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Abstract
In this paper, we propose a new setting for generating product descriptions from images, augmented by marketing
keywords. It leverages the combined power of visual and textual information to create descriptions that are
more tailored to the unique features of products. For this setting, previous methods utilize visual and textual
encoders to encode the image and keywords and employ a language model-based decoder to generate the
product description. However, the generated description is often inaccurate and generic since same-category
products have similar copy-writings, and optimizing the overall framework on large-scale samples makes models
concentrate on common words yet ignore the product features. To alleviate the issue, we present a simple
and effective Multimodal In-Context Tuning approach, named ModICT, which introduces the similar product
sample as the reference and utilizes the in-context learning capability of language models to produce the
description. During training, we keep the visual encoder and language model frozen, focusing on optimizing
the modules responsible for creating multimodal in-context references and dynamic prompts. This approach
preserves the language generation prowess of large language models (LLMs), facilitating a substantial increase
in description diversity. To assess the effectiveness of ModICT across various language model scales and types,
we collect data from three distinct product categories within the E-commerce domain. Extensive experiments
demonstrate that ModICT significantly improves the accuracy (by up to 3.3% on Rouge-L) and diversity (by up
to 9.4% on D-5) of generated results compared to conventional methods. Our findings underscore the potential
of ModICT as a valuable tool for enhancing the automatic generation of product descriptions in a wide range
of applications. Data and code are at https://github.com/HITsz-TMG/Multimodal-In-Context-Tuning.
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1. Introduction

With the popularity of online shopping, the E-
commerce product description plays a vital role
in content marketing and increasing consumer en-
gagement. Automatic generation of product de-
scriptions (Zhang et al., 2019; Novgorodov et al.,
2020; Chan et al., 2019) has attracted more and
more attention, which can be abstracted as a text
generation problem from multimodal sources, like
Visual Storytelling (Li et al., 2020c; Huang et al.,
2016), Image Captioning (Chen et al., 2015; De-
sai and Johnson, 2021), Multimodal Summriza-
tion (Zhu et al., 2018), Multimodal Machine Trans-
lation (Parida et al., 2019), etc. Previous product
description generation works can be divided into
two types according to the input source informa-
tion. One is to generate the corresponding product
description from the given long text sequence, as
the top two approaches shown in Figure 1, which
contains product title and its numerous attribute
information (Chen et al., 2019; Liang et al., 2023a;
Zhu et al., 2020; Zhan et al., 2021), such as color,
material, and user’s reviews. This type is similar

* Corresponding author.

to the task of Abstractive Text Summarization (Lin
and Ng, 2019; See et al., 2017; Parikh et al., 2020;
Hu et al., 2015), needing to mine the feature of the
product from the long text and generate the corre-
sponding product copy-writing. As the last conven-
tional approach shown in Figure 1, the other is to
generate the rendering description with product im-
age and its title and various attribute words, which
can be abstracted as a text generation problem
from multimodal sources, like Multimodal Summa-
rization (Zhu et al., 2018). For the latter, images
can provide rich visual information to mine product
features, and thus serve as an important basis for
product description generation.

In this paper, we suggest generating an E-
commerce product description from an image and
several marketing keywords. The marketing key-
words provide complementary information to the
image and contain the product aspects that are dif-
ficult to derive directly from the image, such as the
product style characteristics, brand, and function.
These keywords will explicitly guide the genera-
tion of description, i.e., the product description is
expected to contain words that are identical to or
semantically similar to marketing keywords. Com-
pared with the case of inputting a long text se-
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Figure 1: Illustration of conventional approaches
and our method for E-commerce product descrip-
tion generation.

quence containing the product title and various
attributes to generate a description, in our task,
product marketing features are easy to mine, and
the description is naturally controlled by given mar-
keting keywords to some extent. At the same time,
keywords are less expensive to be collected by
automatic models or humans.

In the realm of product description generation,
existing methods (Zhu et al., 2020; Zhang et al.,
2019; Chen et al., 2019; Hao et al., 2021; Peng and
Sollami, 2022) employ pretrained image encoders
to extract image features, which are combined
with keyword encodings and input into a language
model for description generation. However, these
approaches tend to produce generic and inaccu-
rate descriptions, as they are trained on large-scale
datasets, leading to a focus on common words and
neglecting product-specific features. To address
this challenge, we introduce an approach called
ModICT (Multimodal In-Context Tuning), leverag-
ing the in-context learning and text generation ca-
pabilities of language models. Initially, we use a
pretrained image encoder to retrieve a similar sam-
ple for each input, obtaining representations for
both product images. We then employ a learnable
feature transformer to convert image features into
the language representation space, enabling the in-
corporation of visual information into the language
model. In addition, we input transformed image
features, marketing keywords from similar samples,
and corresponding descriptions into the language
model as in-context references. This way, the pre-
trained language model learns to generate product
descriptions based on similar samples through self-
attention mechanisms. During training, we freeze
the visual encoder and the generation portion of the
language model (e.g., the decoder in a sequence-
to-sequence model or all autoregressive model pa-
rameters), allowing us to harness the originally pow-

erful generative capabilities of language models for
multimodal generation.

