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Abstract

Recent studies improve the cross-lingual transfer learning by better aligning the internal representations within
the multilingual model or exploring the information of the target language using self-training. However, the
alignment-based methods exhibit intrinsic limitations such as non-transferable linguistic elements, while most of
the self-training based methods ignore the useful information hidden in the low-confidence samples. To address
this issue, we propose CoNLST (Contrastive Negative Learning and Self-Training) to leverage the information of
low-confidence samples. Specifically, we extend the negative learning to the metric space by selecting negative pairs
based on the complementary labels and then employ self-training to iteratively train the model to converge on the
obtained clean pseudo-labels. We evaluate our approach on the widely-adopted cross-lingual benchmark XNLI.
The experiment results show that our method improves upon the baseline models and can serve as a beneficial

complement to the alignment-based methods.
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1. Introduction

Multilingual language models are commonly used
to produce universal representations across lan-
guages in zero-shot cross-lingual transfer learn-
ing, in which the model is trained on a high re-
source language and directly evaluated on the tar-
get languages. In such a scenario, the zero-shot
cross-lingual transfer problem can be viewed as
an unsupervised domain adaptation (UDA) prob-
lem, wherein the target languages essentially rep-
resent a distinct domain (Lee et al., 2022). Simi-
lar to the mainstream approaches for UDA which
learn domain-invariant representations to narrow
the domain shift, most of the recent methods (Chen
et al., 2018; Pan et al., 2021; Huang et al., 2021;
Ding et al., 2022; Wang et al., 2022) improve cross-
lingual transfer by aligning representations across
different languages so that semantically similar
words in different languages share closer repre-
sentations in the geometric space.

While alignment-based methods can be effi-
cient, they suffer from intrinsic limitations when it
comes to label shifts and domain shifts (Liu et al.,
2021). Another line of work seeks to mine use-
ful information from the target data directly using
self-training (Gui et al., 2014; Dong and de Melo,
2019; Xu et al., 2021). Self-training is a boot-
strapping method which iteratively trains the tar-
get model on the pseudo-labels produced by the
model trained on source language data. Dur-
ing the iterations, pseudo-labels are usually se-
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Figure 1: A conceptual illustration of contrastive
negative learning. For a low-confidence target
sample (top left), the model is uncertain between
the wrong label (marked in red) and the ground-
truth label (marked in green), and produce a noisy
pseudo-label. In contrast, the complementary label
(marked in blue) is often correct about “the sample
does not belong to the class" and thus provides
class-wise contrastive information (bottom left).

lected using confidence-based criteria. However,
manually-crafted criteria for self-training require
domain knowledge, and simply using confidence-
based criteria may not yield satisfactory general-
ization. This limitation becomes particularly pro-
nounced in low-resource scenarios, where even a
high confidence threshold may leave a substantial
number of noisy samples, as we observe that in the
zero-shot cross-lingual setting, the amount of noisy
labels (wrongly pseudo-labeled target samples) is
nearly the same in the high-confidence area as in
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the low-confidence area when trained with English
as the source language (shown in Figure 3 in the
Section 4.3), which would exacerbate the confirma-
tion bias (Arazo et al., 2020) (accumulated errors
caused by noisy pseudo-labels) if the model is sim-
ply self-trained with high-confidence target samples.
Moreover, discarding samples under a threshold
may ignore useful hidden information contained
within the noisy data.

Therefore, we seek to reduce the confirmation
bias and exploit information from low-confidence
samples by introducing negative learning, and pro-
pose a two-stage cross-lingual self-training method,
Contranstive Negative Learning and Self-Training,
denoted as CoNLST. Specifically, at the first stage,
the prediction confidences of a zero-shot cross-
lingual model finetuned only on the source lan-
guage are calibrated to distill samples with clean
pseudo-labels from noisy pseudo-labels in the tar-
get language. The calibration is conducted via neg-
ative learning (Kim et al., 2021), as it is a simple-yet-
effective method to exploit the information hidden
in the noisy labels by taking use of the complemen-
tary labels of the samples. We observed in our
case that vanilla negative learning would fail and
cause degeneration of the model's performance,
and we propose to extend negative learning to the
metric space using contrastive learning to effec-
tively solve the issue. At the second stage, with the
distilled clean high-confidence samples obtained
from the first stage, we consider the problem as a
semi-supervised learning (SSL) problem and adopt
dynamic thresholding (Zhang et al., 2021) with mul-
tiple data augmentation strategies to iteratively fine-
tune the model, which further improves the model
performance by a large margin. The concept of
contrastive negative learning is illustrated in the Fig-
ure 1, and the overall framework of the proposed
method is shown in the Figure 2.

