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Abstract
Large language models (LLMs) have shown tremendous success in following user instructions and generating
helpful responses. Nevertheless, their robustness is still far from optimal, as they may generate significantly
inconsistent responses due to minor changes in the verbalized instructions. Recent literature has explored this
inconsistency issue, highlighting the importance of continued improvement in the robustness of response generation.
However, systematic analysis and solutions are still lacking. In this paper, we quantitatively define the inconsistency
problem and propose a two-stage training framework consisting of instruction-augmented supervised fine-tuning
and consistency alignment training. The first stage helps a model generalize on following instructions via similar
instruction augmentations. In the second stage, we improve the diversity and help the model understand which
responses are more aligned with human expectations by differentiating subtle differences in similar responses. The
training process is accomplished by self-rewards inferred from the trained model at the first stage without referring
to external human preference resources. We conduct extensive experiments on recent publicly available LLMs on
instruction-following tasks and demonstrate the effectiveness of our training framework.
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1. Introduction

Large language models(LLMs) are now regarded
as one of the most advancing fields in artificial
intelligence researches (OpenAI, 2023; Chiang
et al., 2023; Taori et al., 2023; Touvron et al.,
2023). By sufficiently pre-training on massive tex-
tual corpus, and carefully fine-tuning and aligning
on high-quality instruction-following data, LLMs
have demonstrated remarkable capabilities, e.g.
understanding human instructions and generating
helpful responses (Wei et al., 2021; Ouyang et al.,
2022; Dong et al., 2023; Rafailov et al., 2023; Yuan
et al., 2023).

However, the robustness of current LLMs, even
those leading ones, is still far from promising in re-
cent literature (Gu et al., 2022; Sun et al., 2023;
Liang et al., 2023). A commonly observed phe-
nomenon is the inconsistency problem when they
respond to distinct but semantically equivalent in-
structions. We list an example shown in Figure 1:
we see GPT-4 returns inconsistent answers to the
same task ”the referent of the number”. Such in-
consistency problem reflects the inherent flaws of
LLMs to some extent and hinders their practical
applications.

Recent work explores the inconsistency prob-
lem (Gu et al., 2022; Sun et al., 2023; Li et al.,
2023b; Liang et al., 2023). For instance, they find

∗ Co-corresponding authors.

… Use your language skills to determine what the 
element being referred to by the underlined number. 
Like _ number _ …

two

… Employ your knowledge to determine the referent of 
the highlighted number. The numbers will be marked 
with two underlines surrounding like _ number _ …

The referent of the highlighted 
number "two" is months

…
Catherine Willows: Okay, no phone, no friends, no nothing.
Lindsey Willows: For how long?
Catherine Willows: A month
Lindsey Willows: Whatever
Catherine Willows: Hey, you want to make it _ two _ ? 
…

Figure 1: GPT-4 generates inconsistent responses
for the identical task.

the LLMs may generate inconsistent responses
due to the different verbalized instructions (Li et al.,
2023b), data distribution shift (Li et al., 2023a),
or even discrepancies in instruction formats (Gu
et al., 2022). Based on these observations, Li et al.
(2023a) and Liang et al. (2023) propose to opti-
mize the instruction to identify the optimal task in-
struction that elicits the best performance for LLMs.
Nevertheless, there is an absence of quantitative
analysis of the current state, along with a systemic
solution to improve the instruction-tuned LLMs.
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In this paper, we first quantitatively analyze the
generation robustness of current LLMs in terms
of our consistency metrics. We then propose a
novel training framework for LLMs via consistency
alignment to mitigate the inconsistency problem
in current LLMs. Concretely, our training frame-
work sequentially performs the following two train-
ing stages: instruction augmented supervised fine-
tuning and response consistency alignment. (1)
In the augmented supervised fine-tuning (SFT)
stage, we first paraphrase the original instruction
in the SFT dataset and then pair each paraphrased
instruction with the original response to form a
new augmented training sample. Finally, all aug-
mented training samples are then added to the
SFT dataset to fine-tune the LLMs. (2) In the
consistency alignment stage, we feed the para-
phrased instructions to LLMs to generate candi-
date responses, and then construct <good, bad>
response pairs where each response is individu-
ally evaluated by the consistency score. Finally,
we optimize the LLMs to directly learn the prefer-
ences through an offline training algorithm (Yuan
et al., 2023).

