported in
Wang et al. (2022b); Kojima et al. (2022); Zhang
et al. (2022). We employ LLMs to generate an-
swers within two paradigms: Zero-shot-CoT and
Zero-shot. We then calculate EPVI using Eq.8.

For the instance level, we generate multiple
chain-of-thoughts for the same sample. We specify
the number of completions to 5 and apply tempera-
ture sampling with T=0.7 without top-k truncation as
Wang et al. (2022b). For the GSM8k and MultiArith
datasets, we conduct experiments using randomly
selecting four hundred and two hundred samples
from their test set. To explore the influence of differ-
ent CoT on the same sample, we randomly select
three groups of CoT from the generated CoT sets
for the whole samples, denoted as Random. Be-
sides, we further investigate whether improving the
V-information of CoT (i.e., the EPVI of each CoT) is
advantageous for improving the accuracy of model-
generated answers. We select the CoT with the
highest EPVI from the generated CoT sets for each
sample, denoted as Highest-EPVI.

For the task level, we use greedy decoding when
generating outputs. We investigate the impact of
CoT prompting on different samples in the dataset
by calculating the EPVI for each sample. Based
on this, we analyze the variation in difficulty across
different datasets for the same model V . Moreover,
we select the top five CoTs that exhibited the most
significant increase in sample complexity when em-
ploying CoT prompting with text-davinci-002 on the
GSM8k dataset. We analyze the types of errors
occurring in these CoTs, with the goal of determin-
ing what certain types of errors in CoT significantly
increase the difficulty of sample inference. We cat-
egorize the error types to be the same as Wei et al.

6
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Figure 2: The MultiArith dataset contains more
GPT-usable information than GSM8k dataset, mak-
ing it easier for text-davinci-002. Above, the distri-
bution of instance difficulty (EPVI) is illustrated for
the test sets of each; the dashed lines represent
the mean EPVI. Note that the above figure is not a
complete illustration; it only represents samples of
EPVI between -8 and 8.

(2022), who identified three correctable error types
associated with CoT prompting: calculator error
only, symbol mapping error, and one-step missing
error, while the rest are difficult to amend.

5.2. Results
Instance-Level CoT Analysis with EPVI. For Ran-
dom, we report the average results over three
random orders. The ’Greedy’ approach involves
chain-of-thought prompting with a greedy decoding
method. As shown in Table 2, a comparison of the
results across different sampling methods reveals
that Highest-EPVI can achieve much better perfor-
mance in all datasets. For example, the Highest-
EPVI improves the accuracy by 30.78%, 30.91%,
and 24.50% with respect to GSM8k, AQuA, and
MultiArith over Random, respectively. This indi-
cates that, for the same sample, high-quality CoT
prompt (Higher EPVI) improves model inference
accuracy by introducing more V-information (i.e.,
more label-relevant information that can be ex-
tracted by the model).
Task-Level CoT Analysis with EPVI. We employ
EPVI to analyze the impact of CoT on each sam-
ple within the dataset. Figure 2 illustrates that a
higher EPVI indicates that the sample is easier for
V, and it also demonstrates that different datasets
offer varying amounts of usable information for the
same model V. This suggests that, for different
samples within the dataset, CoT prompts influence
the difficulty of model inference by either increas-

ing or decreasing the label-related information that
can be extracted from model V. Table 3 shows
the top five CoTs that exhibited the most significant
increase in sample complexity when employing
CoT prompting with text-davinci-002 on the GSM8k
dataset. By analyzing the error types of each CoT,
we can find that all errors resulting in a significant
increase in sample difficulty in CoT prompting are
typically correctable. This indicates that when the
model utilizes CoT prompting for reasoning, we can
further reduce the model inference difficulty on this
dataset by correcting the CoT prompts.

6. Downstream Utility of EPVI Metrics

While the evaluation of CoT is a demanding yet
essential endeavor, we also investigate the feasibil-
ity of leveraging our proposed metrics to enhance
the performance of downstream tasks. Specifically,
we study whether the demonstration examples with
higher-quality CoT (higher EPVI) contribute to the
improvement of ICL (In-Context Learning) capabili-
ties in LLM.

6.1. Experimental Setup
We conduct experiments with text-davinci-002 on
the GSM8k, AQuA, and MultiArith datasets. We
employ few-shot CoT prompting, and the number
of demonstration examples for different datasets is
the same as Wei et al. (2022). To analyze whether
the demonstrations with high-quality CoT are help-
ful for ICL, we need to select a group of demon-
strations for the test set. We randomly select 500
samples from the training set of GSM8k and AQuA
and employ the Zero-shot-CoT paradigm to gener-
ate CoT for each of them. We then use these to
compose a demonstration set, denoted as Train-
500. For the MultiArith dataset, we aligned the
selection of its demonstrations with that of the
GSM8k dataset. To explore the influence of dif-
ferent quality demonstrations of CoT reasoning on
the performance of ICL, we randomly select three
groups of demonstrations from the Train-500, de-
noted as Random. We also select the sample with
the highest-quality CoT (highest EPVI) in Train-500
to form the demonstrations, denoted as Top-EPVI.
Besides, we further investigate whether improv-
ing the diversity of demonstrations is beneficial
to ICL. We select the demonstrations by first di-
viding the whole test set into N clusters and then
randomly selecting one demonstration from each
cluster, namely KmeansRND. Similar to Random,
we conduct three selection processes for Kmean-
sRND, resulting in three sets of demonstration ex-
amples. Moreover, We select the highest-quality