To verify the effectiveness of the proposed
method, we build a new large-scale E-commerce
product description generation dataset, with im-
ages and marketing keywords, based on an exist-
ing multimodal product summarization corpus (Zhu
et al., 2020). Experimental results show that Mo-
dICT outperforms other strong baselines regard-
ing almost all evaluation metrics. Both quantita-
tive and qualitative analyses indicate that ModICT
improves the semantic accuracy and diversity of
generated descriptions and small language models
equipped with ModICT also achieve competitive
performances compared to 10x bigger LLMs.

Our contributions are summarized as follows:

• We present a product description generation
paradigm that is based only on the image and
several marketing keywords. For this new
setting, we propose a straightforward and ef-
fective multimodal in-context tuning approach,
named ModICT, integrating the power from the
frozen language model and visual encoder.

• To the best of our knowledge, our work is the
first one to investigate utilizing the in-context
learning and text generation capabilities of var-
ious frozen language models for multimodal
E-commerce product description generation.
ModICT can be plugged into various types of
language models and the training process is
parameter-efficient.

• We conduct extensive experiments on our
newly built three-category product datasets.
The experimental results indicate that the pro-
posed method achieves state-of-the-art perfor-
mance on a wide range of evaluation metrics.
Using the proposed multimodal in-context tun-
ing technical, small models also achieve com-
petitive performance compared to LLMs.

2. Related Work

Text Generation from Multimodal Sources. Text
generation tasks from multimodal sources involve
the interaction and transformation of informa-
tion across different modalities. Image caption-
ing (Chen et al., 2015; Chowdhury et al., 2021; Shi
et al., 2021; Wang et al., 2021) is a typical image-to-
text generation task (Li et al., 2023b), and it requires
the model to generate the description of an image.
Visual Storytelling (Huang et al., 2016; Li et al.,
2020c) requires models to generate a long story,
given multiple images or a video. Multimodal Ma-
chine Translation (Parida et al., 2019; Elliott et al.,
2016) aims to introduce images to improve the ac-
curacy and diversity of translation, where images
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could bridge the representation gap across multi-
ple languages. Multimodal Summarization (Li et al.,
2020b; Zhu et al., 2020; Jangra et al., 2020) usually
aims at generating a short text to summarize the
given long text with relevant images. While prior
work has mainly focused on generating text from vi-
sual information or augmenting text with additional
textual content, the exploration of text generation
from visual input and keywords remains limited.
This unexplored area holds practical potential since
short keywords are readily available and can be au-
tomatically generated, making them valuable for
applications.

Product Description Generation. E-commerce
product description aims to describe the character-
istics of a product in detail and has obtained signif-
icant gains in the E-commerce platform. To gen-
erate detailed, diverse, and accurate descriptions,
Zhang et al. (2019) propose a pattern-controlled
description generation method to control the gener-
ation content based on various product properties.
They design multiple generation patterns to satisfy
different conditions. Chen et al. (2019) enhanced
product attribute comprehension by incorporating
additional knowledge, such as product materials
and brand background information. Novgorodov
et al. (2020) utilized customer reviews and clicked
product information to diversify generated descrip-
tions. Xu et al. (2021) proposed the K-plug model,
a pretrained natural understanding and generation
model, demonstrating effective product summariza-
tion generation in E-commerce. Zhan et al. (2021)
and Hao et al. (2021) improved description qual-
ity using posterior distillation and user preference
information. In contrast, our approach leverages
marketing keywords in conjunction with images,
providing complementary guidance for description
generation.

Vision-assisted Language Models. Different
from Vision Language Models (VLMs) that are
trained with enormous multimodal data such as
image-text pairs, vision-assisted language mod-
els usually incorporate external visual information
into the pretrained language model, which could
be used to perform multimodal reasoning or gen-
eration. The visual information is obtained by a
pretrained visual encoder such as ViT (Dosovitskiy
et al., 2020), Faster-RCNN (Ren et al., 2015), and
other variants. Some works (Shi et al., 2019; Lu
et al., 2022; Li et al., 2023b,d) are proposed to re-
trieve images from the image corpus and employ
visual knowledge to improve the performance of
the language model on the downstream tasks. Re-
cently, researchers (Long et al., 2021; Yang et al.,
2021; Zhu et al., 2022) utilize the powerful text-to-
image technical to obtain the corresponding image
of text and inject them into the language model via
the prefix-tuning (Li and Liang, 2021) way. Li et al.