We conduct extensive experiments on pub-
licly available models including Vicuna-7B,
Vicuna-13B, Llama2-7B, and Llama2-13B on
the instruction-following tasks. The experimental
results show that by explicitly adding consistency
self-alignment, these LLMs can obtain robustness
improvements and generalize better on following
instructions.

Our contributions are as follows:
1. We propose an integrated training framework

to enhance the robustness of LLMs.

2. We propose to utilize self-rewards to improve
the performance of a large language model
without referring to external human preference
resources or external reward models.

3. We conduct extensive experiments to verify
the effectiveness of our training framework
method across several public LLMs.

2. Related Work

Instruction Tuning. In order to help LLMs un-
derstand the instructions and generate human ex-
pected responses, recent work (Ouyang et al.,
2022; Chiang et al., 2023; Taori et al., 2023; Wei
et al., 2021) employ instruction fine-tuning on the
pre-trained models to help them follow user instruc-
tions. Ouyang et al. (2022) propose to optimize
the fine-tuned model (policy model) with PPO to
learn human preference. Dong et al. (2023) pro-
pose a reward-ranked fine-tuning method, which
selects the top n model outputs using an exist-
ing reward model to fine-tune foundational LLMs.

Rafailov et al. (2023) proposes to directly opti-
mize preferences between two responses given a
specific instruction, which implicitly optimizes the
same objective as existing PPO algorithms. Song
et al. (2023) and Ziegler et al. (2019) propose sim-
ilar methods to further fine-tune the LLMs utilizing
the ranked response pairs that align with human
preference. Zhao et al. (2023b) and Zhao et al.
(2023a) calibrate the sequence likelihood by sam-
pling generated candidates and making the can-
didates align with the references in latent space
using various ranking loss. Yuan et al. (2023) con-
tinue to optimize a bigger model LLAMA-7B and
propose RRHF which is a similar method as de-
scribed above.

Prompting. Prompting is attractive for its simplic-
ity to improve alignment for the LLMs by using
few samples or suitable instructions (Brown et al.,
2020; Jiang et al., 2021). Wei et al. (2022) propose
Chain-of-thought (CoT) to improve reasoning abili-
ties. Their successors (Zhou et al., 2022) propose
least-to-most prompting to solve complex reason-
ing tasks. Wang et al. (2023) and Si et al. (2022)
propose to utilize the self-consistency between the
sampled answers and choose the most frequent
one as the final answer.

Instruction Data. An intuitive start point is to col-
lect a substantial array of diverse and heteroge-
neous NLP tasks from existing benchmarks (Wei
et al., 2021; Longpre et al., 2023; Wang et al.,
2022) for instruction-tuning. Then Conover et al.
(2023), Köpf et al. (2023) and Chiang et al. (2023)
collect crowd-sourcing human-written instructions.
Wang et al. (2023), Yu et al. (2023) and Xu et al.
(2023) prompt LLMs to generate large-scale, di-
verse and more complex instructions automati-
cally. Recent work (Zhou et al., 2023; Cao et al.,
2023; Chen et al., 2023; Jiang et al., 2023) focus
on generating or selecting high-quality and rep-
resentative instructions to improve the instruction
tuning performance.

Robustness on Instruction-following. Recent
work (Gu et al., 2022; Liang et al., 2023) have ex-
plored that the manipulated instructions would de-
grade the performance of instruction-tuned LLMs.
Li et al. (2023b) evaluate the instruction-following
abilities of LLMs through different verbalizations
and emphasize the need for continued improve-
ment on instruction-following abilities. Li et al.
(2023a) consider the distribution shift between the
seen training data and the unseen test data and
propose an ensemble method to derive optimal
instructions to elicit the performance on the un-
seen data group. Sun et al. (2023) reveal that
instruction-tuned LLMs are sensitive to instruction
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re-phrasings, and propose soft prompts by trans-
ferring the manipulated instruction to the optimal
ones to alleviate this issue. All of the previous work
lacks a quantitative analysis of the current state in
the robustness of the generations, along with cor-
responding solutions.

