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Abstract

With the rapid development of social media and short video applications in recent years, browsing short videos

has become the norm. Due to its large user base and unique appeal, spreading rumors via short videos has

become a severe social problem. Many methods simply fuse multimodal features for rumor detection, which lack

interpretability. For short video rumors, rumor makers create rumors by modifying and/or splicing different modal

information, so we should consider how to detect rumors from the perspective of modality tampering. Inspired by

cross-modal contrastive learning, we propose a novel short video rumor detection framework by designing two

pretraining tasks: modality tampering detection and inter-modal matching, imbuing the model with the ability to detect

modality tampering and employing it for downstream rumor detection tasks. In addition, we design an interpretability

mechanism to make the rumor detection results more reasonable by backtracking the model’s decision-making

process. The experimental results show that the method on the short video rumor dataset has an improvement of

about 4.6%-12% in macro-F1 compared with other models and can explain whether the short video is a rumor or not

through the perspective of modality tampering.

Keywords: Short Video Rumor Detection, Modality Tampering, Contrastive Learning

1. Introduction

The proliferation of the Internet and mobile devices
has streamlined information exchange, yet discern-
ing the veracity of such information remains chal-
lenging for many, leading to rampant rumor dissem-
ination. Traditionally, rumors surfaced as texts or
images on social media, but the emerging trend of
short video platforms has seen rumors evolve into
video formats, which captivate viewers more effec-
tively than plain text. While major video platforms
have instituted manual review mechanisms to curb
rumor spread, this approach is labor-intensive and
time-consuming. Short video rumor detection mod-
els can automate the initial screening of potential
rumor content, reserving detailed manual review
for flagged content only. By integrating these mod-
els into the review processes of video platforms,
we can bolster rumor detection efficiency, foster a
cleaner online space, and make a tangible impact
in the real world.

To solve the multimodal rumor problem, re-
searchers have proposed various methods, and
the previous methods can be roughly classified into
two categories: pattern-based and evidence-based
(Sheng et al., 2021; Hu et al., 2022). Since most
rumor contents are often removed after they are
officially identified as rumors, obtaining the original
metadata and dissemination information is not easy.
Therefore, we only use the static data of the rumors.
Existing multimodal rumor detection follows the fol-
lowing paradigm: 1) Features are extracted from
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each modality using a heterogeneous feature ex-
tractor. 2) Subsequently, the features from each
modality are fused and fed into a classification net-
work. We also follow this paradigm.

Nevertheless, most of the existing multimodal
rumor detection work focuses on the fusion of differ-
ent modal features, ignoring some characteristics
of short rumor videos: 1) By observing the data,
we find that rumor videos not only contain inconsis-
tent information among different modalities but also
suffer from serious information tampering, such as
manipulating textual content and splicing irrelevant
image and audio information, which inspires us to
consider detection from the perspective of modal-
ity tampering. 2) The current short video rumor
datasets merely consist of rumor data and labels
and thus cannot be used for auxiliary task learn-
ing and lacks external knowledge. Specifically, we
believe prior methods have failed to consider the
problems of multimodal information tampering and
mismatch among multimodal information. To ad-
dress this, we design two pre-training tasks for our
model, namely modality tampering detection and
inter-modality matching, to enhance the efficacy
of rumor detection. By integrating information on
modality tampering with rumor features, we pro-
pose a novel Short Video Rumor Detection Frame-
work including pre-training and fine-tuning called
Short Video Rumor Pre-training Model(SVRPM).
Furthermore, by explaining the model’s decision-
making process, we design an interpretable mech-
anism to make the rumor detection results more
transparent and reasonable. Experimental results
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indicate that our approach excels in short video
rumor detection and can provide intuitive explana-
tions, which assist users in discerning the veracity
of video information. We selected some existing
multimodal rumor or fake news detection methods
as a comparison method and conducted extensive
experiments on the dataset we organized. The ex-
perimental results validate the effectiveness of our
method.

The main contributions of this work are as fol-
lows:

• Aiming at the problem of deliberate tampering
in short videos, we propose a short video ru-
mor detection method based on modality tam-
pering. The model is first forced to learn modal-
ity tampering detection and modality matching
pre-training tasks and then use transfer learn-
ing for the downstream rumor detection task.

