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Abstract

This paper sheds light on a relatively unexplored area which is deep learning interpretability for speech disorder
assessment and characterization. Building upon a state-of-the-art methodology for the explainability and
interpretability of hidden representation inside a deep-learning speech model, we provide a deeper understanding
and interpretation of the final intelligibility assessment of patients experiencing speech disorders due to Head and
Neck Cancers (HNC). Promising results have been obtained regarding the prediction of speech intelligibility and
severity of HNC patients while giving relevant interpretations of the final assessment both at the phonemes and
phonetic feature levels. The potential of this approach becomes evident as clinicians can acquire more valuable
insights for speech therapy. Indeed, this can help identify the specific linguistic units that affect intelligibility from an
acoustic point of view and enable the development of tailored rehabilitation protocols to improve the patient’s ability to

communicate effectively, and thus, the patient’s quality of life.
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plainability, Head and Neck Cancers, Clinical phonetics

1. Introduction

Speech intelligibility is an essential component of
effective communication. It refers to the extent to
which a speaker’s intended message can be under-
stood by a listener. This fundamental component
of communication can be hampered as a conse-
quence of speech disorders, leading to a deterio-
rated quality of life for affected individuals (Kent,
1992). In the context of Head and Neck Cancers
(HNC), speech can be notably impacted by the
presence of tumors within the speech production
system. Nonetheless, the primary cause of speech
impairment in HNC typically arises from the treat-
ments administered to manage tumors, such as
surgery, radiotherapy, chemotherapy, or a combi-
nation thereof (Meyer et al., 2004). In such cases,
the evaluation of speech quality is crucial to as-
sess the communication deficit of patients and de-
velop targeted treatment plans. Traditionally per-
ceived as the gold standard in clinical practice for
evaluating speech disorders, perceptual measures
were often criticized for their inherent subjectivity
and lack of reproducibility (Revis, 2004; Pommée
et al., 2021). In recent years, the application of
deep learning (DL) for the automatic assessment
of speech disorders has emerged as a promising
tool to complete and enhance perceptual measures
(Bin et al., 2019; Quintas et al., 2020; Gupta et al.,

Deep Learning, Interpretability and ex-

2021). These tools have shown their ability to yield
more reliable and specific measurements providing
clinicians with access to new information contained
in the speech signal.

Despite the advances in this direction, only a
few studies addressed this subject from a DL in-
terpretability point of view. In this context, we can
find a research work that was conducted with a
focus on dysarthric speech by Tu Ming et al. (Tu
et al., 2017). The authors trained a model to pre-
dict the severity of dysarthric speech from the input
signal. On the other hand, they took steps to make
the model interpretable by incorporating a specific
bottleneck layer. They used transfer learning to
learn both clinically-interpretable labels perceived
by speech-language pathologists (SLPs) (e.g. vo-
cal quality and articulatory precision) and the final
severity score. The result is a model that not only
improved the accuracy of dysarthria assessment
but also provided justifications for its predictions by
exhibiting high correlations with the interpretable
bottleneck features. An extension of this work was
recently proposed by (Xu et al., 2023). Instead of
relying on perceptual labels provided by SLPs, the
authors of this work trained the interpretable layer
to learn four acoustic features that characterize dif-
ferent aspects of dysarthria (articulatory precision,
consonant-vowel transition precision, hypernasality,
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and vocal quality). Authors extracted these acous-
tic features from the speech samples they have in
possession. They also applied SHapley Additive
exPlanations (SHAP) (Lundberg and Lee, 2017)
as an explanation tool to further analyze the contri-
bution of each acoustic feature in the interpretable
layer to the final prediction. Very close to Tu Ming
et al., authors in (Korzekwa et al., 2019) proposed
a DL model for the detection and reconstruction of
dysarthric speech. Their model not only provides
interpretable characteristics of dysarthria but also
tries to reconstruct healthy speech.