3. Robustness on Instruction
Following

Given the multifarious ways in which natural lan-
guage conveys identical semantics, it is crucial for
LLMs to maintain answer consistency across vari-
ous verbalized questions or instructions. We char-
acterize the robustness in terms of the answer con-
sistency and analyze the current state of LLMs in
this regard.

Definition of Consistency We denote Q as a
potential space, representing all conceivable lin-
guistic paraphrases conveying equivalent seman-
tic content or user intent. Let Y : Q → P(Y ) be
a function mapping each question in Q to a proba-
bility distribution over the possible responses in Y .
Given this, the consistency of an LLM R is then
defined as the expected consistency between the
model’s responses to any two elements from Q:

R = Eqi,qj∈Q

[
Eyi∼Y (qi),yj∼Y (qj)[sim(yi, yj)]

]
(1)

where sim(yi, yj) ∈ [0, 1] is a function measur-
ing the consistency between two responses in Y .
A higher value of R denotes greater robustness.
It demonstrate the model’s ability to maintain con-
sistency across diverse and potentially infinite lin-
guistic representations in Q, despite the inherent
response variability.

For the similarity function, sim, the feasible ap-
proaches include measuring the similarity of the
response embeddings (Zhang et al., 2020; Pillutla
et al., 2021), or exploiting LLMs to check whether
the two answers are the same or contradicted (Ka-
davath et al., 2022). Due to the limitations of se-
mantic similarity based on embeddings and the
ability of LLMs that align with human intent better
in such tasks, we choose to use LLMs to assess
the consistency of responses. That is, we prompt
the LLMs to determine whether two responses are
similar or contradicted and the instruction is shown
in Table 1. Then sim(yi, yj) ∈ {0, 1} is obtained by
inferring the generated contents.

In particular, we formally define Consistency
Rate CR and Maximum Consistency Rate MCR
as the consistency metrics. The first one is an in-
dicator of the consistency rate between any two
answers under Q,

CR =
1

|Q|
∑

Qk∈Q

∑
yi∈Yk

∑
yj∈Yk,j ̸=i

sim(yi, yj)(|Yk|
2

) (2)

Figure 2: The consistency metrics of recent LLMs.

where
(|Yk|

2

)
is the number of 2-combinations for

the responses Yk under the same input. We use
Maximum Consistency Rate MCR to report the
rate of the maximum consistent answers among
the all generated answers on the Q Tasks.

MCR =
1

|Q|
∑

Qk∈Q

|Ωmax
k |
|Yk|

(3)

where |Ωmax
k | = argj |maxΩj | and Ωj is a cluster

of consistent answers under the same input.

Determine whether answer "A" is the
same or contradicted with the answer
"A Reference" for the question "Q".
For the tasks with fixed answers,
if the two answers are exactly the
same you give "same", otherwise, you
give "Contradicted" as the output.
For free-form generation tasks, you
need to check whether the answer
"A" is an expected generated title,
question, data-to-text description,
or summarization, etc., as the
answer "A Reference". If the two
answers describe a similar meaning
you give "Same", otherwise, you give
"Contradicted" as the output.

Table 1: The instruction for determining whether
two responses are consistent.

Robustness of the current LLMs We conduct
a preliminary study analyzing the current state of
contemporary LLMs quantitatively, namely GPT-
3.5, GPT-4, Vicuna and LLaMA-2 in terms of the
previously defined metrics.

We crafted a test set randomly sampled 490
questions from Super Natural Instructions (Wang
et al., 2022), each with 10 different linguistic para-
phrases, resulting in a total of 4900 unique ques-
tions. These questions spanned diverse topics, in-
cluding science, literature, mathematics, and gen-
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eral knowledge. In our setting, We use GPT-4 to
verify the consistency among any two responses.
We report the CR and MCR in the Figure 2. We
see GPT-4, ChatGPT and Vicuna-13B emerged as
the more robust model in terms of the two con-
sistency metrics. There is still room to improve
the robustness especially the smaller ones when
contending with diverse linguistic representations.
The characteristics of the inconsistency are dis-
cussed in the following section. These two metrics
are straightforward and can be used to illustrate
how far the current LLMs are from the optimal ro-
bustness performance.