• We extended a short video rumor dataset and
constructed the tampering dataset to support
the task of modality tampering detection.

• We use the attention-backtracking mechanism
to find local features that may have been tam-
pered with to explain whether the short video
is a rumor.

• We conducted extensive ablation experiments
to demonstrate the effectiveness of the pro-
posed method. Compared to other methods,
there’s an improvement of approximately 4.6%-
12% in the macro-F1 score on our dataset.

2. Related Work

2.1. Rumor Detection

2.1.1. Unimodal Methods

Unimodal rumor detection generally focuses on a
single modality, such as textual modality or visual
modality, by establishing various frameworks to
adapt the rumor detection task. Since many rumors
spread on social media, some endeavors detect ru-
mors by analyzing users’ behavior on social media,
social network structures, and information dissemi-
nation patterns. For example, (Li et al., 2021; Ran
et al., 2022) constructed a heterogeneous graph
from various user information on social media and
achieved the best performance in rumor detection.
Additionally, there are studies based entirely on
textual modality. (Li et al., 2019) employed user
information, attention mechanisms, and multitask
learning for rumor detection. (Rao et al., 2021)
introduced a novel variant of BERT specifically tai-
lored for text-based rumor detection. Moreover,
given that rumors and non-rumors typically have
distinct patterns in image distribution, several works

focus on image manipulation detection, investigat-
ing whether images have been tempered or are
inconsistent with their background. (Zhou et al.,
2018) proposed a two-stream Faster R-CNN net-
work for image manipulation detection. (Cao et al.,
2020) conducted a joint study investigating image
forensic, semantic, statistical, and contextual fea-
tures for fake news detection. Their study showed
that visual content helps in rumor detection.

2.1.2. Multimodal Methods

Many recent multimodal-based approaches use
cross-modal interaction and/or fusion to obtain bet-
ter rumor detection performance. (Qi et al., 2021)
analyzed the distinct features of named entities in
textual and visual modalities, while CAFE (Chen
et al., 2022) measured cross-modal ambiguity by
evaluating the Kullback-Leibler divergence between
unimodal feature distributions. FND-CLIP (Zhou
et al., 2022) used BERT (Devlin et al., 2018) and
ResNet (He et al., 2016) to extract text and image
features, while CLIP (Radford et al., 2021) was
used to compute similarity. (Qi et al., 2023) pro-
vided a new multimodal detection model named
SV-FEND, which exploits the cross-modal correla-
tions to select the most informative features and
utilizes the social context information for detection.

However, research on multimodal rumor detec-
tion has yet to consider the perspective of modality
tampering or inter-modality mismatching. In this
work, we design two pre-training tasks, modality
tampering detection and inter-modality matching,
effectively utilizing features from different modali-
ties and making the decision-making process more
interpretable.

2.2. Supervised Contrastive Learning

Contrastive learning is a potent self-supervised rep-
resentation learning paradigm (Chen et al., 2020;
He et al., 2020). Its core concept is to learn repre-
sentations by reducing the distance between simi-
lar (positive) samples and increasing the distance
between dissimilar (negative) samples. Recently,
there has been much work on cross-modal con-
trastive learning. CLIP (Radford et al., 2021) pro-
posed a large-scale contrastive language-image
pre-training model to address the unified represen-
tation of language and images. (Zolfaghari et al.,
2021), in order to solve the problem of multimodal
video representation, provides a contrastive loss
to address intra-modal similarity while consider-
ing inter-modal similarity. Inspired by cross-modal
contrastive learning, our work applies it to text, im-
age, and audio modalities in short videos to detect
modality tampering.
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Figure 1: Model Architecture Overview of SVRPM. The model consists of five main modules: (a) Feature
extraction: Extract visual, textual, and audio modal features using different encoders, respectively. (b)
Mini-batch Modality Shuffle: Randomly shuffle their corresponding modal features for a minibatch. (c)
Cross-modal Contrastive Learning: Constructing Positive and Negative Samples using Modality Shuffle
Module. (d) Cross-modal Fusion and Hierarchical Fusion. (e) Modality Tampering Backtracking: Using
attention backtracking operation to obtain the local features which may be tampered.

