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Abstract
In this paper, we explore physical commonsense reasoning of large language models (LLMs) and propose a
specific methodology to evaluate low-level understanding of the physical world. Specifically, the goal is to create a
test set to analyze physical commonsense reasoning in large language models for Italian and focus on a trustworthy
analysis of the results. To that end, we present a tiered Italian dataset, called Graded Italian Annotated dataset
(GITA), written and thoroughly annotated by a professional linguist, which allows us to concentrate on three different
levels of commonsense understanding. Moreover, we create a semi-automated system to complete the accurate
annotation of the dataset. We also validate our dataset by carrying out three tasks with a multilingual model
(XLM-RoBERTa) and propose a qualitative analysis of the results. We found out that, although the model may
perform at high-level classification tasks, its reasoning is inconsistent and unverifiable, since it does not capture
intermediate evidence.

Keywords:Physical commonsense reasoning, large language models, multilingual model

1. Introduction
Physical commonsense understanding is the abil-
ity to make sense of the physical world and the
events that occur in it. It is a fundamental as-
pect of human intelligence, allowing us to reason
about the world, predict future events, and navi-
gate our surroundings with ease. In recent years,
there has been significant progress in develop-
ing large language models (LLMs) that can gen-
erate human-like language and perform a wide
range of language-related tasks. LLMs have ex-
hibited promising outcomes in grasping common
sense in particular situations (Huang and Chang,
2023; Sakaguchi et al., 2021). Nevertheless, it is
widely recognized that the most precise evalua-
tion of their capabilities is attained when assessing
their performance in specific end tasks (Pessach
and Shmueli, 2022; Davis, 2023). The evaluation
often emphasizes the capacity of LLMs to repli-
cate relatively straightforward tasks, rather than
their authentic proficiency in reasoning and com-
prehending language (Linzen, 2020; Bender and
Koller, 2020). As a result, there remains uncer-
tainty regarding machines’ ability to truly perform
reasoning and whether the existing issues in this
regard have been sufficiently addressed.
In this context, our aim is to develop an origi-
nal dataset suitable for an evaluation benchmark
that can be used to assess the ability of language
models to understand physical commonsense in a
more truthful way, focusing not only on end tasks,
but also on intermediate layer tasks. Moreover,
with the creation of an Italian dataset we gain the

linguistic and cultural perspective of Italian, while
commonsense research in Natural Language Pro-
cessing (NLP) has largely been focused on the En-
glish language. In this paper, we present GITA, the
Graded Italian Annotated dataset, manually com-
piled by a professional linguist, which allows for a
multi-layered evaluation of the reasoning process.
The aim of our benchmark is to evaluate three dif-
ferent tasks: 1) the end task consists of identi-
fying the plausible and implausible stories in our
dataset, 2) the second-level task is to identify the
conflict that generates an implausible story, and 3)
the deepest one consists of identifying all the phys-
ical states that make a story plausible or implausi-
ble. Moreover, to prove the validity of our dataset,
we experiment with a multilingual languagemodel,
and we perform an analysis of the experimental re-
sults.
The main contributions of this paper are the devel-
opment of an Italian dataset, built by a professional
linguist, which can be used to assess similar tasks
in LLMs, and the creation of a semi-automated en-
vironment to deeply annotate a dataset. To the
best of our knowledge this is the first Italian dataset
of this kind.

2. Related Work
Commonsense reasoning involves the ability to
make accurate predictions, infer missing informa-
tion, understand cause-and-effect relationships,
and draw logical conclusions from incomplete or
ambiguous data. In recent years, there has
been growing interest in developing LLMs that can
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Figure 1: Representation of story pair from GITA