4. Training Large Language Models
via Consistency Alignment

We aim to improve the robustness of instruction-
following for the large language models via con-
sistency alignment. As shown in Figure 3, our
training framework consists of (1) Supervised fine-
tuning with instruction augmentation (SFT (IA))
to improve the model’s generalization on follow-
ing instructions; (2) Consistency alignment training
(CAT) with the automatic feedback after the first
stage, which helps the model notice diversity and
subtle differences between the similar responses
rather than simple imitation.

4.1. Instruction Augmented Supervised
Fine-Tuning

Firstly, we augment the task instructions with simi-
lar ones to guide the model’s instruction tuning.

Instruction Augmentation Similar instructions
are the instructions that convey the same task
but are verbalized differently. This aligns with
real scenarios where the same task is likely to be
induced by different end-users with varying tex-
tual expressions. Unfortunately, there is an ab-
sence of scaled human-written similar instruction
datasets. We prompt the large language models to
paraphrase the original instructions into several re-
phrasings. The language models are not restricted
here where can be Vicuna, ChatGPT or GPT-41.
In our paper, there is an original task instruction
a along with several input-output instances M =
{(xi, yi)} for the task. We paraphrase the task in-
struction a and keep the input and output instances
unchanged. The prompt we use for the paraphras-
ing task is shown in Table 2.

After the paraphrasing process, we obtain at
most n similar task instructions for each task.

1We have examined the precision of paraphrasing
performance for Vicuna-7B, ChatGPT and GPT-4, the
precision values are 93 %, 95% and 95% respectively.

Paraphrase the input sentences to
have different words and expressions
but have the same meaning as the
original sentences. Output the various
paraphrases separated by '<br>'.
Please note that you should not answer
the question, but rather paraphrase
it.

Table 2: The instruction for the paraphrasing task.

Supervised Fine-Tuning (SFT) Then we use
the paraphrased instructions along with its origi-
nal instruction to fine-tune our model. For each
task, we randomly sample m instances for the su-
pervised fine-tuning stage. The training set we use
is S =

∪
k

∪n
j

∪m
i {akj , xk

i , y
k
i }, where akj is the jth

task instruction and (xk
i , y

k
i ) is the ith input-output

pair for task k. We combine a task instruction a
with an input xi as a question qi for the model and
use yi as the target output for training. The train-
ing objective in our paper is a standard supervised
fine-tuning loss shown below:

Lsft = −
∑
t

logP (yi,t|a, xi, yi<t) (4)

4.2. Response Consistency Alignment
Training

We obtain a trained model after the first stage. We
aren’t aiming to train a model that merely mimics
and lacks diversity even if its instruction-following
capabilities are improved. Therefore, we continue
to train the model to learn which responses align
with human expectations better, using consistency
rewards to differentiate the generated responses.
We opt an offline model training method to directly
optimize the <good, bad> response pairs for its sta-
bility and simplicity like (Rafailov et al., 2023).

For each input xi, we utilize the trained model
to generate n responses in terms of the n task in-
structions. We build training pairs among the n
responses where each response is scored individ-
ually via self rewards.

Self Rewards We prompt the trained model to
give a reward ri for each generated response yi.
As we analyze the consistency of the current LLMs
in the previous section, we define the inconsis-
tency among the answers in terms of the answer
type and the correctness. The answer type indi-
cates whether the model understands the task and
is the first step for generation. As shown in Fig-
ure 1, the model does not provide a referent but a
repeat of the number ”two” providing a wrong an-
swer type. The correctness adopts a common def-
inition in language models (Kadavath et al., 2022).
We ask the model to output whether the generated
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(b) Response Consistency Alignment Training

Figure 3: Our consistency alignment training framework.