3. Proposed Method

In this section, we specifically describe our pro-
posed model, SVRPM. As shown in Figure 1,
the SVRPM model is composed of several com-
ponents: Multimodal Feature Extraction Module,
Cross-modal Contrastive Learning, Cross-Modal
and Hierarchical Fusion Module, Tampering Selec-
tor and Modality Shuffle, and Attention Traceback.

3.1. Multimodal Feature Extraction

3.1.1. Textual Feature Extraction

We utilize a pre-trained BERT model1 for extract-
ing text features. We input the cleaned short
video title and OCR text sequence (w1, w2, ..., wn)
into BERT to extract textual features HT =
BERT (w1, w2, ..., wn)[CLS], where HT ∈ R1∗768

is the feature vector of the text sequence, and
[CLS] is the special token.

3.1.2. Visual Feature Extraction

After video frame extraction and removal of in-
terfering regions. We opt for the TimerSformer
model2 to obtain a visual feature vector with
global information. Like textual feature extrac-
tion, we input eight processed video frames into
the model, and the output feature is HV =

1https://huggingface.co/bert-base-chinese
2https://github.com/facebookresearch/TimeSformer

T imeSformer(f1, f2, ..., f8)[CLS], where fi de-
notes the i-th frame, HV ∈ R1∗768 is the feature
vector of the video, and [CLS] is the special token.

3.1.3. Audio Feature Extraction

We encode single-channel audio through Hubert
(Hsu et al., 2021) model3 and use MeanPooling
for all the tokens to obtain a global audio repre-
sentation as feature vectors. We input 500000
audio samples into the model, and the output
feature is denoted as HA : {h1,h2, ...,hn} =
Hubert(a1, a2, ..., a500000)(1)

HA =
1

n

n
∑

i=1

hi (2)

where ai denotes the i-th audio sample, HA ∈
R1∗768 is the feature vector of the audio sequence,
and n is the number of audio tokens.

3.2. Multimodal Fusion

In contrast to previous work, we avoid using simple
concatenation fusion. Instead, we implement cross-
modal fusion to enhance the integration of multiple
modalities. (Hsu et al., 2021) find that the represen-
tations of the middle layer were the most helpful for
the downstream task. Inter-modal complementarity
information may be distributed in different layers,
leading us to adopt hierarchical fusion.

3https://huggingface.co/TencentGameMate/chinese-

hubert-base
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3.2.1. Cross-Modal Fusion

Since short video rumor information may exist in dif-
ferent modalities simultaneously or only in a single
modality, there is variability among the information
of multiple modalities. Better detection effects can
be achieved through information complementation.
We utilize the cross-modal attention mechanism for
fusion to enable the model to assign importance
to different modalities independently. We adopt
this fusion approach for middle-level (Layer 6) and
high-level (Layer 12) features. As an example, we
introduce cross-modal attention with high-level fea-
tures.

Initially, the multimodal feature matrix MTV A is
obtained by stacking the feature vectors of the three
modalities.

MTV A = [HT ,HV ,HA]T (3)

where MTV A ∈ R3∗768 is the multimodal feature
matrix.

Then, the feature vector of each modality is used
as the query vector qi to compute its attention
weight on different modalities, yielding a weight
vector α ∈ R1∗3,

α = Softmax(Attention(qi,MTV A)) (4)

where qi is the query vector of the i-th modality.

Finally, the cross-modal feature of this query is
obtained by weighting the three modalities, denoted
as HTV AH

∈ R1∗768. The same method is ap-
plied to obtain the middle-level feature HTV AM

∈
R1∗768.