We empirically evaluate the proposed method
on the widely adopted cross-lingual benchmark,
XNLI dataset (Conneau et al., 2018). We show that
our proposed method brings consistent improve-
ments for both mBERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020) and achieves com-
parable performance with state-of-the-art methods.
Furthermore, the experiment results show that the
proposed method can serve as a beneficial com-
plement to the alignment based methods.

2. Related Works

In cross-lingual tasks, the challenges extend be-
yond linguistic differences between the source
and target data to include domain shifts, which
poses a cross-lingual cross-domain problem (Li
et al.,, 2021). Mainstream approaches employ
model-centric methods which focus on improving

the model’s multilinguality by aligning internal sub-
spaces of different languages within the model.
This can be achieved by supervised alignment us-
ing parallel corpora and multilingual dictionaries
(Kulshreshtha et al., 2020; Pan et al., 2021), weakly
supervised training by fine-tuning the model with
multilingual data (Nooralahzadeh et al., 2020; Vu
et al., 2021) or unsupervised alignment by extract-
ing language and domain invariant features, such
as cross-lingual adversarial training (Chen et al.,
2018; Huang et al., 2021), self-contrastive learning
(Wang et al., 2022), feature decomposition (Li et al.,
2021) and so on.

While model centric methods have demonstrated
empirical effectiveness, learning invariant repre-
sentations has intrinsic limitations when it comes
to domain shifts (Liu et al., 2021), whereas data
centric methods serve as a valuable complement.
In the context of cross-lingual learning, pseudo-
labeling with self-training has been widely adopted
to leverage target language information. Gui et al.
(2014) employed least error boundary estimation
to measure the quality of transferred examples in
the target language. The estimation is derived from
the model’s prediction probability for each target
sample, whereby samples likely to introduce more
errors are simply discarded in subsequent itera-
tions. Dong and de Melo (2019) selected a subset
of target samples based on the model’s prediction
confidence, and discarded other samples during
each iteration to construct a balanced set contain-
ing the same number of instances in each class and
merged the selected set into the source language
training data. Xu et al. (2021) proposed three dif-
ferent uncertainty estimation measures which are
calculated based on the model’s output probabili-
ties jointly trained multiple languages together to
improve the performance of the model. The afore-
mentioned studies demonstrate the efficacy of in-
corporating high-quality pseudo-labeled data in the
target language. In our work, unlike previous works
which discarded low-confidence samples, we seek
to take advantage of the noisy data as well for self-
training.

3. Methodology

In this work, we aim to exploit the information
of unlabeled target language samples using self-
training. To start the bootstrapping process, we
initially finetune a multilingual model on the source
language data to provide pseudo-labels and confi-
dence scores for the unlabeled target samples.

In standard self-training, the pseudo-labels of
the target samples are directly adopted as silver la-
bels to further finetune the multilingual models, and
the training set iteratively grows by selecting high-
confidence pseudo-labeled target samples. Simply
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Figure 2: An overview of the proposed CoNLST, the flow of the algorithm is shown with the green arrow.
The framework contains two parts, which corresponds to the two stages in the method: The first part is
the contrastive negative learning stage, where target data are sampled to construct positive pairs with
dropout noise and negative pairs with complementary labeling. After the first stage, the model exhibits
less confidence for the noisy data and reveals clean samples in high-confidence areas. The second part
is self-training-based semi-supervised learning (SSL), which selects clean samples to generate strong

augmentations to further refine the model.

taking samples above a certain confidence thresh-
old for self-training is infeasible as they might still
contain a large number of noisy labels especially
for low-resource languages. Motivated by this, we
propose to first calibrate the model’s confidence
to mine clean labels and introduce a two-stage
self-training method. The overall framework of the
method is shown in Figure 2. In the following sec-
tions, we first present preliminary works of negative
learning and contrastive learning, then we elabo-
rate on the two stages of the method, namely con-
trastive negative learning (CoNL) and self-training
with pseudo-labels.

3.1.