(2023a) and Koh et al. (2023); Li et al. (2023c);
Liang et al. (2023b); Chen et al. (2023a,b) also
enable frozen large language models to perform
question-answering and image-text retrieval tasks.
This work will explore utilizing frozen large lan-
guage models to handle the multimodal generation
problem in the E-commerce field.

3. Methodology

3.1. Overview
For the new problem of E-commerce product de-
scription generation, the input contains a product
image I and corresponding text sequence W =
(w1, ..., wi, ..., wN ), where wi represents the i-th to-
ken of input keyword sequence and N indicates
the total number of tokens. The output is the gener-
ated description of the product, and we define the
ground-truth description as Y = (y1, ..., yi, ..., ym),
where yi and m refer to the i-th token and the length
of the description, respectively. The proposed Mo-
dICT is a parameter-efficient multimodal in-context
tuning approach for employing the frozen language
models to perform multimodal generation. First,
we utilize a frozen visual encoder to retrieve a sim-
ilar product, which will be used to construct the
in-context reference (Sec. 3.2). Then, for different
types of language models, we adopt two ways to
improve the efficiency of multimodal in-context tun-
ing according to the structures of LLMs, which will
be shown in Sec. 3.3. Finally, we briefly present
the training strategy of ModICT in Sec. 3.4.

3.2. In-Context Reference Construction
We choose samples with visual features similar to
in-context references to enhance description diver-
sity. Human-written product descriptions exhibit
significant variations, particularly for similar prod-
ucts in the same category. Thus, the language
model should imitate human-written text styles and
generate diverse, accurate descriptions based on
similar products.

Selection. We employ the frozen visual encoder
of CLIP (Yang et al., 2022) to obtain its image rep-
resentation, denoted as hI = (hIg, hp1, ..., hpn),
where hIg and hpi refer to the global and i-patch
representations of the image. We consider the
same-category training set as the retrieval candi-
date pool and utilize the same visual encoder to
obtain image representations for all products as
shown in Figure 2. By calculating cosine similarity
scores across global representations, we retrieve
the most similar product from the same category
candidate set. This provides us with the image,
marketing keywords, and human-written descrip-
tion of similar products for constructing the one-shot
multimodal in-context reference.
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Figure 2: The overall workflow of ModICT. The left part depicts the process of in-context reference
construction. The right parts show the efficient multimodal in-context tuning ways for the sequence-to-
sequence language model (1) and autoregressive language model (2). Blocks with red lines are learnable.

Construction. The obtained image encodings
lie in a representation space different from the lan-
guage model due to the discrepancy between the
frozen language model and the image encoder. To
address this issue, we employ a learnable Feature
Transformer to convert the image feature into the
corresponding language space as the visual pre-
fix vector. Specifically, we feed the global image
representation hIg into a two-layer perceptron with
Tanh activation function to obtain the fixed-length
visual prefix, denoted as hp

v = (hp
v1 , ..., h

p
vL). L is

the total length of visual prefix and hp
vL represents

the L-th prefix embedding. After obtaining the vi-
sual prefixes of two images, we construct a simple
in-context template: “Input Image: <img> and Mar-
keting Keywords: W s, output description is Y s \n
Input Image: <img> and Marketing Keywords: W ,
output description is ”, where <img> is a new token
to represent the position of visual prefix input and
will be frozen during training. To represent the in-
context reference, here, we introduce W s, Y s, and
hp
s to represent the marketing keywords, descrip-

tion, and transformed image feature of the similar
sample, respectively. All text inputs (including mar-
keting keywords and the human-written description)
are projected into corresponding word vectors via
looking up the embedding table of the language
model and the representations of <img> are added
by visual prefix vectors. The whole sequence rep-
resentation is input to the following blocks of the
language model for multimodal generation.

3.3. Efficient Multimodal In-Context
Tuning

Instead of optimizing the overall parameter of LLMs,
we adopt two parameter-efficient in-context tuning
methods according to the structure of LLMs. For
sequence-to-sequence language models such as
BART and T5, we freeze the decoder and only op-
timize some parameters of the encoder. In this

way, we do not corrupt the generative structure of
the language model and do not introduce more
parameters. As the top right shown in Figure 2,
we optimize the first N/2 blocks in the encoder to
allow the model to adapt to the multimodal input,
where N refers to the total number of blocks in
the encoder. For the decoder-only LLMs such as
BLOOM (Scao et al., 2022), GPT (Brown et al.,
2020), and GLM (Du et al., 2022), inspired by the
deep prompt tuning approach (Liu et al., 2021; Tang
et al., 2022; Wu et al., 2022), we introduce a learn-
able adapter to allow LLMs to quickly adapt to this
multimodal generation task without finetuning any
pretrained parameters. Specifically, we randomly
initialize M learnable vectors hv = (hv