HTV AH
= Sum(α ∗MTV A) (5)

3.2.2. Hierarchical Fusion

The high-level features of the pre-trained model are
highly related to the pre-trained tasks, which are
almost irrelevant to the rumor detection task. Pre-
trained models are often multilayered, and irrele-
vant features are eliminated as the layer increases.
This forgotten information should be considered
during the fusion of multiple single-modality mod-
els. Thus a hierarchical fusion module is added to
the model, and layer six is selected as the middle-
level feature for all modalities. The middle-level fea-
tures HTV AM

and the high-level features HTV AH

are stacked denote as MHM and input to the
cross-modal attention module and also used as the
query vectors qM , qH respectively. Subsequently,
through attention-weighted summation, the hierar-
chical features denoted as ĤTV AH

and ĤTV AM
.

Finally, after Mean-Pooling, we get the global fea-
tures with hierarchical fusion.

MHM = [HTV AH
,HTV AM

]T (6)

αH = Softmax(Attention(qH ,MHM )) (7)

αM = Softmax(Attention(qM ,MHM )) (8)

ĤTV AH
= Sum(αH ∗MHM ) (9)

ĤTV AM
= Sum(αM ∗MHM ) (10)

HTV AHF
= MeanPooling([

ĤTV AH

ĤTV AM

]) (11)

where HTV AHF
∈ R1∗768 is the hierarchical multi-

modal feature.

3.3. Tampering Selector and Modality
Shuffle

Considering the potential manipulation (such as
tampering with text) and modality mismatch (i.e.,
most of the information between different modali-
ties is dissimilar) in manually created short videos,
we designed two pre-training tasks, modality tam-
pering detection, and modality matching.

3.3.1. Tampering Selector

To simulate the effect of tampering, we achieve it by
tampering with some words of the video title. The
specific way is as follows: 1). Use “HanLp”4 to per-
form lexical segmentation, then take all nouns, ad-
jectives, and adverbs as tampered words for each
video title. 2). Use “Synonyms”5 to obtain the four
words with the closest semantic similarity to the
tampered words as candidate words. 3). For each
video title, 1 to 3 words to be tampered with. Before
inputting the text into the model, it goes through a
tampering selector to choose whether to tamper
or not with a certain probability. Using contrastive
learning, tampered samples have an increased dis-
tance between modalities, whereas untampered
samples have a reduced distance between modali-
ties.

3.3.2. Modality Shuffle

Rumors crafted manually often splice disparate
titles, images, and audio, resulting in varying
modalities presenting incongruent information. To
heighten our model’s capability in detecting such
rumors, we generate negative samples by shuf-
fling multimodal features from different samples dur-
ing training, as depicted in Figure 2. We begin by
copying a mini-batch’s modal features, then shuffle
this copied data. Modality mismatch samples are
formed by consistently shuffling high and mid-level
features. These paired matching and mismatching
samples are then input into the subsequent mod-
ule, and processed through a classification head.

4https://github.com/hankcs/HanLP
5https://github.com/chatopera/Synonyms
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Figure 2: Modality Shuffle Module. Different colors
represent different modalities, and different num-
bers represent different samples in a mini-batch.
Compared with modality tampering, modality shuf-
fle belongs to coarse-grained tampering.

During pretraining, we aim to widen the gap be-
tween differing modalities in mismatched samples
and narrow it in matched ones.

3.4. Classification and Loss Function

3.4.1. Classification

During the entire model pretraining process, two
tasks are set: modality tampering detection and
modality matching. Classifiers are set up to
map the global feature vector HTV AHF

to a two-
dimensional space through a linear layer.

3.4.2. Loss Function

In the pretraining tasks, cross-modal contrastive
learning is added to make the feature similarity of
each modality as close as possible. This involves
three combinations of text-visual, text-audio, and
visual-audio, and measuring their cosine similarity
with SimTV , SimTA, and SimV A, respectively.

SimTV =
HTH

T
V

∥HT ∥∥HV ∥
(12)

SimTA, and SimV A are obtained in the same
way. The contrastive loss function of modality tam-
pering can be written as follows (SimV A is not
applicable in equation 13):

Lct =

N
∑

i=1

(−1)mi(SimTiVi
+ SimTiAi

) (13)

where mi is the tampering label of the i-th sam-
ple, N is the number of samples in a mini-batch,
and mi = 0 indicates that the sample is tampered,
otherwise mi = 1.