Negative Learning for noisy labels It was shown
that learning with noisy labels is nontrivial with lan-
guage models such as BERT (Zhu et al., 2022)
since it could be vulnerable to noise from weak
supervision even at a low level. Negative learn-
ing (NL) is an intuitively simple method for noisy
data classification: instead of maximizing the
log-likelihood of the target label during training,
NL chooses complementary labels randomly for
samples with noisy labels and minimizes the log-
likelihood of the complementary label, such that
“the sample does not belong to the complemen-

Preliminary Works

tary label”. Kim et al. (2021) showed that NL can
effectively filter clean samples from a high rate of in-
jected noise in image classification problems. The
negative learning loss is shown as follows:

Cxnelh9) ==Y dogl—pe) (1)

k=1

where p;. is the model’s prediction probability for a
sample k as in the standard cross entropy loss, g
is a complementary label randomly selected from
the labels of all classes except for the given label.
The vanilla negative learning fails in our cross-
lingual task, for which we assume three possible
reasons: 1. limited number of task labels; 2. mem-
orization effect of language models; 3. strong dis-
crimination ability of cross-entropy loss on hard
labels. Thus, we propose to improve the comple-
mentary label selection strategy and extend nega-
tive learning to the metric space using contrastive
learning.
Contrastive Learning Contrastive learning has
been widely adopted to learn effective visual or lan-
guage representations. The common idea of con-
trastive learning is to randomly sample a data point
as anchor instance, pull “positive” instances closer
to the anchor instance in the metric space and push
“negative” instances away. For supervised learn-
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ing, positive and negative pairs are constructed at
the class level such that positive instances share
the same label and negative pairs have different
labels. The supervised contrastive loss (Khosla
et al., 2020) is defined as:

Z| le

pEP('L) a€A(i

where index i is the anchor, A(i) = I'\{i} is the mini-
batch except for i and P(i) = {p € A(¢) : Jp = Ui}
is the set of positive pairs, h denotes the repre-
sentation of the sample. 7 is a temperature hyper-
parameter and (-, -) is the similarity function. For
unsupervised learning, the pairs are constructed at
the instance level with negative pairs being simply
different instances from the anchor sample. In such
a context, the critical question is how to construct
positive pairs. A common practice is to use weak
augmentations of the anchor instance. For sen-
tence representations, Gao et al. (2021) showed
that using a simple dropout noise for augmenta-
tion has a good performance. The unsupervised
contrastive loss with dropout noise is defined as:

(hit b/
gy (B R /T
where positive pairs are encodings of the same
sentence ¢ with different dropout masks z and neg-
ative pairs are from the other sentences j in the
same batch.

(hiy hp) /T

RO A

(3)

Esimcse = -l

3.2. Contrastive Negative Learning

In the task of cross-lingual transfer learning, given
pseudo-labeled samples in the target language, we
propose to adopt the thinking of negative learning
for noisy labels and construct negative pairs using
complementary labels to provide class-wise dis-
crimination. During this process, we make use of all
the target data including the low-confidence ones to
form anchor samples. We construct positive pairs
at the instance level using weak augmentations
of the sentences since class-wise information is
unavailable due to the noise of pseudo-labels.
Formally, given the labeled dataset X, =
{(z%,y)}Y, with C classes in the source lan-
guage /,, given a pretrained multilingual model M,
the parameters of the model are denoted as 0,,,
we train the model with a linear classification head
0. as fo = f(-;0m,0) first using the ground truth
labels. After training, pseudo-labels for unlabeled
data X,, = {(z!*)}M, inthe target language ¢; can
be generated as j'* = fy(z*). The confidence
score is given by the model’s predicted class dis-
tribution §; = p(9;|xi; Om, be1), @and high-confidence
samples have max(q) > ~ with v being a prede-
fined threshold. For each sample i in the target

language, using i as an anchor sample z;, we gen-
erate its complementary label as:

= ){c€Cle# argmaz(q;)} if maz(q;) > v
vi= argmin(q;) if max(q;) <~

. (4)
Given the complementary label §; of the anchor
sample i, we construct a negative set A; by ran-
domly choosing K high-confidence samples from
the target language:

'/\/’i = {xj}gK:h

With the negative set and the anchor sample, we
extend the negative learning to the metric space.
We add a linear layer with parameters 6., on top
of the multilingual model’s pooling layer as the con-
trastive head. The representation of a sample z; is
given as h; = f(x;0m, Ocon)-

Combining loss (2), (3) and the negative set con-
struction (5), we propose the contrastive negative
learning loss as:

U = Ui (5)

(i hi') /7

1 ) 1

<hzZL7 :>+276N <hzzb7hjj>/7-

During training, we observed that if the clas-
sification head was not updated during the con-
trastive learning, the classification performance of
the model would have a drastic drop. However,
we would like to avoid directly updating the classi-
fication head using the hard pseudo-labels of the
target data. Empirically, we found jointly training
the model with the NL loss in Eq.(1) using source
data to be helpful. To ensure the consistency be-
tween the metric space and the label space, we
introduce a cross-lingual cross-space consistency
loss:

Lop = —log (6)

N
1
Lores =~ > LnL(f(@50m,00),u5) ()

i=1

where we train the model with N randomly chosen
samples from the source language with the nega-
tive learning loss. The overall training loss at the
first stage is:

Lcont = Lo +ALcres (8)

where ) is used to adjust the contribution of the
hard NL loss from the source language. Using
Eq.(8), we conduct contrastive negative learning to
exploit the hidden information of the noisy labels
and calibrate the model’s confidence.

3.3. Self-training with Pseudo-labels

By calibrating the model’s confidence at the first
stage, we substantially reduce the noise rate and
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class imbalance for high-confidence samples. We
further improve the model’s performance iteratively
with these distilled clean samples. The problem
can be viewed as a semi-supervised learning task.
To successfully conduct SSL, three critical factors
were identified (Berthelot et al., 2019): (1) Consis-
tency regularization. The model should be invariant
to the perturbation of the inputs. (2) Generic reg-
ularization. The model should not overfit the train-
ing data. (3) Entropy minimization. The classifier
should output low-entropy predictions on unlabeled
data.

We design our SSL algorithm to comply with the
above regularizations. To apply the consistency
regularization, we follow consistency training (Xie
et al., 2020) and generate strong augmentations
for the clean samples. During training, the repre-
sentations of the samples can be always seen as
their weakly augmented views with dropout noise,
and the pseudo-labels are produced by these weak
augmentations. Thus, by training the model us-
ing their strong augmentations we actually applied
FixMatch (Sohn et al., 2020). The main idea of
FixMatch is to generate pseudo-labels using weak
augmentations of the unlabeled samples and train
the model to predict the pseudo-labels given the
strongly-augmented views of the samples, which
is shown to be an effective method for consistency
regularization. We use two data augmentation
methods: back translation and random masking.
The strongly-augmented target sample is denoted
as A(z).

To strengthen the generic model regularization
and reduce overfitting, we further use mixup (Zhang
et al., 2018) to generate interpolations of the train-
ing samples so that the model never sees the origi-
nal training samples during training. A mixup aug-
mentation is the linear interpolation of the sentence
embedding of two random training samples z; and
x;, where )\ is sampled from the Beta distribution:

T=Ar;+ (1 - Nz 9)
g=Ay; +(1—Ny; (10)
A ~ Beta(a, o) (11)

Finally, we use cross-entropy loss on the hard
pseudo-labels during training for the purpose of en-
tropy minimization. Following FixMatch, we found
minimizing the cross-entropy loss jointly using the
source samples can be helpful for training. During
each iteration, the clean samples are first selected
using thresholding, then the training set for the iter-
ation is generated with the strong augmentations
using either back translation, random masking or
mixup. We train the model on the training set to
minimize the SSL loss, which is composed of a
supervised loss ¢,,, and an unsupervised loss ¢,

as follows:

Lssr = lsup + A, Where
Coup = H(y;*, py|z*))

Cy = L(max(g;) > 7)H (", ply|A(z?)))

(12)

(13)
(14)

where H denotes cross-entropy, xf is a sample
from the source language data, v is a threshold
to select clean pseudo-labeled target samples.
Specifically, for a more balanced training sets, the
threshold is determined dynamically using Flex-
Match (Zhang et al., 2021) during each training
iteration.

4. Experiments

4.1. Experiment Settings

Datasets We evaluate our method using XNLI
(Conneau et al., 2018), a widely-adopted bench-
mark to evaluate cross-lingual performance for
the natural language inference (NLI) task. XNLI
is a three-way classification dataset including la-
bels with entailment, contrastive and neutral, cov-
ering 15 languages, each language contains 7500
human-annotated development and test examples.
We use the training data of the MultiNLI dataset
(Williams et al., 2018) as the source data, which
contains 392,702 English samples. The source
training data is selected to only cover 5 domains,
including Fiction, Government, Slate, Telephone,
Travel, while target data is collected from 10 do-
mains with additional 5 sources from Face-To-Face,
9/11, Letters, Oxford University Press (OUP) and
Verbatim, which produces a cross-lingual cross-
domain setting for the task.