yi is the expected answer type with reward rTi ∈
{0, 1}, and whether the answer is correct with re-
ward rCi ∈ {0, 1}. The instructions we used to ver-
ify the expected answer type and its correctness
are shown in the first and second row in Table 3 re-
spectively. We concat the verification instruction
along with the question qi (i.e., a + xi), the gener-
ated response yi and the golden response as the fi-
nal prompt to obtain the reward from the LLM itself.
The rTi and rCi are then inferred from the generated
contents by using the keywords ”Unexpected”,
”Expected”, ”Incorrect” or ”Correct”. These
two tasks are easier for LLMs when used to deter-
mine the alignment rewards. We then combine rTi
and rCi to a final reward ri as follows:

ri =


0, rTi = 0

1, rTi = 1 ∧ rCi = 0

2, rTi = 1 ∧ rCi = 1

(5)

For each input xi, we obtain response pairs∪
j,i < yj , yi > where rj > ri ∧ rj = 2 through

the above step. We then incorporate these prefer-
ences into the consistency training process, mak-
ing the model learn to generate more aligned re-
sponses with higher scores, and reduce the prob-
ability of generating responses that have lower re-
wards. Inspired by (Yuan et al., 2023; Rafailov
et al., 2023), we optimize this objective by the rank-
ing loss:

Lrank =
∑
ri<rj

max(0, pi − pj) (6)

where pi is the conditional log probability of yi un-
der the model. We also add the cross-entropy loss
Lsft, where the ground-truth yi here is replaced
with the response that have the highest reward
i
′
= arg max

i
ri. The final loss is the sum of the

two losses.

L = Lrank + λ ∗ Lsft (7)

where λ is the weight of training the model for imi-
tation.

5. Experiments

5.1. Experimental Setup
Dataset We use the Super Natural Instruc-
tions (Wang et al., 2022) as our experimental
dataset, which consists of 1600+ diverse NLP
tasks each with at least one expert-written instruc-
tion along with 3155 average input-output samples.
We adopt the original division for the training and
testing sets and randomly split the original training
set into training and validation sets. Finally, we ob-
tain 700, 128, and 56 tasks for training, validation,
and testing. For each task, we sample at most 100
instances for training or testing after augmenting
the paraphrases.

For testing, we build one more test set to report
the consitency metrics. We construct the test set
I by utilizing GPT-4 to paraphrase the original task
instruction obtaining 10 task instructions, and ran-
domly sampling 10 instances for each task. The
test set II is the original 56 tasks along with 100
randomly selected samples per task.

Models We train Vicuna-7B, Vicuna-13B,
LLama 2-7B and Llama 2-13B to verify the
effectiveness of our proposed training method.

Baselines We compare our training method with
the original LLM, the standard supervised fine-
tuning (SFT) method, and the off-the-shelf SOTA
LLMs including ChatGPT and GPT-4. For stan-
dard SFT, we randomly sample 100 instances for
each task thus obtaining 70000 total samples for
training. We set learning rate 2e-5, epochs 3,
and other hyperparameters as the FastChat 2 sug-
gested.

Evaluation Metrics We evaluate our method
with robustness and accuracy metrics: (1) Con-
sistency Rate CR of any two answers between
the same task Qk under the test set I; (2) Maxi-
mum Consistency Rate MCR reports the rate of

2https://github.com/lm-sys/FastChat
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Determine whether the answer "A" is the expected answer type for the question
"Q". For tasks with fixed golden answers (like sentiment analysis, entailment
inference), you need to check whether the answer is the exact one of the expected
enums (like "True", "False", "Positive", "Negative", "A", "B", "Contradiction",
"Neutral" or "Entailment".) mentioned in the question "Q". For free-form
generation tasks (like title generation, question generation, data-to-text
generation), you need to check whether the answer is an expected generated title,
question, data-to-text description or summarization, etc., as the question "Q"
required. You also need to compare with the "Golden A" to determine whether the
answer type aligns with the answer type of the "Golden A". If the answer has
the same type as the golden answer, give "Expected answer type", otherwise give
"Unexpected answer type". Please note that you only need to determine whether it
matches the instructed answer type, and do not need to verify whether the answer
is correct.