Although these works address one major require-
ment of DL in a clinical application which is DL
interpretability, their methodology based on the in-
corporation of a bottleneck layer raises the need
for a large dataset of speech pathology. This need
arises because they trained their DL models from
scratch using a dataset of dysarthric speech. For Tu
Ming et al. (Tu et al., 2017), this data requirement is
even more important since they need extra labels,
in addition to the severity score, for the training of
the bottleneck layer. In addition, if we consider that
these intermediate labels could be subjective since
they are provided by humans (SLPs), this leads to
the incorporation of a subjectivity characteristic in
the interpretability of the final score. Recently, the
authors in (Abderrazek et al., 2023) shed light on
these issues and proposed an alternative methodol-
ogy for an interpretable speech assessment using
DL. One of the authors’ main contributions was ad-
dressing the issue of data requirements. Indeed,
collecting a significant amount of data, especially
for pathological speech, can be a difficult and ex-
pensive task, making this factor a crucial aspect to
take into account. The authors’ starting point was
a DL-based model trained on healthy speech that
encodes the characteristics of "normal” reference.
Later on, they proposed an explainability framework
and brought to light an interpretable dimension that
emerges automatically within this DL-based model.
This dimension serves later to interpret the final
assessment of patients. As a result, interpretability
can be achieved without the need for additional la-
bels or data, and without introducing any possible
subjective factors.

In this paper, we suggest building upon the work
proposed by the authors in (Abderrazek et al., 2023)
in order to have an end-to-end solution for an in-
terpretable assessment of speech intelligibility for
HNC patients. The rest of this paper is organized
as follows. In section 2, we provide an overview of
the methodology proposed by the authors, which
serves as the foundation of this study. In section 3,
we briefly describe the two main datasets dedicated
to speech disorders due to HNC that we use in this
work. Then, section 4 is devoted to the descrip-
tion of the experimental setup, including the data

preprocessing, the architecture dedicated to the
score assessment, and the training details. Subse-
quently, results and several analyses are reported
in section 5. We follow up with a case study in
section 6 to demonstrate the potential of this re-
search as an end-to-end solution for the objective
assessment and interpretation of speech disorders
in a clinical setting. Finally, section 7 concludes
this work and gives some perspectives.

2. Methodology Overview

In the first step (Abderrazek et al., 2020), authors
proposed a DL-based model (Convolutional Neural
Network - CNN) dedicated to the task of French
phoneme classification. The model was trained ex-
clusively on healthy speech in order to address the
issue of limited data availability in speech pathology
while also meeting the relatively high data require-
ment of deep learning applications. As shown in
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figure 1, this methodological choice allowed the
authors to have deep representations of French
phonemes (hidden layers of the CNN) in addition to
the phoneme dimension (output layer of the CNN).
In the second step (Abderrazek et al., 2022), the
authors’ goal was to investigate the capacity of the
CNN-based phoneme classifier to yield relevant
knowledge related to the characteristics of speech
pathology. For this sake, the authors proposed
the framework, Neuro-based Concept Detector
(NCD), a general analytic framework for the ex-
plainability of hidden neurons/layers of a DL-based
model performing a classification task. By applying
NCD for the CNN explainability, the authors brought
to light an interpretable dimension of great rele-
vance in the clinical phonetics context which is pho-
netic features. Subsequently, they proposed a scor-
ing approach, Artificial Neuron-based Phonolog-
ical Similarity (ANPS), to retrieve fine-grained in-
terpretations of the speech impairment based on
the emergent dimension of phonetic features. This
scoring approach is associated with heatmaps to
facilitate the visualization and understanding of in-
terpretable information by clinical experts. In this
paper, we suggest adding an extra step to this pro-
posed methodology in order to make it an end-to-
end solution dedicated to an interpretable assess-
ment of speech intelligibility in the context of speech
disorders due to HNC. The details of this extra step
implementation are provided in the next sections.

3. Data

This work relies on two main corpora, involving both
recordings of disordered speech due to HNC and
their perceptual measures.