Ltamper = −

N
∑

i=1

[milog(Ft(Hi))

+ (1−mi)log(Ft(Hi))]

(14)

Lt = Lct +Ltamper (15)

Cross-entropy loss is used in tamper detection
along with contrastive loss. The tamper detection
loss is denoted as Ltamper, while Ft represents
the linear classification layer and Hi denotes the
final multi-modal features. The contrastive loss in
the modality matching task is similar.

Lcm =

N
∑

i=1

(−1)ni(SimTiVi
+SimTiAi

+SimViAi
)

(16)
where ni is the label of the i-th sample, N is the
number of samples in a mini-batch, and ni = 0
indicates that the sample is mismatched, otherwise
ni = 1.

The modality matching classification loss Lmatch

and total loss Lm are as follows:

Lmatch = −
N
∑

i=1

[nilog(Fm(Hi))

+ (1− ni)log(Fm(Hi))]

(17)

where Fm denotes the linear classification layer.

Lm = Lcm +Lmatch (18)

3.5. Modality Tampering Backtracking

We use attention backtracking to detect possible
modality tampering in short videos, indicating po-
tential misinformation. See Algorithm 1. Hierarchi-
cal attention parameters are denoted as AttnHr.
The high-level and middle-level cross-modal atten-
tion fusion layers are represented by AttnCMH and
AttnCMM . We first calculate hierarchical atten-
tion scores (Equation 7, 8): high-level (ScoreH )
and middle-level (ScoreM ). Cross-modal attention
scores are determined by comparing these levels.
If ScoreH > ScoreM , we use AttnCMH ; otherwise,
we use AttnCMM . Next, we compare scores for
modalities T , V , and A. The highest scoring modal-
ity x denotes the most significant features (Equa-
tion 4). The attention parameter is AttnxMα (α just
for indicating the high or middle level). By now, we
can get the attention Score for each Token, and its
index is n. Lastly, each Token is a local feature,
higher scores suggest more attention and tamper-
ing risk. The top k features are visualized.

4. Experiments

4.1. Dataset

1) We use the dataset from (You et al., 2022).
The data used in this paper is crawled from Tik-
tok and manually labeled. There are 584 rumor
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Algorithm 1 Modality Tampering Backtracking

Input: HTV AM
, HTV AH

, HT , HV , HA, Token
Output: Modality local original features.
1: Initialize: AttnHr, AttnCMH , AttnCMM

AttnxMH , AttnxMM ← x modal high-level and middle-level attention, x ∈ {T, V,A}

2:
[

ScoreH , ScoreM
]T

= AttnHr(HTV AH
,
[

HTV AH
, HTV AM

]T
)+AttnHr(HTV AM

,
[

HTV AH
, HTV AM

]T
),

(Equation 7, 8)
3: if ScoreH > ScoreM then

4:
[

ScoreT , ScoreV , ScoreA
]T

= Sum
(

AttnCMH

(

[

HT , HV , HA

]T
,
[

HT , HV , HA

]T
))

, (Equation 4)

5: modality x = Maxmodal

(

[

ScoreT , ScoreV , ScoreA
]T

)

, the values of x are T, V,A

6:
[

ScoreToken1
, · · · , ScoreTokenn

]T
= AttnxMH

(

Tokencls,
[

Token1, · · · , T okenn

]T
)

, Token from

modality x

7: else
8:

[

ScoreT , ScoreV , ScoreA
]T

= Sum
(

AttnCMM

(

[

HT , HV , HA

]T
,
[

HT , HV , HA

]T
))

, (Equation 4)

9: modality x = Maxmodal

(

[

ScoreT , ScoreV , ScoreA
]T

)

, the values of x are T, V,A

10:
[

ScoreToken1
, · · · , ScoreTokenn

]T
= AttenxMM

(

Tokencls,
[

Token1, · · · , T okenn

]T
)

, Token from

modality x

11: end if
12: Local feature index: Index = Maxindex

(

[

ScoreToken1
, · · · , ScoreTokenn

]T
, k
)

13: return Local feature: Featurex (index) =0

short videos and 625 non-rumor videos. To en-
sure that the data aligns with the actual distribution,
we extend the dataset by crawling a lot of the non-
rumor data from TikTok in the same way. We merge
these and divide the dataset for training and testing,
respectively. 2) We use FakeSV (Qi et al., 2023)
which is the largest Chinese short video dataset
about fake news. The details of the division of the
dataset are shown in Table 1.