1, ..., h
v
M ) and

utilize a two-layer perceptron with the ReLU acti-
vation function as the adapter to project them into
continuous prompts. The specific calculation pro-
cess is as follows:

hcp = Wa(ReLU(W1hv + b1)) + ba, (1)

where W1, Wa, b1 and ba are learnable param-
eters. The obtained dynamic prompt sequence is
hcp = (h1

cp, ..., h
M∗N
cp ), where N is the number of

layers of the large language model. As the bottom
part shown in Figure 2, these dynamic prompts
are inserted into each layer of the large model and
participate in the self-attention calculation process.
The length of inserted vectors for each layer is equal
to M = (M ∗N)/N . These continuous prompts are
concatenated directly in front of the sequence of in-
put hidden states for each layer of LLMs. Hence, we
do not modify any structure of large language mod-
els and the training process is parameter-efficient.

3.4. Training and Inference

Training. For all models, we adopt the cross-
entropy generation loss to train them and the spe-
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cific process is given in Eq. 2,

L = −
m∑
i=1

logPi(ŷi = yi|W s, hp
s , Y

s;

W,hp
v; y1, ..., yi−1).

(2)

For autoregressive language models with fewer
parameters (<1B), we also update their overall pa-
rameters due to that continuous prompt tuning is
used for efficiently training LLMs.
Inference. For each testing sample, the corre-
sponding similar sample is retrieved from the train-
ing set. The inferring process is similar to Eq. 2
and is equipped with some common generation
methods, e.g., beam sample strategy.

4. Experiment

4.1. Dataset: MD2T
Construction. In previous product description gen-
eration tasks, input data often included product ti-
tles, attributes, images, and many others. Some in-
formation was redundantly reflected in both text and
images. To address this, we build a new product
description generation dataset with images and key-
words, named MD2T 1, based on the large-scale
millions of multimodal Chinese E-commerce prod-
uct summarization corpus (Li et al., 2020a). To
be specific, we collect the product style, brand,
color, material, and popular element dictionaries
from the released text-based E-commerce product
summarization dataset (Yuan et al., 2020). The col-
lected product attribute aspects of Cases & Bags.
We then use the Chinese word segmentation tool
Jieba2 with the above dictionary to segment the
long text sequence of product samples. For the ob-
tained word segmentation set, we filter out words
that can be easily derived from images (e.g., color,
size, and shape) via word matching. We select the
style, popular element, brand, material, and a few
other randomly sampling words (20% of the num-
ber of other remaining words) from the remaining
word set as the marketing keywords. Finally, we re-
move instances whose product descriptions do not
contain any marketing keywords (exact matching)
to ensure that marketing keywords can guide the
description generation.

Statistic. The detailed statistics are shown in
Table 1. The total number of samples across the
three categories is approximately 300,000. Product
descriptions are relatively long, containing about
five marketing keywords and spanning around 80
words. The keyword length varies across cate-
gories, with Clothing and Home Appliances hav-

1We will release the preprocessing codes and data
sources.

2https://github.com/fxsjy/jieba

MD2T Cases&Bags Clothing Home Appliances
#Train 18, 711 200, 000 86, 858
#Dev 983 6, 120 1, 794
#Test 1, 000 8, 700 2, 200
AvgN#MP 5.41 6.57 5.48
AvgL#MP 13.50 20.34 18.30
AvL#Desp 80.05 79.03 80.13

Table 1: The detailed statistics of MD2T. AvgN and
AvgL represent the average number and length
respectively. MP and Desp indicate the marketing
keywords and description.

ing longer keywords compared to Bags & Cases.
This difference arises from challenges in collecting
category-specific dictionaries for keyword segmen-
tation and filtering, such as brand, style, and mate-
rial. While some samples may contain a few noisy
words (up to 2), they do not significantly impact our
overall analysis.

4.2. Experimental Settings

Evaluation Metrics. In our experiments, we adopt
the widely-used automatic overlap-based metrics
BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) in the text generation area to evaluate
the generated description. However, these word-
overlap based metrics ignore the contextual se-
mantic discrepancy. Therefore, we use a popular
word embedding-based similarity evaluation metric
BERTScore (Zhang et al., 2020), dubbed as BS, to
capture the fine-grained semantic difference, which
employs the contextualized representation of words.
We adopt the pretrained BERT-base-Chinese pa-
rameters to initialize the model for BERTScore. We
also design a simple yet effective evaluation metric
to measure the whole diversity of models in the
testing set. Specifically, we concatenate all gener-
ated descriptions into a long sequence and remove
punctuation. Then this sequence is converted into
a list L based on Chinese character segmentation.
The whole list sequence is divided by the Distinct
N-gram segmentation method (Li et al., 2015) and
thus we can obtain the no repeated n-gram word
set Sn, where the maximum number of Sn does not
exceed the length of L. The n-gram word diversity
of generated descriptions can be calculated as fol-
lows: D-n = Number_of(Sn)

Length_of(L) ∗ 100. In this way, D-n
can intuitively show the diverse generation capabil-
ity of a model.