3.1. C2SI corpus

The C2SI corpus (Carcinologic Speech Severity
Index) (Woisard et al., 2021), is a corpus including
the recordings of 87 HNC patients and 40 healthy
control speakers. It was proposed in the C2SI study
with the goal to assess how the treatment for up-
per aerodigestive tract cancers (i.e. pharynx and
oral cavity) affects speech production using both
perceptual and automated speech processing tech-
niques. To qualify for inclusion, patients need to
have successfully completed their therapeutic pro-
tocol for a minimum of six months, achieved clinical
remission, and exhibited no speech disorders of
alternative causes.

Recorded tasks: The patient recordings were
generated through various tasks, each designed
for a specific type of analysis. This study primar-
ily concentrates on the subset of C2SI recordings
issued respectively from the reading task (C2SI-
LEC), the image description task (C2SI-DES), the

prosodic tasks (C2SI-SYN, C2SI-FOC, and C2SI-
MOD), and the sentence verification task (C2SlI-
SVT). Itis worth mentioning that not all C2SI speak-
ers were recorded for all the tasks. The exact in-
cluded number of speakers will be given later in
table 1. The recordings were therefore analyzed by
a jury composed of six clinicians whose expertise
area is speech disorder evaluation.

Perceptual measures: Among the different per-
ceptual measures that were conducted, we out-
line the most significant ones to the current study
which are intelligibility and severity. The instruc-
tions given to the experts included the following
definitions (Balaguer et al., 2019). Intelligibility is
defined as “the comprehensibility of the message
sent by the signal”, while severity is defined as “the
degree of the overall deterioration of the audible sig-
nal”. Both measures are assessed on a scale from
0 to 10, where 0 corresponds to the strongest al-
teration/unintelligible speech, and 10 corresponds
to the absence of alteration/perfectly intelligible
speech. In the rest of this paper, we exclusively use
the intelligibility and severity measures that were
perceptually assessed on the picture description
task. We assign a single overall severity score
and a single overall intelligibility score to the set of
recordings produced by each speaker regardless
of the real task of the recording in question. This
choice is explained by the fact that the task of im-
age description leads to less predictable linguistic
content compared to the reading task (Lalain et al.,
2020), therefore, to a more valuable perceptual as-
sessment by the experts.

Metadata: In addition to the recordings and per-
ceptual measures, C2SI corpus includes some clin-
ical information about the patients such as the treat-
ment type (surgery, radiotherapy, chemotherapy),
cancer region, values of T and N criteria from UICC
Tumor/Node/Metastasis (TNM) classification, etc.

3.2. SpeeCOmco

Proposed by (Balaguer, 2021), SpeeCOmco is a
corpus including 27 patients treated for cancer of
the oral cavity or oropharynx. Similarly to C2SI,
the patients in SpeeCOmco corpus recorded differ-
ent tasks and were subject to several perceptual
assessments. In this work, we only focus on the
recordings issued from the reading task (the same
clinical text used in C2SI). Regarding the percep-
tual measures, we use the intelligibility and severity
measures of SpeeCOmco patients that were as-
sessed on the recordings of the semi-directed inter-
view. These assessments were conducted using
not only the same instructions and rating scales
as those used in C2SI corpus but also the same
experts, which ensures greater comparability in the
perceptual measures of the two corpora.

9172



4. Experimental Setup

In this section, we outline the implementation of the
extra step which serves our final goal: predicting an
interpretable intelligibility score for HNC patients.