Implementation Details We implement the
method using mBERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020) separately as the
backbone models. We adopt Adam optimizer and
train the model for one epoch during the contrastive
learning stage. We find that a smaller learning rate
generally helps during the first stage and set the
learning rate to be 2e-6 for mBERT and 5e-6 for
XLM-R. We use Euclidean distance as the similar-
ity function for Eq.(6), as indicated in (Snell et al.,
2017). For the self-training stage, we use mBART
(Tang et al., 2021) for back translation and switch
to Google Translate for the uncovered language in
mBART. For hyperparameters, we set \ in Eq.(8)
as 0.001, «in Eq.(11) as 4 and X in Eq.(13) as 1.

Baselines Apart from the vanilla zero-shot cross-
lingual models (mBERT, XLM-R), we mainly
choose two lines of models: alignment-based
models, including robust training (RS-RP, RS-DA)
(Huang et al., 2021), virtual multilingual embedding
(EPT-APT) (Ding et al., 2022), robust representa-
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en fr es de el bg ru tr ar i th zh  hi sSw ur avg
Backbone: mBERT
mBERT (Huang et al., 2021) 80.8 73.4 735 70.0 653 68.0 67.8 60.9 643 69.3 54.1 67.8 589 49.7 572 654
X-MAML (Nooralahzadeh et al., 2020) 82.1 74.4 75.1 71.8 679 69.4 702 612 66.0 71.8 554 711 622 49.7 615 67.3
RS-RP (Huang et al., 2021) 826 741 75.0 70.5 67.2 687 69.5 59.7 654 705 50.5 69.7 59.8 484 57.9 66.0
RS-DA (Huang et al., 2021) 81.0 742 747 718 680 699 70.6 629 664 718 557 714 627 51.1 609 67.6
Syntax (Ahmad et al., 2021) 81.6 73.2 741 70.7 665 69.3 68.8 624 654 699 - 69.3 60.5 - 58.7 -
EPT-APT (Ding et al., 2022) 832 752 757 729 683 71.0 716 63.6 674 724 56.7 715 64.0 51.3 61.4 68.4
CoNLST 839 759 758 727 683 70.2 70.7 643 66.7 71.8 59.3 721 626 529 615 68.6
CoNLST-RS 84.2 76.2 76.3 73.8 69.8 71.1 723 654 67.0 73.1 59.5 73.9 64.7 53.6 63.5 69.4

Table 1: Classification accuracy(%) on XNLI using mBERT as the backbone model. CoNLST-RS indicates
that robustly-trained mBERT (Huang et al., 2021) was used as the base model. The bold numbers indicate

the highest accuracy score.

en ar bg de el es fr hi ru sw th tr ur Vi zh avg
Backbone: XLM-R-large
XLM-R (Hu et al., 2020) 88.7 772 83.0 825 80.8 837 822 756 79.1 712 774 78.0 71.7 79.3 782 79.2
R3F (Aghajanyan et al., 2020) 89.4 80.6 84.6 83.7 83.6 85.1 84.2 77.3 823 726 79.4 80.7 742 81.1 80.1 81.2
SL-EVI (Xu et al., 2021) 88.1 795 844 834 824 848 837 78.0 816 711 782 79.2 744 80.8 80.4 804
SL-LOU (Xu et al., 2021) 88.2 81.0 844 835 823 848 839 789 818 739 79.3 80.1 757 81.6 814 814
SL-LEU (Xu et al., 2021) 88.1 80.7 849 834 828 845 83.8 79.2 81.8 73.0 79.7 805 75.7 81.9 81.3 814
CoNLST 89.6 81.3 837 833 828 846 832 779 825 742 80.1 809 752 814 815 815
Backbone: XLM-R trained on the machine translated data
XLM-R-MT (Fang et al., 2021) 88.6 822 852 845 84.5 857 84.2 80.8 81.8 77.0 80.2 82.1 77.7 826 827 82.6
FILTER (Fang et al., 2021) 89.5 836 864 856 854 86.6 857 81.1 83.7 78.7 817 83.2 79.1 839 83.8 839
COoNLST-MT 89.6 83.7 859 86.0 853 86.5 855 81.6 84.2 79.3 82.6 83.1 79.6 84.6 83.9 84.1