Table 1: The statistics of two datasets.

Dataset Split Rumor non-Rumor Total

Ours
train 467 4795 5262
test 117 1204 1321

FakeSV
train 1233 1303 2536
test 304 238 542

4.2. Implementation Details

We use the Adam optimizer with a learning rate
of 2e-5. The maximum textual sequence length is
256. The number of frames input to TimeSformer
is 8. The number of audio samples input to Hu-
bert is 500000. For category rumor, we use 10x
oversampling.

Pre-training task setup. For the modality tam-
pering task, we set the tampering probability as 0.5,
the maximum of tampering words as 3, and the
tampering candidates as 4 with no modality shuf-
fle. We use the data in Section 4.1 and produce
tampered data using the method in Section 3.3.1,
totaling 5,155,350 pieces of data. The ratio of the
training set to the test set is 8:2. For the modality
matching task, we set the tampering probability as
0 with modality shuffle.

Fine-tuning task setup. For the downstream

rumor detection task, due to the category imbal-
ance, we use a category-balanced focal loss with
a tampering probability of 0 without shuffling the
modality and contrastive learning.

Evaluation Metrics. we use Accuracy, Preci-
sion, Recall, and F1 as evaluation metrics.

4.3. Baselines

SAFE (Zhou et al., 2020) selects Text-CNN as the
textual feature extractor, and the image2sentence
pre-trained model is selected to extract visual fea-
tures. The overall information of the rumor is ob-
tained by concatenating different modal features
and semantic similarity features. ViLT (Kim et al.,
2021) is a pre-trained visual-language model on
an English dataset that merges text embeddings
into a visual transformer (ViT). To maintain fairness,
the textual content of the short video rumor data
is translated into English. VideoMae (Tong et al.,
2022) extract more spatiotemporal features of the
video and use them for the short video rumor clas-
sification task. MEA (Wei et al., 2022) extracts sep-
arate features for different modalities, fuses them
with a linear layer, and uses them for rumor de-
tection tasks. CHEF (Hu et al., 2022)is a tool for
fact-checking that retrieves evidence from relevant
documents to predict the accuracy of a claim. We
used a search engine to gather title-related data as
evidence.

4.4. Experimental Results

4.4.1. Results of pre-training tasks

In Table 5, it can be found that the accuracy is
higher than 80% on both tasks, which indicates that
the pre-trained model can better identify whether
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Table 2: Results(%) of different methods on our short video rumor dataset and FakeSV dataset. “*”
denotes that the text content is in English. The subscript “0” represents “Rumor as Positive” and “1”
denotes “non-Rumor as Positive” in computing the precision, and recall. “F1” denotes macro-F1 values.
“–" means that corresponding experiments were not carried out due to lack of partial data. The best
performance is highlighted in boldface.

Method
Ours FakeSV

Acc F1 P0 P1 R0 R1 Acc F1 P0 P1 R0 R1

SAFE(2020) 96.90 90.98 78.36 98.99 89.74 97.59 77.49 77.43 84.21 71.01 73.68 82.35
ViLT*(2021) 81.53 65.46 29.04 97.15 75.21 82.14 – – – – – –

VideoMae(2022) 98.03 93.55 94.17 98.36 82.91 99.50 73.80 72.99 74.40 72.86 81.25 64.29
MEA(2022) 94.70 86.19 64.07 99.13 91.45 95.02 70.66 70.51 86.43 61.52 56.58 88.66
CHEF(2022) 97.58 92.67 84.55 98.91 88.89 98.42 – – – – – –
SVRPM(ours) 99.39 98.15 95.04 99.83 98.29 99.50 79.34 78.55 78.07 81.50 87.83 68.49

Table 3: Comparison of results(%) on Chinese-to-English and Chinese. “-En” denotes the translation of
Chinese into English, and “-Ch” denotes the experimental result of directly adopting Chinese.