Comparative Models. We compare our method
with several SOTA multimodal product description
generation methods. MMPG (Zhu et al., 2020) is
a multimodal E-commerce product summarization
model based on LSTM (Hochreiter and Schmid-
huber, 1997). We use it with the DecInit (D)
and Copying (C) mechanism on this task, and



855

Model #TunedPara #TotalPara B@1↑ B@2↑ R@1↑ R@L↑ BS↑ D-2 ↑ D-3 ↑ D-4 ↑ D-5 ↑
MMPG+D (Zhu et al., 2020) 96M 96M 30.91 10.0 30.92 10.98 32.0 - - - -

MMPG+D+C (Zhu et al., 2020) 100M 100M 33.31 10.72 31.47 21.25 31.8 2.66 4.73 7.55 10.54
M-kplug (Xu et al., 2021) 225M 225M 30.96 8.76 29.43 19.45 30.0 9.34 16.54 22.57 27.48

Oscar (Zhang et al., 2021) 110M 110M 29.52 7.58 28.32 17.93 28.2 - - - -
Oscar-GPT (Cho et al., 2021) 279M 279M 33.70 10.81 32.12 21.19 32.1 11.35 22.68 33.21 44.23

ModICT (BART-L) 232M 521M 36.54 13.28 35.43 24.50 34.9 12.76 24.11 36.23 47.31
w/o MICT 232M 521M 36.30 13.15 35.39 24.45 34.7 12.35 23.38 34.51 45.21

w/o MICT (full) 435M 521M 34.95 11.94 33.63 22.93 33.4 10.59 20.34 31.58 42.34
ModICT (BART-RD) 181M 874M 35.40 12.56 34.10 23.92 33.9 13.07 23.86 34.40 43.67

ModICT (GLM-L) 364M 450M 28.20 10.28 32.43 22.55 32.1 10.86 20.85 30.17 38.67
ModICT (GLM-10B) 511M 10.6B 28.83 10.35 32.15 22.78 32.7 12.20 23.06 32.56 41.11

ModICT (BLOOM-1.1B) 118M 1.4B 32.61 11.88 34.08 24.23 34.6 13.23 24.07 35.38 45.74
ModICT (BLOOM-1.7B) 156M 2B 33.62 12.07 34.50 24.31 34.5 11.12 19.89 29.14 37.83
ModICT (BLOOM-3B) 226M 3.4B 33.15 12.08 33.88 24.06 34.4 12.91 23.68 34.60 44.62

ModICT (BLOOM-7.1B) 360M 7.6B 32.86 12.06 34.48 24.28 35.3 12.95 23.42 34.33 44.46
w/o Adapter 108M 7.6B 32.36 12.18 34.28 24.10 34.4 13.8 25.08 36.45 46.85

w/o Adapter+MICT 108M 7.6B 32.00 11.62 33.84 24.19 33.1 10.0 18.45 28.0 37.26

Table 2: Automatic evaluation on the testing set of Cases&Bags. The bold indicates the best performance.
“#TunedPara” and “#TotalPara” represent the trainable and overall parameters of models respectively. “BS”
refers to the BertScore evaluation metric. “MICT” represents the proposed multimodal in-context tuning
way. “full” indicates that the overall parameters of language models are tuned during training. “Adapter”
shows the parameter-efficient prefix tuning method for autoregressive LLMs.

Model #TunedPara #TotalPara B@1 B@2 R@1 R@L BS D-2 D-3 D-4 D-5
MMPG+D (Zhu et al., 2020) 96M 96M 24.94 6.22 26.51 17.49 22.1 - - - -

MMPG+D+C (Zhu et al., 2020) 100M 100M 25.04 7.05 26.12 18.16 24.8 - - - -
M-kplug (Xu et al., 2021) 225M 225M 31.64 10.35 30.48 20.42 29.7 10.03 22.00 34.60 45.81

Oscar (Zhang et al., 2021) 110M 110M 27.91 6.89 26.61 16.51 25.2 - - - -
Oscar-GPT (Cho et al., 2021) 279M 279M 31.22 10.15 30.22 20.27 29.6 12.22 24.15 36.43 47.41