Table 2: Classification accuracy (%) on XNLI using XLM-R as the backbone model.

tion through regularized finetuning (R3F) (Agha-
janyan et al., 2020); self-training based models,
with different thresholding strategy (SL-EVI, SL-
LOU, SL-LEU) (Xu et al., 2021); along with other
SOTA models, including meta-learning (X-MAML)
(Nooralahzadeh et al., 2020), syntax augmenta-
tion (Syntax) (Ahmad et al., 2021) to compare with
the proposed method. The baselines either use
mBERT or XLM-R as the backbone model.

4.2. Experiment Results

We present the experimental results in Table 1 and
Table 2. To test if the proposed method can serve
as a beneficial complement to the existing align-
ment based methods, we build the method further
on top of two alignment-based methods and eval-
uate the performance: machine translation of test
data and robust training (Huang et al., 2021). Us-
ing machine translation (MT) to translate the target
data into the source language is a simple but pow-
erful way to enforce alignment, where the transla-
tion model is introduced to produce cross-lingual
alignment signals explicitly. Robust training (RS)
(Huang et al., 2021) is an effective method for cross-
lingual alignment which adopts adversarial exam-
ples to simulate the perturbations between cross-
lingual inputs and creates a robust region for similar
words to have similar predictions. The results of
the combined models are shown with CONLST-MT
and CoNLST-RS respectively.

We observe that the proposed CoNLST consis-
tently improves the performance of both mBERT
and XLM-R and achieves results that are on par

with prior state-of-the-art methods. Notably, the
results show that without using any auxiliary lan-
guage or external data, self-training based methods
can attain performance comparable to alignment-
based state-of-the-art approaches. Additionally,
our proposed self-training framework outperforms
earlier standard self-training methods that relied on
auxiliary target languages and manually designed
confidence thresholds. The proposed method can
be viewed as a post-training approach, designed
to mine hidden information from the target domain
after the training on the source data has been done,
so it can be implemented on top of the alignment
methods which are usually apply to the source
language alone, and further improve the aligned
model’s performance on the target language, which
is supported by the empirical results of combining
the proposed method with machine translation or
robust training.

4.3. Analysis

Ablation Study In Table 3, we present the results
of an ablation study on the proposed method us-
ing mBERT as the backbone to analyze the effect
of the proposed contrastive negative learning and
the contribution of its different components to the
model’s performance.

We observe that employing solely contrastive
negative learning leads to only small improvements
in the model’s performance, which indicates that
self-training can further improve the model’s per-
formance by a large margin. We did not perform
ablation study for self-training alone as we show
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Figure 3: Noise rate change before and after the contrastive negative learning stage of four languages.
Bins in blue indicate clean samples while bins in orange indicate noisy samples. The horizontal axis
indicates the confidence score of the samples calculated using the model’s predicted class distribution;

the vertical axis indicates the number of samples falling in the area of confidence.
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Figure 4: Distribution of noisy and clean sample of four languages (English, French, Chinese, Urdu, in
order) after negative learning with only cross entropy loss.

Acc Avg.
w/o self-training (ST) 66.8
w/o contrastive learning 65.3
w/o Leies 65.5
w/0  mixup 67.3
w/o back-translation 67.1
CoNLST 68.5

Table 3: Ablation study of the proposed method.
w/o self-training shows the performance of the
model only with contrastive negative learning. w/o
contrastive learning indicates that CoNL is replaced
with negative learning using only cross entropy loss.

the performance of SOTA self-training methods in
Table 2. The results also suggest that extending the
negative learning to the metric space is necessary,
as replacing the contrastive negative learning with
the original negative learning using cross entropy
loss alone degenerates the model’s performance.
Adding the cross-lingual cross-space loss L. is

also crucial for the stable training of the model with-
out which the contrastive negative learning tends
to fail. The results show that data augmentation
plays an important role in enhancing the model’s
performance during the self-training stage, and the
employment of both mixup and back-translation is
indispensable for a notable improvements in the
model’s overall performance.