Method Acc P P0 P1 R R0 R1 F1 F10 F11

ViLT-En 81.53 63.10 29.04 97.15 78.68 75.21 82.14 65.46 41.90 89.02
ViLT-Ch 78.34 59.44 23.25 95.63 71.19 62.39 79.98 60.49 33.87 87.11

SVRPM-En 98.71 96.52 93.86 99.17 95.44 91.45 99.42 95.97 92.64 99.29
SVRPM-Ch 99.39 97.44 95.04 99.83 98.90 98.29 99.50 98.15 96.64 99.67
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the modality matches or not and whether the modal-
ity has been tampered or not, and it can also assist
the model in performing the task of rumor detection
in short videos and explaining the reasons.

4.4.2. Compare with Baselines

As shown in Table 2, our proposed model “SVRPM”
outperforms other models in short video rumor de-
tection. Except for ViLT, SVRPM has about 1.3%-
4.7% improvement in accuracy and about 4.6%-
12% enhancement in macro-F1 value compared to
other models on our dataset. Notably, SAFE, MEA,
CHEF, and SVRPM exhibit superior recall values in
rumor detection. Conversely, VideoMae registers

commendable performances across several met-
rics but is found wanting in recall, attributable to an
information deficit in its unimodal pre-training. ViLT
lags behind all counterparts, including even the uni-
modal pre-trained model. This could be ascribed
to potential losses of critical rumor characteristics
during textual translation, especially if the resultant
style diverges from its native form. Moreover, the
features of the multimodal model are fused from
the low level, so the feature extraction is easily af-
fected by other modalities, and the translated text
appears to be mismatched with the visual modality,
so there is a serious modality tampering problem in
the translated text. Table 3 compares the results of
Vilt(pre-trained on the English dataset) on Chinese-
to-English and Chinese titles. It can be noticed
that our model is much less affected by language
than ViLT and outperforms direct fine-tuning with
modality tampering tasks.

4.4.3. Ablation Study

We conduct an evaluation of our model to decipher
the impact of each component. Table 4 presents
the results of our ablation experiments, from which
we draw several insights and highlight the most
salient observations below.

Cross-Modal Fusion: The data in Table 4 re-
veals that cross-modal fusion outperforms concate-
nated fusion, exhibiting a notable 3%-4% boost in
rumor recall. This enhancement facilitates more ac-
curate rumor detection. Moreover, there’s a signifi-
cant 6%-10% improvement in the macro-F1 score.
Such results underscore the distributed nature of
rumor information across different modalities. The
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Table 4: Performance(%) of ablation experiments. For simplicity, modalities are abbreviated(“T”: Textual
modality, “V”: Visual modality, “A”: Audio modality). “CMF” denotes cross-modal fusion, “HF” denotes
hierarchical fusion, and Tamper, Match stand for pre-training tasks, respectively.

Method Modality CMF HF Tamper Match Acc P R F1

Concat T, V % % % % 93.19 78.16 92.02 83.18

Concat T, V, A % % % % 96.37 85.82 96.46 90.23

SVRPM T, V ! % % % 98.18 95.33 93.22 94.24

SVRPM T, V % ! % % 98.18 94.37 94.37 94.37

SVRPM T, V, A ! % % % 98.86 97.00 95.90 96.44

SVRPM T, V, A % ! % % 99.17 97.60 97.23 97.41

SVRPM T, V, A ! ! ! % 99.24 97.31 98.04 97.67

SVRPM T, V, A ! ! % ! 99.24 96.36 99.20 97.73

SVRPM T, V, A ! ! ! ! 99.39 97.44 98.90 98.15

Chinese: 注意！这样
艾滋就会找上你
English: Pay attention! 

This is how AIDS 

finds you.

Chinese: 超市里面划破手就会得艾滋；胸前长
痘痘就是艾滋；小心蚊子，因为蚊子也会传
染艾滋。
English: You can get AIDS if you cut your hand 

inside a supermarket; a pimple on your chest is 

AIDS; and watch out for mosquitoes because 

they can also transmit AIDS.