7
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Question: Regina wrote 9 novels last year. If this is 3 quarters of the number of novels she has written this year,
how many novels has she written this year?
Model Answer (INCORRECT; SYMBOL MAPPING ERROR): Regina wrote 9 novels last year. That means she wrote 3/4
as many novels this year as she did last year. That means she wrote 3/4*9 novels this year. That means she
wrote 6.75 novels this year. Therefore, Regina wrote 6.75 novels this year. The answer is 6.75.
Question: Prince is a butcher. He sells 15kg of meat every hour he works, and he works 10 hours a day. His
friend Bill gives him a bull that weighs 750kg. How many days will it take Prince to sell the meat from Bill’s bull?
Model Answer (INCORRECT; CALCULATOR ERROR ONLY): How many kgs of meat does Prince sell in a day? How
many kgs of meat does Prince sell in an hour? How many hours will it take Prince to sell the meat from Bill’s bull?
How many days will it take Prince to sell the meat from Bill’s bull? 1. Prince sells 15 kgs of meat every hour. 2.
Prince sells 150 kgs of meat every day. 3. It will take Prince 50 hours to sell the meat from Bill’s bull. 4. It will take
Prince 2.5 days. The answer is 2.5.
Question: Poppy is solving a 1000-piece jigsaw puzzle. She places a quarter of the pieces on the board, then
her mom places a third of the remaining pieces. How many jigsaw pieces are left to be placed?
Model Answer (INCORRECT; CALCULATOR ERROR ONLY): Poppy places a quarter of the pieces on the board. That
means she has used up a quarter of the pieces, so she has 3/4 of the pieces left. Her mom then places a third of
the remaining pieces. That means her mom has used up a third of the pieces that were left, so she has used up
of the total pieces. That means there are 11/12 of the pieces left to be placed. The answer is 11/12 or 990 pieces.
Question: Sally received the following scores on her math quizzes: 50, 80, 80, 60, 40, 90, 100, 70, and 60. Find
her mean score.
Model Answer (INCORRECT; CALCULATOR ERROR ONLY): The first step is to add up all of the numbers that Sally got
on her math quizzes. This is her total score. 50 + 80 + 80 + 60 + 40 + 90 + 100 + 70 + 60 = 660 The second step
is to count how many quiz scores there are in total. There are 9 quiz scores in total. The third step is to divide the
total score by the number of quiz scores. This will give you the mean, or average, score. 660/9 = 73.3 Therefore,
The answer is 73.3.
Question: John goes to the market and buys 3 goats for $500 each and 2 cows for $1500 each. How much
money did he spend?
Model Answer (INCORRECT; ONE STEP MISSING ERROR): John goes to the market. He buys 3 goats for $500 each.
That’s $500 + $500 + $500 = $1,500 so far. He buys 2 cows for $1,500 each. That’s $1,500 + $1,500 = $3,000 in
total. The answer is 3000.

Table 3: The five hardest (lowest EPVI) samples for CoT prompting on the GSM8k dataset by the text-
davinci-002 model.

CoT (highest EPVI) from each cluster, namely Top-
Kmeans. We use the text-embedding-ada-002
(Neelakantan et al., 2022) for vectorization and
use the K-means++ algorithm (Arthur and Vassil-
vitskii, 2007) for clustering, where K is set to N,
representing the number of demonstrations.

6.2. Results

We present the results in Table 4. For Random
and KmeansRND, we report the average results
over three random orders. We can find that the
results of KmeansRND outperform Random on
all three datasets, suggesting that enhancing the
diversity of selected demonstration examples is ad-
vantageous for constructing task-level demonstra-
tions. We observe that in comparison to Random,
Top-EPVI exhibits an improvement in accuracy of
9.30%, 1.44%, and 14.06% on GSM8k, AQuA, and
MultiArith, respectively. Besides, by comparing the
results between Top-Kmeans and KmeansRND,
we can find that Top-Kmeans yields an improve-
ment of 1.90%, 5.46%, 9.12% on GSM8k, AQuA,

Approach GSM8k AQuA MultiArith
Random 36.11 28.99 67.27
Top-EPVI 45.41 30.43 81.33

(∆+9.30) (∆+1.44) (∆+14.06)
KmeansRND 45.56 23.23 76.05
Top-Kmeans 47.46 28.69 85.17

(∆+1.90) (∆+5.46) (∆+9.12)

Table 4: Experimental results of different demon-
stration selection approaches on each task.

and MultiArith datasets, respectively, compared to
KmeansRND. These results indicate that EPVI is a
promising CoT evaluation metric for enhancing the
performance of downstream tasks. Future work
can explore methods that combine these metrics
with other strategies to improve LLM’s reasoning
abilities.

7. Conclusion

In this paper, we propose an information-theoretic
metric, EPVI, to evaluate the CoT on black-box
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models. EPVI quantifies whether CoT contains new
label-relevant information beyond what is present
in the input. We demonstrate that EPVI is a good
estimator of PVI. Based on this, we conduct an
analysis of CoT prompting at both the instance and
task levels, demonstrating that the effectiveness
of CoT prompting lies in its capacity to influence
the difficulty of model reasoning by increasing or
decreasing the label-relevant information that can
be extracted by the model. Furthermore, we show
that high-quality demonstrations of CoT reasoning
selected based on EPVI can enhance downstream
performance in reasoning tasks. Future work might
entail exploring the assessment of different CoT
prompting paradigms, such as few-shot prompting.
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