Confidence Calibration Ability of CONL We ex-
plore the proposed contrastive negative learning’s
ability to distill clean labels from pseudo-labeled
target samples. Figure 3 shows the change of con-
fidence for clean and noisy target samples before
and after the contrastive negative learning, Table 4
shows the change of accuracy for target samples
in difference confidence areas, and Figure 5 shows
the change of overall accuracy for target samples
in the selected languages. For demonstration, we
select the source language English and three other
languages, French, Chinese and Urdu according
to their linguistic similarity to the source language.
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Lang

High

Mid

Low

Acc Avg.

English
French
Chinese
Urdu

93.3 —96.6
89.4 »95.4
88.5 —»95.1
81.8 »94.4

68.6 —»83.4
66.4 —79.2
63.9 —83.1
59.5 -»74.1

51.7 »56.8
50.6 —54.1
48.4 —»53.1
44.9 —48.2

80.6 »82.1
73.7 -»74.5
69.3 -70.1
57.5 -»59.4

Table 4: Accuracy(%) changes before and after
contrastive negative learning of four languages.
The samples are divided into three confidence ar-
eas: high confidence (v > 0.9), middle confidence
(0.5 < v < 0.9) and low confidence (y < 0.5),
where ~ is the threshold. The accuracy is weighted
by the number of samples in each confidence area.

Other languages that are not present show simi-
lar patterns in our experiments. We also show the
change of noise rate after training the model using
only negative learning with cross entropy loss in
Figure 4.

Change of en Accuracy During CoNL Change of fr Accuracy During CoNL
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Figure 5: The accuracy change of four languages
during contrastive negative learning stage.

According to the change of the noise rate shown
in Figure 3, before the contrastive negative learning,
the quantity of clean samples exhibits a positive cor-
relation with the model’s confidence level. However,
the quantity of noisy samples remains consistent
across different confidence ranges, indicating that
there is a roughly equal distribution of noisy sam-
ples among high-confidence samples and among
samples of middle and low confidence. Moreover,
it can be observed that the proportion of noisy
to clean labels in high-confidence area increases
when the resource of the language gets scarcer.
After CoNL training, noisy samples have lower con-
fidence scores, which indicates that the model be-
comes less confident about the noisy samples, so
that in high-confidence area the noise rate is sig-
nificantly reduced. In contrast, simply training the
model with negative learning using cross entropy
loss increases the noise rate in high-confidence
area and overfits the model to the noise as shown
in Figure 4. This is possibly due to the reason that,
different from most of the computer vision tasks

where negative learning with cross entropy loss is
efficient, in our task the number of class number
is limited, so the probability of choosing a wrong
complementary label augments significantly, which
exacerbates the memorization effect of the model
on the hard labels with cross entropy loss.

We further analyze the change of noise rate of
samples grouped into different confidence ranges,
measured by the accuracy of target samples. The
results are shown in Table 4, note that sample
numbers also change in different confidence ar-
eas. It can be observed that after training, the
accuracy of high-confidence, middle-confidence
and low-confidence samples improves, and no-
tably, languages with lower resources that are rel-
atively more distant from the source language ex-
hibit greater improvements in the accuracy of high-
confidence samples. The results show that the pro-
posed contrastive negative learning is efficient in
filtering noisy samples and can distill clean samples
in high-confidence area, which reduces the poten-
tial confirmation bias for the self-training stage.

5. Conclusions

In this work we explore how the information of the
target language data can be leveraged to improve
the cross-lingual transfer learning and propose a
two-stage method, contrastive negative learning
and self-training (CoNLST). We extend negative
learning to the metric space to mine class-wise
contrastive information from noisy pseudo-labels
of the target data and jointly train the model in the
label space using source language data, which is
shown to be effective in distilling cleanly pseudo-
labeled target data, and we further refine the model
using the clean data with self-training. Experiments
results show that the proposed method can effec-
tively improve the performance of the base models
and can be used to improve the alignment-based
method in a post-training manner. It should be
noted that we assume the only available data, aside
from the source language data, to be the data in
a specific target language, without the existence
of any other auxiliary languages, as found in some
real-world scenarios. By simply breaking the as-
sumption of the unavailability of the auxiliary lan-
guage and extending the sampling pool for negative
pairs (Eq.(5)) to all the languages, the proposed
method can be adapted to jointly training multiple
target languages when data from similar domains
are available in multiple languages. Besides, an
in-depth qualitative analysis on the changes of the
samples before and after the confidence calibration
would also help to investigate the multilingual ability
of the backbone models, which we plan to explore
in the future work.
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