Determine whether the answer "A" is "Correct" or "Incorrect" for question "Q".
For tasks with fixed golden answers (the answer is limited to a finite set such as
"True", "False", "Positive", "Negative", "A", "B", "Contradiction", "Neutral",
"Entailment"), you need to check whether the answer exactly matches (equals)
the golden answer "Golden A". For free-form generation tasks (the answer is
a free-form generation and not unique such as title, question, data-to-text
description generation or summarization), you need to check whether the answer
describe the same thing as the golden answer, or the answer is fluent, plausible
for the question "Q". If the answer is correct, give "Correct", otherwise give
"Incorrect" as the result.

Table 3: The instructions for determining whether a response is the expected answer type and whether
it is a correct answer.

the maximum consistent answers under the test
set I; (3) ROUGE-1, ROUGE-L under the test set I
and test set uppercaseii . Besides, we perform the
human evaluation by annotating the quality of the
generated responses with scores 0, 1, and 2 our-
selves. We report the number of wins, ties, and
loses across the responses generated by different
models.

Implementation Details For instruction aug-
mentation, we utilize Vicuna-7B, Vicuna-13B, and
ChatGPT to paraphrase the original task instruc-
tions obtaining at most 30 instructions. We ran-
domly sample n = 10 instructions and sample 10
instances for each task for the subsequent train-
ing. Thus, the scale of training resources is the
same as the baseline. For the SFT stage, we
train the models using the FastChat with ZeRO-
3 on 4 80G A100 GPUs, setting training epochs
3 and the other hyperparameters as the FastChat
suggested. For the CAT stage, we revise minor
codes in DPO in LLaMA-Efficient3 to support our
training objective. The rewards are inferred from
the LLMs themselves for training, i.e., Vicuna-7B,
Vicuna-13B, Llama 2-7B, and Llama 2-13B respec-
tively. We train the models with 3 epochs using
LoRA (Hu et al., 2021) and ZeRO-3 on 4 40G A100
GPUs and set λ = 1, lora_r = 8, lora_target =
q_proj, k_proj, v_proj, o_proj and lr = 1e − 5.
The other hyperparameters are the default set-

3https://github.com/hiyouga/LLaMA-Efficient-Tuning

ting. To fairly compare the effectiveness of training
methods, we do not import any additional data in
this stage and re-use the training samples at the
SFT stage.

5.2. Main Results

We report the consistency metrics CR, MCR4 as
well as ROUGE-1 and ROUGE-L on the compared
models and training methods on test set I in Ta-
ble 4. We observe a significant improvement in
the consistency scores and ROUGE scores for the
Vicuna and Llama 2 models after SFT. SFT with In-
struction Augmentation (SFT(IA)) results in higher
consistency scores and ROUGE scores compared
to standard SFT. The ROUGE scores are im-
proved as well which indicates the instruction aug-
mentation can help to generalize on following in-
structions. Building upon the SFT (IA) model, con-
sistency alignment training (CAT) brings continual
improvements in consistency scores and ROUGE
scores for all the compared Vicuna and LLama2
models. Vicuna-13B + SFT (IA) + CAT surpasses
the SOTA LLM GPT-4 in our setting. These re-
sults demonstrate the effectiveness of our training
method (SFT (IA) + CAT).

Besides, we observe that the performance ob-
tained after SFT (IA) and CAT based on Vicuna is

4We prompt GPT-4 to judge whether two answers are
consistent in the testing stage for consistency metrics,
and the prompts are those we discussed in section 3.
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CR MCR ROUGE-1 ROUGE-L

GPT-4 0.8303 0.8693 0.3870 0.3751
ChatGPT 0.8134 0.8620 0.3022 0.2744

Vicuna-7B 0.6492 0.7694 0.1385 0.1266
Vicuna-7B + SFT 0.7092 0.8123 0.3782 0.3672
Vicuna-7B + SFT (IA) 0.7753 0.8504 0.3894 0.3757
Vicuna-7B + SFT (IA) + CAT 0.8298 0.8743 0.4187 0.4097

Vicuna-13B 0.7959 0.8589 0.1724 0.1596
Vicuna-13B + SFT 0.8017 0.8490 0.4028 0.3903
Vicuna-13B + SFT (IA) 0.8267 0.8619 0.4131 0.4014
Vicuna-13B + SFT (IA) + CAT 0.8390 0.8804 0.4276 0.4185