ModICT (BART-L) 232M 521M 34.27 12.56 33.24 23.42 32.1 14.73 29.36 44.24 56.82
w/o MICT 232M 521M 32.57 11.43 32.04 22.90 30.7 9.34 18.82 30.43 41.28

w/o MICT (full) 435M 521M 33.56 11.89 32.73 23.08 31.5 9.01 17.11 29.17 39.98
ModICT (BART-RD) 181M 874M 30.62 10.47 31.75 22.05 29.7 16.20 32.27 46.73 58.25

ModICT (GLM-L) 364M 450M 26.07 9.65 29.40 20.43 29.1 12.62 25.74 37.46 47.41
ModICT (GLM-10B) 511M 10.6B 25.75 9.11 29.72 20.88 29.5 13.23 27.31 39.73 50.11

ModICT (BLOOM-1.1B) 118M 1.4B 30.10 10.45 30.99 22.25 29.9 13.97 27.80 41.81 53.71
ModICT (BLOOM-1.7B) 156M 2.0B 30.25 10.65 31.21 22.24 30.3 15.16 29.57 43.30 54.64
ModICT (BLOOM-3B) 226M 3.4B 29.77 10.54 31.14 22.47 30.2 14.46 28.31 42.11 53.81

ModICT (BLOOM-7.1B) 360M 7.6B 30.91 10.89 31.46 22.20 30.5 14.12 28.09 42.12 53.88
-Adapter 108M 7.6B 30.36 10.80 31.42 22.50 30.3 17.63 34.31 48.89 60.50

-Adapter-MICT 108M 7.6B 28.68 9.64 29.63 21.99 27.1 10.72 21.10 31.99 41.69

Table 3: Automatic evaluation on the testing set of Home Appliances.

Zhu et al. (2020) have verified their effectiveness
to improve the quality of generated results and
MMPG + D + C performs the best on the Case &
Bag category in multimodal E-commerce product
summarization (Li et al., 2020a). M-kplug is an
extension of the text-based pretrained model k-
plug (Xu et al., 2021) in E-commerce, which injects
the visual signals into the decoder layer. Oscar (Li
et al., 2020d; Zhang et al., 2021) is a transformer-
based pretrained conditional cross-modal model,
having achieved great success in many vision-
language tasks. Oscar-GPT (Kayser et al., 2021)
is a sequence-to-sequence vision-language gener-
ation model.

Implementation Details. We train all models

on two A100-40G GPUs with the python environ-
ment. We train models with an initial learning rate
1e−4 and the learning rate declines via the linear
way. The total training steps are 10 epochs with
1, 000 warm-up steps. For baselines and ModICT
variants equipped with very small autoregressive
language models (like GLM-L(Du et al., 2022)), we
update the overall parameters of language mod-
els. The batch sizes of training and inference are
set to 32 and 10 respectively. We adopt the Chi-
nese CLIP-ViT-16 (Yang et al., 2022) as the image
feature extractor, which contains 84M parameters.
We use the validation set to select the best param-
eter when training all models. For inference, we
adopt the beam sample generation method and
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Model #TunedPara #TotalPara B@1 B@2 R@1 R@L BS D-2 D-3 D-4 D-5
MMPG+D (Zhu et al., 2020) 96M 96M 29.01 8.30 27.03 17.92 30.2 - - - -

MMPG+D+C (Zhu et al., 2020) 100M 100M 29.63 8.65 27.61 18.26 30.5 1.63 2.24 4.01 5.28
M-kplug (Xu et al., 2021) 225M 225M 33.38 10.91 31.42 20.34 33.0 4.5 10.05 18.54 27.22

Oscar (Zhang et al., 2021) 110M 110M 29.69 7.74 28.38 16.71 29.4 - - - -
Oscar-GPT (Cho et al., 2021) 279M 279M 33.54 10.98 31.92 20.51 33.1 5.1 12.18 20.31 28.15

ModICT (BART-L) 232M 521M 35.07 12.57 33.71 22.52 34.9 4.17 9.28 18.05 24.45
w/o MICT 232M 521M 34.93 12.30 33.34 21.91 34.6 2.95 6.84 12.92 20.0

ModICT (BART-RD) 181M 874M 33.48 11.17 32.41 21.86 33.3 5.82 13.45 22.48 31.54
ModICT (GLM-L) 364M 450M 26.03 9.10 29.51 19.44 31.4 3.67 8.71 14.57 20.62

ModICT (GLM-10B) 511M 10.6B 26.45 9.21 29.66 19.74 31.8 6.71 17.18 28.16 37.61
ModICT (BLOOM-1.1B) 118M 1.4B 29.14 10.07 31.59 21.40 34.2 4.07 9.27 16.84 25.04
ModICT (BLOOM-1.7B) 156M 2.0B 30.25 10.17 31.26 20.83 33.6 3.75 8.16 14.25 20.76
ModICT (BLOOM-3B) 226M 3.4B 29.34 10.19 31.56 21.15 33.9 4.39 9.58 17.18 25.17