4.1. Input Data Preparation

In this section, we present the process of data
preparation for the score prediction task, which we
illustrate in figure 2. Basically, we take the speech
productions from every speaker and apply data pre-
processing to make it compatible with the input of
the CNN-based phoneme classifier. The outcome
of this data preprocessing stage is a set of acoustic
feature matrices at the frame level, as described
in (Abderrazek et al., 2020), that we refer to as
CNN input samples. Next, we consider these CNN
input samples by blocks of 100 consecutive sam-
ples which reflect almost one second of speech
produced by a particular speaker. Each of these
blocks is then fed to the trained CNN. The choice
of one-second segments leading to blocks of 100
consecutive samples has been driven by the ne-
cessity of sufficient data for the intelligibility score
prediction process, regarding the speech disorder
corpora available in our context. Indeed, we can-
not consider the set of overall speech recordings
available per patient, but smaller speech segments
to augment the processed data. As illustrated in
figure 2, we select the set of 985 interpretable neu-
rons across the different fully-connected layers of
the CNN. These interpretable neurons have been
identified as phonetic feature detectors in (Abder-
razek et al., 2022). Now, as aforementioned, we
fed the blocks of 100 input samples to the CNN.
We retrieve the activations of the selected set of
interpretable neurons and concatenate them into
embedding vectors with a dimension of 985. Here,
a single embedding vector matches a single input
sample. That is to say, for one block of 100 input
samples reflecting almost one second of speech,
we obtain 100 embedding vectors. We refer to
these resulting embedding vectors as phonetic
feature embeddings as they represent the input
speech signal in terms of phonetic features. A block
of 100 phonetic feature embeddings is considered
later as one input sample to the next model respon-
sible for predicting the final score.

4.2. Score Prediction process

Building on the previous input preparation, we use
the blocks of 100 phonetic feature embeddings,
generated for each speaker, as input to a Shallow
Neural Network (SNN) that aims to predict a final
score. As detailed in figure 3, the SNN generates
a score prediction for each block of 100 vectors. In
other words, for each speaker, we will have an as-

sessment of his/her speech production for almost
every second. It is worth noting that it is possi-
ble to obtain an overall score for an utterance or
a speaker. For instance, to get an utterance-level
score, we average the scores generated for each
second of the utterance. Similarly, a global score
for a given speaker results from averaging all the
scores generated for each second across all ut-
terances produced by that speaker. As regards
the SNN architecture, it simply consists of an av-
erage pooling layer followed by a fully-connected
layer, then a final output layer. Considering the
phonetic feature embeddings that we generated as
detailed in figure 2, this pooling layer takes 100 vec-
tors each composed of 985 activation values, and
converts them to a 985-dimensional vector. This
transformation can be considered as passing from
a frame-level representation to a segment-level rep-
resentation (one-second segment). This latter is
then fed to one fully connected layer with a ReLU
activation function. The number of neurons within
this layer is a hyper-parameter that we tune and
fix later based on the task in question. Finally, the
output layer corresponds to the final score (i.e. the
assessment of the one-second input segment). To
ensure that the predicted score is between 0 and
10, we use the bounded activation function sigmoid
which maps any input to a value between 0 and 1,
and then we scale the output of this function to map
it to the range [0, 10]. This requirement stems from
the fact that the perceptual measures in our pos-
session, which serve as the ground-truth scores for
training the regression model, are evaluated within
a range of 0 to 10 as detailed in section 3.

4.3. Datasets and Training details

The proposed SNN model is trained to map an
input of 100 phonetic feature embeddings at the
frame level to a particular score of interest. To
this end, we use the datasets C2SI-SVT, C2SI-
FOC, C2SI-MOD, and C2SI-SYN as input for the
training process. A collection of one-second seg-
ments is issued from the different speakers’ produc-
tions in these datasets (i.e. patients and healthy
control speakers) and then, as described in sec-
tion 4.1, prepared to be an input to the regression
model. We further use the dataset C2SI-LEC as
a validation set to monitor the training and tune
the experimental settings. As regards the test, we
use SpeeCOmco dataset to evaluate the resulting
model. Still in table 1, we report some details about
the input samples to the regression task for train-
ing, validation, and testing. Some details about
the target score distributions (i.e. intelligibility and
severity), within the training and validation sets, are
summarized in the same table. The Mean Squared
Error (MSE) is taken as a loss function for the score
regression task.
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5. Results

In this section, we report and discuss the results
of different regression experiments. The outcomes
are depicted in Table 2, showcasing two distinct
losses: the Mean Absolute Error (MAE) and the
MSE. These losses provide insights into various
aspects of the errors present in the model predic-
tions. In the table columns, we specify the target
scores for which the model was trained to make
predictions, along with the number of neurons used
in the hidden fully connected layer of the SNN.
Therefore, for each of these configurations, we pro-
vide the different loss values obtained on both the
validation set (C2SI-LEC corpus) and the test set
(SpeeCOmco corpus). We can observe that the
best model for severity prediction is the one with
64 hidden neurons. Regarding the intelligibility pre-
diction, the best model is the one with 256 hidden
neurons. All the analyses and comparisons be-
low are based on these two best models.