Llama2-7B 0.5735 0.7129 0.0637 0.0492
Llama2-7B + SFT 0.7702 0.8308 0.2682 0.2560
Llama2-7B + SFT (IA) 0.7921 0.8475 0.2901 0.2733
Llama2-7B + SFT (IA) + CAT 0.8107 0.8521 0.3012 0.2806

Llama2-13B 0.7151 0.8065 0.0737 0.0627
Llama2-13B + SFT 0.7505 0.8180 0.3085 0.2975
Llama2-13B + SFT (IA) 0.7589 0.8282 0.3379 0.3280
Llama2-13B + SFT (IA) + CAT 0.8100 0.8601 0.3711 0.3502

Table 4: The overall performance of compared methods and models on the test set I.

ROUGE-1 ROUGE-L

GPT-4 0.4506 0.4408
ChatGPT 0.3187 0.3051

Vicuna-7B 0.1702 0.1570
+SFT 0.4085 0.3929
+SFT (IA) 0.4122 0.3984
+SFT (IA) + CAT 0.4391 0.4285

Vicuna-13B 0.2102 0.1972
+SFT 0.4234 0.4071
+SFT (IA) 0.4477 0.4350
+SFT (IA) + CAT 0.4683 0.4417

Llama2-7B 0.0684 0.0513
+SFT 0.2743 0.2614
+SFT (IA) 0.3163 0.2903
+SFT (IA) + CAT 0.3189 0.2977

Llama2-7B 0.0745 0.0643
+SFT 0.3351 0.3215
+SFT (IA) 0.3697 0.3587
+SFT (IA) + CAT 0.4289 0.4066

Table 5: The ROUGE scores of the compared mod-
els and methods on the test set II.

superior to that based on Llama 2, confirming the
importance of choosing the base model for further
training.

We report the ROUGE-1 and ROUGE-L scores
on the standard test set II shown in Table 5. The im-
provements and conclusions across the compared
methods are consistent as those observed in test
set I. Since the Vicuna-13B achieves the best per-
formance, we use it as the backbone for detailed
analysis in the next section.

Rewards ROUGE-1 ROUGE-L

rC from SFT 0.4123 0.4051
rC + rT from SFT 0.4276 0.4185
rC + rT from Vicuna-13B 0.3962 0.3877

Table 6: The ROUGE scores on test set I when
the rewards are expected type or expected type
+ answer correctness from Supervised fine-tuned
Vicuna-13B and vanilla Vicuna-13B.

5.3. Detailed Analysis
The Choice of Rewards We study whether it
is necessary to split the rewards into two steps:
one for determining whether it is the expected an-
swer type and the next for correctness. We report
the ROUGE values for vicuna-13B on test set I
when we construct alignment training pairs using
only the correctness reward rC or a combination
of correctness and answer type rewards rC + rT

in Table 6. We observe that the ROUGE val-
ues have been improved when combining the re-
wards together, as determining whether it is the ex-
pected answer type is an easier task which serves
as an auxiliary task to enhance the accuracy of
the self rewards. Besides, we study the impact
of rewards from different models, i.e., the vanilla
Vicuna-13B and the fine-tuned Vicuna-13B with in-
struction augmentations. We see that using the
rewards from a less aligned model would degrade
the CAT performance and its ROUGE values are
even lower than its SFT version shown in Table 5.

The Choice of λ We compare the performance
of different coefficients of the SFT loss in the fi-
nal training objective. We report the ROUGE-1
and ROUGE-L scores for Vicuna-13B on test set
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Figure 4: The performance of different λ for our
training method on the test set I .

Figure 5: The performance of SFT (IA) across
varying number of instructions for each input on
the test set I .

I when λ is set to 0, 0.5, 1, and 10 in Figure 4.
We notice the importance of adding the SFT loss
to the CAT objective as the ROUGE scores are
higher when we set λ to 1 or 0.5 compared with
0. When we further increase λ, we make the
model learn less from negative generations and re-
duce the benefits of consistency alignment training.
This would decrease the performance in terms of
the ROUGE scores.