ModICT (BLOOM-7.1B) 360M 7.6B 30.58 10.52 32.12 21.65 34.9 4.64 9.13 16.44 25.21
w/o Adapter 108M 7.6B 30.45 10.49 31.91 21.36 34.2 5.97 13.21 22.71 32.08

w/o Adapter+MICT 108M 7.6B 30.16 10.50 31.61 21.05 33.1 3.39 7.67 14.43 21.89

Table 4: Model performances (accuracy and diversity) on the testing set of Clothing.

set the beam and sample sizes to 4 and 20, re-
spectively. The visual prefix length L is set to 5
and the length of continuous prompts (M ) is set to
10. GLM-10B and BLOOM-7B are trained in mixed
precision (half-precision for the forward/backward
computations, full-precision for the gradient update)
with the AdamW optimizer. We test various models
with different parameter sizes on our newly built
dataset of three categories of products.

4.3. Quantitative Analysis

Content Accuracy. Evaluation results in Tables 2,
3, and 4 reveal ModICT(BART-L) excels in con-
tent accuracy across most metrics, significantly out-
performing Oscar-GPT and M-kplug (e.g., R@L ↑
3.31, BERTScore ↑ 2.8). Frozen autoregressive
BLOOM also outperforms baselines in essential
metrics (R@L, BERTScore). This demonstrates
the effectiveness of the learnable multimodal in-
context tuning approach across various language
models. Additionally, BLOOM outperforms GLM-
10B in all product categories, despite its larger pa-
rameter count, possibly due to its multilingual train-
ing data. Increasing language model parameters
slightly enhances performance in these fixed E-
commerce product descriptions, achieved through
the proposed in-context tuning approach. As the pa-
rameters of the language model increase, the per-
formance of models on the three product categories
increases slightly, which may be due to the fixed
description paradigm of E-commerce products, and
the small model could acquire corresponding gen-
eration capability through the proposed multimodal
in-context tuning approach.
Diversity. To assess diversity, we analyze Tables
2, 3, and 4. ModICT variants show varying perfor-
mance across product categories but consistently
outperform strong baselines (M-kplug and Oscar-

TrainS R@1 R@L BS D-3 D-4 D-5
200k 33.71 22.52 34.9 9.28 18.05 24.45
50k 33.30 22.10 34.6 10.64 18.65 27.13
40k 33.54 22.16 34.9 10.37 18.57 27.57
30k 33.49 22.11 34.8 9.86 17.55 25.89

Table 5: ModICT(BART-L) performances on Cloth-
ing with various scales of training samples . “TrainS”
refers to the size scale of training samples.

GPT) in diversity evaluation. In Cases & Bags,
ModICT (BART-L) improves D-5 score by 3.08,
while ModICT(BLOOM-7B) and ModICT (BART-L)
achieve impressive improvements of 3.93 and 9.41
for Clothing and Home Appliances. Notably, Mo-
dICT variants perform less well in Clothing, likely
due to overfitting on common words in large-scale
training sets, especially for variants with more pa-
rameters. Table 5 reveals that ModICT (BART-L)
achieves superior content accuracy and diversity in
Clothing with fewer training samples, showcasing
the feasibility of training small models using multi-
modal in-context tuning for practical, cost-effective
applications.

4.4. Ablation Study

Effectiveness of ModICT. From all experimen-
tal Tables, it is observed that, in the case of both
the sequence-sequence language model and the
autoregressive large language model, the MICT
mainly improves the diversity of generated content.
For various ModICT (BLOOM) variants, it also ad-
vances the content accuracy and substantially pro-
motes the diversity of content (model performance
comparison: -Adapter vs. -Adapter-MICT), espe-
cially for the category of Home Appliances.
Impact of Adapter. By ablation experiments on
ModICT(BLOOM), we observe that the adapter
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Model NRE R@L BS D-3 D-4 D-5
BLOOM-1.7B 1-shot 22.24 30.3 29.57 43.40 54.64
BLOOM-1.7B 2-shot 22.07 29.3 30.75 44.40 55.60
BLOOM-1.7B 3-shot 21.70 28.0 30.40 44.10 55.40
BLOOM-1.7B∗ 0-shot 21.50 26.0 20.68 31.24 40.64
BLOOM-1.7B∗ 1-shot 19.52 26.3 41.16 55.29 64.53
BLOOM-1.7B∗ 2-shot 19.73 27.3 40.23 54.39 63.96
BLOOM-1.7B∗ 3-shot 19.63 26.6 38.78 52.74 62.54
BLOOM-7.1B 1-shot 22.20 30.5 28.09 42.12 53.88
BLOOM-7.1B 2-shot 21.94 30.3 32.21 45.88 56.80
BLOOM-7.1B 3-shot 21.83 30.0 33.65 47.48 58.56
BLOOM-7.1B∗ 0-shot 21.99 27.1 21.10 31.99 41.69
BLOOM-7.1B∗ 1-shot 20.15 26.8 42.20 56.38 65.85
BLOOM-7.1B∗ 2-shot 20.12 24.8 36.77 50.42 60.40
BLOOM-7.1B∗ 3-shot 19.80 22.1 36.76 50.41 60.52