For the severity prediction task, the best model
achieves an MAE of 1.25 and an MSE of 2.55, as av-
erage errors on the C2SI-LEC dataset. As regards
the best regression model predicting the intelligibil-
ity score, an MAE of 1.21 and an MSE of 2.97 are
achieved on the same data. It is worth mentioning
that these best models demonstrate remarkable

performance on the SpeeCOmco corpus as well
(test set). We can see from table 2 that the best
regression model for severity prediction achieves
an MAE equal to 1.4 and an MSE equal to 2.97 on
the SpeeCOmco dataset. As regards intelligibility
prediction, the best model achieves even better re-
sults with an MAE of 1.32 and an MSE of 2.97 on
the same data. Despite having relatively few exam-
ples to learn from (25K one-second segments, see
table 1), the models are able to accurately predict
scores for another set of HNC patients, that were
never seen in the training and validation phases.
Importantly, this sheds light on the ability of the
resulting models to generalize well to a completely
different set of patients and confirms that they are
not subject to overfitting on the C2SI patients.

To complete our analysis, we plot the scatter plots
of the mean predicted severity (resp. intelligibility)
vs. the true perceptual severity (resp. intelligibil-
ity) of C2SI-LEC and SpeeCOmco speakers. We
organize the analysis based on the target task.

5.1. Analysis of severity prediction

The scatter plot of the mean predicted severity vs.
the true perceptual severity of C2SI-LEC speakers
is depicted in figure 4a. We highlight the best-fit
line between the mean predicted scores and the
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Training Validation Testing
C2SI-SYN & C2SI-MOD
Dataset & C2SI-SVT & C2SI-FOC C2SI-LEC | SpeeCOmco
#speakers 105 114 27
#input samples (1s segments) 25637 3542 867
Perceptual Intelligibility (mean+std) 7.9+2.5 7.9+2.5 6.7+2.6
Perceptual Severity (meanzstd) 6.5+2.6 6.5+2.6 5.7+2.6

Given that a single perceptual intelligibility or severity rating was assigned to an entire recording, we replicate this
assignment to every one-second segment comprising the entirety of that recording.
The mean and standard deviation values are calculated on one-second segments.

Table 1: Datasets for the training, validation, and testing of the Shallow Neural Network

Task
Severity Prediction Intelligibility Prediction
#Neurons #Neurons

64 128 256 64 128 256

MAE | 1.25 1.28 1.26 213 1.3 1.21

C2slI-LEC MSE | 255 274 262 || 10.73 3.36 2.97
SpeeCOmco MAE | 14 144 14 3.29 1.45 1.32
MSE | 297 322 3.05 | 17.58 3.57 2.97

Table 2: Results of regression on phonetic feature embeddings according to the final task and the number
of neurons in the SNN hidden layer

perceptual score, in addition to the line Y = Y to
visualize any possible pattern in the errors. Healthy
control speakers and patients are distinguished
with blue and green colors, respectively.

First, it is worth mentioning that the range of the
mean predicted severity is [3.7; 9.3] which means
that this score is reduced and does not cover the
complete range of severity [0; 10]. As regards the
regression line, we can see that a positive strong
relationship exists between Y and Y. This is con-
firmed by a high Pearson correlation, equals to 0.93,
between the predicted and perceptual severity val-
ues. This may indicate that the model is able to
capture some of the underlying patterns in the pho-
netic feature embeddings. However, it is important
to note that a high correlation does not necessarily
imply high accuracy or precision in the predictions.
Even if the model is able to capture some of the
overall trends in the data, it may still be making sig-
nificant errors in individual predictions, which could
lead to incorrect conclusions. To this end, we ana-
lyze the results based on the line Y = Y. From this
perspective, we can see that the regression model
actually underestimates high severity scores (i.e.
the upper right area hashed in grey) and overesti-
mates low severity scores (i.e. the bottom left area
hashed in red). Consequently, this may suggest
that the model has a systematic bias in its predic-
tions. Specifically, the model may be "flattening”
the predicted scores towards the mean, rather than
capturing the full range of variation in the target
variable. In other words, this indicates that there is
room for improvement in the regression model we