The Number of Augmented Instructions We
further study whether the performance would be
improved when we increase the number of aug-
mented instructions. For fairness, we keep the
size of the training set and other hyperparame-
ters fixed and only increase the number of aug-
mented instructions. We report the metrics of the
fine-tuned Vicuna-13B with 1, 10, 20, and 30 in-
structions per task on test set I in Figure 5. We
see that when we increase the number of instruc-
tions to 10, both the generated consistency and
ROUGE metrics are improved. However, continu-
ally increasing the number of instructions would de-
grade the performance as the number of training in-
stances for each task decreases accordingly. This
encourages that we need to ensure each task is
sufficiently trained instead of consistently increas-
ing the number of instructions.

Strategy Baseline diff. win tie lose

CAT+SFT(IA) Vanilla 83 48 44 8
CAT+SFT(IA) SFT 46 32 55 13
CAT+SFT(IA) SFT(IA) 27 31 60 9

Table 7: Human evaluation on test set I. We re-
port the different ratio, the number of wins, ties
and loses among the responses generated by the
strategy and baseline models. All the models are
trained based on Vicuna-13B and Vanilla denotes
the vanilla Vicuna-13B.

5.4. Human Evaluation
We perform human evaluation on the generated re-
sponses across different trained models. To com-
pare any two trained models, we sample the dif-
ferent responses (not exactly match, abbreviated
as ”diff.”) generated by the two models in test set I,
and we then manually evaluate the pair of these
responses5. Based on the statistics in Table 7,
the performance has been significantly improved
through CAT + SFT (IA) compared with its vanilla
version, with more wins than loses and a greater
diff. ratio. We analyze the human-labeled scores
when reporting wins or loses to gain a deeper un-
derstanding of how the wins happen. The ratios
of responses scored 1 or 2 and 2 are 86% and
44% respectively for CAT + SFT (IA), and the ra-
tios are only 56% and 14% for vanilla, verifying
the model has been trained to generate more ex-
pected answer types and more correct answers.
When comparing CAT + SFT (IA) with SFT, the
gap between wins and loses indicates the supe-
rior performance of CAT + SFT (IA). We see that
the model trained with consistency alignment after
SFT (IA) can obtain consistent improvements com-
pared with SFT (IA) in terms of more wins than
loses. This indicates that the model can be con-
tinually improved to generate more expected an-
swers with additional CAT.

From all the above human evaluated results, we
demonstrate that CAT + SFT(IA) training method
helps to generate more aligned responses than the
other trained methods.

6. Conclusion

In this paper, we investigate the robustness of cur-
rent large language models in terms of the consis-
tency of the generated responses. We introduce
a novel training framework to boost the robust-
ness of LLMs including instruction-augmented su-
pervised fine-tuning (SFT (IA)) and response con-

5We evaluate whether a response is an expected an-
swer type and its correctness and score 0, 1, 2 as we
discussed in section4.2. The number of wins, ties, and
loses are inferred by comparing the two scores.
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sistency alignment training (CAT). We conduct ex-
tensive experiments on Vicuna and Llama 2 on the
instruction-following tasks and validate the effec-
tiveness of our training framework. Additionally,
we separately verify the effectiveness of the SFT
(IA) and CAT modules. The method proposed in
this paper serves as a plug-in for continuously im-
proving the performance of existing LLMs. Further-
more, it eliminates the need for additional human
guidance or external reward models, which use de-
composed self-rewards to help the model generate
more robust and accurate responses. We believe
this approach can contribute to advancing the re-
search on generation robustness to some extent.

7. limitations

While our consistency alignment training is effec-
tive for improving the robustness and generaliza-
tion of following instructions, it has several limi-
tations. Firstly, our training approach relies on a
model’s self-rewards, so if the performance of the
model’s alignment is poor, the rewards we obtain
may not lead to further improvements. In the fu-
ture, we plan to conduct experiments on smaller
and weaker large language models. Besides, the
diversity of the verbalized instructions may be lim-
ited compared with end-users as we collect the
re-phrasings through LLMs. We plan to collect in-
structions from a wide range of end-users to con-
struct test and training datasets to evaluate and im-
prove the robustness of model generation.
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