Title Audio (speech to text) Key Frames

Chinese:日本认为核
污水处理后的水，剩
余的放射性元素危险
小，可以直接排放
English: Japan 

considers that the 

remaining radioactive 

elements in the treated 

nuclear wastewater are 

of low risk and can be 

discharged directly.

Chinese:日本人经常
吃生鱼片，是怎么预
防寄生虫的
English: Japanese 

people often eat 

sashimi, how do they 

prevent parasites.

Chinese:日本政府认为这些水经过技术处理后，
剩下的放射性元素主要是氚，它虽然含量相
对较高，但这危险性较小，衰变产生的低能
量β粒子对生命组织造成的损伤也比较小，
因此可以直接排放。
English: The Government of Japan believes that 

after the technical treatment of this water, the 

remaining radioactive element is mainly tritium, 

which has a relatively high content, but this is 

less dangerous, and the low-energy beta particles 

produced by decay cause less damage to living 

tissues, so it can be discharged directly.

Chinese: 日本人经常吃生鱼片难道不怕长寄生
虫吗？原来在日本一般会选择深海鱼来做生
鱼片，因为深海鱼的寄生虫相对较少，而且
会采用低温冷冻来运输。
English:  Japanese people often eat sashimi is not 

afraid of growing parasites? It turns out that in 

Japan usually choose deep-sea fish to make 

sashimi, because deep-sea fish has relatively 

fewer parasites, and will use low-temperature 

refrigeration to transport.

Prediction

Rumor

Rumor

Non-Rumor

Figure 4: Qualitative examples of short videos are provided. Examples with a green background indicate
non-rumors, while those with a red background signify rumors. Only a subset of the audio (converted
from speech to text) is shown for display purposes.

Table 5: Experimental results(%) for the modality
matching task and the modality tampering task.
Acc, P, R, and F1 stand for Accuracy, Precision,
Recall, and macro-F1, respectively.

Task Acc P R F1

Modality Matching 82.56 84.96 79.05 81.90

Modality Tampering 86.41 88.82 83.32 85.98

cross-modal attention effectively allocates atten-
tion weights for various rumor samples, prioritizing
modalities pivotal for rumor detection.

Hierarchical Fusion: We incorporate hierarchi-
cal fusion across various modality combinations to
elucidate the significance of this fusion approach.
Empirical results indicate a universal enhancement
across all metrics when tested with three modal-
ities. Notably, there’s a 2.5% uptick in the rumor

recall, bolstering rumor detection efficacy. This
proves that rumor information may be distributed
in different feature layers, and the interaction of in-
formation between the layers can help the model
detect rumors better.

Pre-training Tasks: We evaluate models en-
hanced with various pre-training tasks to ascertain
their impact on rumor detection. While the inclu-
sion of the modality matching and tampering tasks
slightly diminishes Precision, there’s a notable rise
in Recall for rumors. This trend implies a greater
tendency of the model to categorize ambiguous
non-rumors as rumors. Even though modality mis-
matches and tampering can occur in both rumors
and non-rumors, adopting stringent criteria for ru-
mor detection is justified given the potential harm
of rumors. Intriguingly, our experiments reveal that
jointly utilizing the two pre-training tasks fosters
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mutual reinforcement, culminating in an enhanced
macro-F1 score. This underscores the efficacy of
modality matching and tampering tasks in refining
multimodal rumor detection.

4.4.4. Modality Tampering Backtracking

We provide a visualization of modality tampering
backtracking for a specific instance in Figure 3
and highlight successful predictions in Figure 4.
Through this backtracking analysis, peak attention
aligns with the item most pertinent to the query.

5. Conclusion

We design an interpretable short video rumor detec-
tion model based on modality Tampering, which per-
forms the pre-training task of modality tampering
recognition on the modality tampering dataset, and
performs the pre-training task of modality matching
by shuffling the modalities. For the downstream
rumor detection task, we use the transfer learning
approach. The model can focus on whether there
is a modality tampering between multimodal local
features and visualize the local tampering features
using the modality tampering backtracking to im-
prove the interpretability.
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