proposed in order to tackle this specific behavior.
Now moving to the model prediction analysis on
the test set, we would like to discard any possibility
of misleading conclusions from the previous anal-
ysis due to the fact that it was conducted on the
validation set. Figure 5 depicts the scatter plot of
the mean predicted severity vs. the true percep-
tual severity on SpeeCOmco patients. First, the
scatter plot shows exactly the same trends as the
one in figure 4 conducted on C2SI-LEC speakers,
with a variation of the mean predicted severity in
the range [3.4; 8.7]. The model bias previously
observed towards underestimating high severity
scores and overestimating low severity scores is
still noticeable.

5.2. Analysis of intelligibility prediction

Similarly, figure 4b depicts the scatter plot of the
mean predicted intelligibility vs. the true perceptual
intelligibility of C2SI-LEC speakers. It is worth not-
ing that the range of the mean predicted intelligibility
is [4.4; 9.9]. This range is indeed slightly higher
than the range of mean predicted severity. More-
over, the Pearson correlation between the mean
predicted intelligibility and the true perceptual in-
telligibility is less than the correlation calculated
on severity, but still very important (r=0.87). Addi-
tionally, we observe that the model exhibits a clear
bias towards overestimating low scores in the pre-
diction of speech intelligibility, consistent with the
previously noted bias in the prediction of speech
severity. However, unlike the bias observed in the
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prediction of speech severity, the bias towards un-
derestimating high scores is not readily apparent
in the case of speech intelligibility prediction.

On the other hand, figure 5 depicts the scatter
plot of the mean predicted intelligibility vs. the true
perceptual intelligibility of SpeeCOmco patients.
First, the variation of the mean predicted intelligibil-
ity of SpeeCOmco patients is in the range [4.3; 9.7].
Obviously, the trends and observations described
for the intelligibility predictions on C2SI-LEC speak-

ers remain valid. In addition, we add examples
of regression plots per second on three patients
in order to have visibility on the model behavior
at the one-second segment level. The selection
of patients was performed while varying their per-
ceptual intelligibility levels (i.e. "PFG13" for high
perceptual intelligibility, "CMS19" for medium per-
ceptual intelligibility, and "CMH25" for deteriorated
perceptual intelligibility). The X-axis of these plots
represents the seconds of the speech production,
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which number depends on the time each patient
takes to read the same text. The Y-axis represents
the severity range. The horizontal blue line is the
perceptual severity level of the patient in question,
while the blue dots are the predicted severity scores
at the one-second segment level. The vertical black
lines are the residuals (i.e. the difference between
a true and a predicted value) at each second. It
is worth mentioning that the detailed predictions
at the one-second segment level reveal that the
model exhibits a high degree of confidence and
consistently makes the same decision for all sec-
onds of the patient "PFG13". As regards the patient
"CMS19", we can see that the model predictions
vary largely depending on the one-second segment
in question. This behavior tends to be coherent.
Indeed, with nearly "normal" speech (the case of
patient "PFG13"), it would be expected to have
a few altered one-second segments as observed.
Conversely, with very severe impairment (the case
of patient "CMH25"), it would be expected that al-
most all one-second segments would be altered
as observed. Finally, more variation between one-
second segments should be expected with moder-
ate impairment (the case of patient "CMH19"), with
some "normal" speech segments, and others more
altered. Still, additional analyses are necessary to
investigate the characteristics of the one-second
segments.