Table 6: Model performances with various in-
context reference examples on the testing set of
Home Appliances. ∗ refers to that the correspond-
ing model without adapter are not trained with MICT.
“NRE” refers to the Number of Reference Examples.

mostly improves the overall content accuracy yet
sometimes leads to a slight decrease in diversity.
It may be attributed to that more parameters are
introduced and we add the continuous prompts in
each layer of LLMs. The performance comparisons
between ModICT (BLOOM) and its “-Adapter-MICT”
variant indicate that it is useful for improving the
content diversity and accuracy by introducing the
adapter and MICT together.
Tuned Parameter vs. Performance. Small lan-
guage models (<1B) also excel in high-quality
product description generation through multimodal
in-context tuning. However, when fine-tuning
generation-related parameters, diversity decreases
(e.g., -MICT vs. -MICT(full) in Tables 2, 3, and 4),
and content accuracy declines when training the
overall BART-L parameters for Cases & Bags. To
enhance overall accuracy and diversity, we rec-
ommend freezing the LLMs and using multimodal
in-context tuning approach with one-shot reference.
Training Data Size. In Table 5, ModICT (BART-L)
trained on 40k samples achieves content accuracy
similar to the 200k-sample model but with better
diversity. Comparing all models on the 18k sets of
Clothing and Cases & Bags, they perform better
in Cases & Bags with a small-scale training set.
This suggests that our multimodal in-context tuning
approach is effective with limited labeled data.
Analysis of In-Context References. Table 6 dis-
plays LLM performance with varying in-context ex-
amples. ModICT improves content accuracy and
maintains diversity compared to ModICT(BLOOM)∗
with one-shot input. As in-context samples in-
crease, ModICT diversity rises while content ac-
curacy slightly decreases, in line with our motiva-
tion to enhance description diversity. However, it
highlights the instability of large multi-modal mod-

Model Coh Acc Rich Rel
MMPG+D 4.42 2.75 3.15 2.07
M-kplug 4.48 3.21 3.18 3.19
Oscar-GPT 4.50 3.25 3.26 3.17
ModICT(BART-L) 4.63 3.53 3.73 3.49
ModICT(BLOOM-7B) 4.54 3.61 3.65 3.53

Human 4.81 3.72 4.33 3.62

Table 7: Human evaluation results on the randomly
selected sample set.

Figure 3: An illustration of descriptions generated
by several models. The blue words represent
keyphrases related to marketing keywords. Words
in red show the inaccurate expression. The green-
colored sentences are the eye-catching statements.

els based on LLMs. Increasing LLM parameters
results in a wider range of outcomes, yielding high
diversity but lower accuracy. It may be attributed
to the fact that the generation of larger language
models is more diverse and less controllable.

4.5. Qualitative Analysis
Case Study. We compare descriptions generated
by various models in Figure 3. MMPG+D generates
descriptions with universal characteristics but less
relevance to marketing keywords. Oscar-GPT em-
phasizes keywords but can produce general and
inaccurate statements similar to MMPG+D. The
generated results of ModICT variants cover more
aspects of the product and are more relevant to the
marketing keywords, such as the words marked
blue and green in the last generated example. In
conclusion, ModICT variants could achieve supe-
rior performance in the accuracy, diversity, and
vividness of the generated content.
Human Evaluation. We conduct human evalua-
tion on content accuracy (Acc), contextual coher-
ence (Coh), richness (Rich), and relevance (Rel) to
marketing keywords. Four master students rate
ground truth and model-generated descriptions
on 150 randomly selected testing samples. Dur-
ing scoring, model-generated and human-written
descriptions are randomly shuffled and reviewed
blindly. ModICT outperforms strong baselines in all
aspects, particularly in content coherence and rich-
ness. However, there is still room for improvement



858

in content richness compared to human-written de-
scriptions. (See Table 7).

5. Conclusion

In this work, we suggest a setting of E-commerce
product description generation from images and
marketing keywords, where the marketing key-
words provide complementary information to the
image. It could guide the generation of product
descriptions to some extent by providing marketing
keywords. To improve the accuracy and diversity of
generated descriptions, we propose a simple and
effective parameter-efficient multimodal in-context
tuning approach, ModICT.
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