6. An end-to-end application of the
interpretable methodology

In this section, we consider the three patients
"PFG13", "CMS19", and "CMH25" belonging to
SpeeCOmco corpus to illustrate an end-to-end ap-
plication of the global methodology for an inter-
pretable assessment of speech intelligibility. These
patients were rated by the experts 10, 6.8, and
1.5 in terms of intelligibility respectively. Regarding
the automatic prediction of intelligibility scores, as
shown in Figure 6, we obtain prediction scores of
9.7, 7.4, and 4.2 for the same three patients, re-
spectively. Thanks to Step 2 of the interpretability
methodology (Abderrazek et al., 2022), we can as-
sociate these different predicted intelligibility scores
with a deeper analysis based on the altered pho-
netic features as depicted in the figure 6 heatmaps.
Indeed, this figure reports the local ANPS scores
per phonetic features for both consonants and vow-
els for all the patients of the SpeeCOmco dataset
(heatmaps), sorted according to their perceptual
intelligibility scores (from the most intelligible on the
right to the least intelligible on the left). Proposed in
(Abderrazek et al., 2023), this score assesses how
well acoustic/articulatory characteristics related to
phonetic feature t are produced by speaker s. The
three patients "PFG13", "CMS19", and "CMH25"

are specifically highlighted in the figure with their
local ANPS scores surrounded. Comparing these
three patients, we can clearly see different configu-
rations of local ANPS scores, showing a consistent
deterioration of score values compared to the pre-
dicted intelligibility scores of these patients. This as-
sociation between the predicted intelligibility score
and the heatmaps displaying ANPS scores should
enable clinicians to directly associate a score with
alterations in phonetic features at a specific time (t).
Additionally, it should allow the comparison of differ-
ent pairs of scores/heatmaps for the same patient
in a longitudinal way to measure the efficiency of a
rehabilitation program or of a specific prosthesis.
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Figure 6: End-to-end application of the global
methodology on three SpeeCOmco patients

7. Discussion

In this paper, we built upon an interpretability
methodology that was proposed by (Abderrazek
et al., 2023) in order to have an end-to-end solution
for an interpretable assessment of speech intelligi-
bility in the context of speech disorders. Promising
results have been obtained regarding the predic-
tion of speech intelligibility and severity of HNC
patients while giving relevant interpretations of the
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final assessment both at the phonemes and pho-
netic feature levels. By examining this speech in
terms of production at these two granularity levels,
clinicians can gather more useful information for
speech therapy and develop tailored rehabilitation
protocols. This is especially important because
we are aware that phonemic alterations are the
primary challenge in speech production for HNC
patients, significantly affecting their communication
skills and, consequently, their quality of life.

One interesting perspective of this work would be to
confirm these results in clinical practice and more
specifically within a longitudinal study. This type of
study involves following a group of individuals with
speech disorders for a period of time which allows
clinicians to observe and track changes in speech
production over time. In other words, if a longi-
tudinal study can confirm the effectiveness of the
proposed methodology and demonstrate consistent
and meaningful interpretations, it can provide clini-
cians and researchers with a deeper understanding
of how speech disorders impact individuals and in-
form better treatment approaches.

While these findings show great promise, we be-
lieve that further improvements are necessary to
enhance the reliability and generalizability of the
models. As a perspective, we suggest using an
attention mechanism that can potentially improve
the performance of the regression model by en-
abling the focus on the most relevant frames and
features for the prediction. This technique is very
used in the speaker recognition field (Okabe et al.,
2018), where it has been shown that some frames
are more unique and important for discriminating
speakers than others, for a given utterance. In
speech intelligibility assessment of patients with
speech disorders, some frames of speech may
contain more critical information for understanding
the intended message than others. A possible fur-
ther analysis could be to examine the input features
used by the regression model and their importance
in predicting the target score. An application of the
SHAP (Lundberg and Lee, 2017) framework can be
used to explain the predicted score of the model for
a specific input by attributing a contribution value
to each element in the phonetic feature embedding.
This provides insight into which features are driv-
ing the predictions of the model and how they are
influencing the final intelligibility score.
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