mimic the ability of drawing conclusions based on
our understanding of the world (Du et al., 2023).
Yet, despite their capabilities, LLMs still struggle
with commonsense reasoning tasks. This is be-
cause much of our knowledge about the world
is implicit and difficult to formalize (Marcus and
Davis, 2020). To address this problem, evaluation
benchmarks that can be used to test LLMs’ perfor-
mance on commonsense reasoning tasks (Storks
et al., 2019) and that can identify areas for im-
provement, as well as new techniques, have been
created.
Physical commonsense is the understanding of
how the physical world works, including object
properties, spatial relations, and cause and effect
relationships. A well-known example of physical
commonsense is the concept of gravity - we know
that if we drop an object, it will fall to the ground.
Regarding the evaluation of its understanding,
Bisk et al. (2020b) developed a dataset for as-
sessing progress in physical commonsense un-
derstanding. The main task involved answer-
ing multiple-choice questions, where a question q
was presented along with two possible solutions,
s1 and s2, and the model or human evaluator
had to choose the most suitable option, with only
one correct answer available. Though humans
found the dataset easy (95% accuracy), large pre-
trained models struggled but scored consistently
over 75%.
Singh et al. (2021) introduced a new common-
sense reasoning benchmark dataset compris-
ing natural language true/false statements, with
the aim of reliably measuring an agent’s abil-
ity to perform commonsense reasoning over a
given situation. After fine-tuning, the model
achieved 71% accuracy, while human perfor-
mance reached 95%.
Storks et al. (2021) introduced a novel common-
sense reasoning dataset called Tiered Reasoning
for Intuitive Physics (TRIP) that enables a multi-
tiered evaluation of machines’ reasoning process.
They showed that this type of benchmarks canmo-
tivate a verifiable evaluation of commonsense rea-
soning and facilitate future research in this field.
The TRIP dataset comprises human-written sto-
ries that depict sequences of physical actions. To
determine which of two stories, composed of indi-

vidually plausible sentences and differing by only
one sentence, is more credible, the task requires
knowledge of verb causality, precondition, and in-
tuitive physics. The TRIP training set is composed
by 370 plausible stories, and 799 implausible sto-
ries; the validation set includes 152 plausible sto-
ries and 322 implausible ones; and the test sets
comprises 153 plausible stories and 351 implau-
sible ones. A characteristic of this dataset is the
presence of a rich physical states annotation.
Ponti et al. (2020) introduced a new multilingual
dataset for causal commonsense reasoning. This
dataset covers 11 different languages and al-
lows for the evaluation of commonsense reason-
ing across multiple languages. They showed that
models trained on multiple languages can achieve
strong performance on commonsense reasoning
end tasks, demonstrating the importance of multi-
lingual data for improving models’ generalization.
Regarding the multilingual approaches to com-
monsense reasoning, Lin et al. (2021) evalu-
ated multilingual language models for common-
sense reasoning in multiple languages and they
showed that these models are effective at captur-
ing commonsense knowledge across different lan-
guages and that multilingual pre-training can im-
prove performance on tasks in low-resource lan-
guages. Finally, Fang et al. (2022) proposed a
multilingual approach to commonsense reason-
ing that leverages knowledge from related lan-
guages to improve performance on low-resource
languages. They demonstrated that this approach
can significantly improve performance on multi-
lingual commonsense reasoning end tasks and
highlights the importance of considering related
languages in multilingual NLP research. The
previous works show that multilingual data, pre-
training, and knowledge transfer can be effec-
tive strategies for improving models’ generaliza-
tion and end task performance across multiple lan-
guages.

3. Building GITA
In order to build the Graded Italian Annotated
dataset (GITA), we base our experimentation on
Storks et al.’s (2021) work. Our main objective is
to create an Italian dataset, manually annotated,
to assess a pre-trained language model on physi-
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cal commonsense tiered tasks. We configure our
assessment proposal in the following terms:

1. given an original dataset of plausible/implau-
sible stories related to physical common-
sense, systems must identify the plausible
and implausible stories;

2. systems must recognize the conflicting sen-
tences that generate the conflict in implausi-
ble stories;

3. systems must spot the underlying physical
states in those sentences causing the conflict.

The recognition of plausible/implausible stories is
the end task envisaged in this benchmark, which
must be justified by the second-level and third-
level steps. In Figure 1 we present a story pair
from the GITA dataset and the relation between
the layers of annotation. Story A is a plausible
story, Story B is the corresponding implausible
story where the first and the second sentences are
in conflict: Marco closes the refrigerator and can-
not take the milk out of it. In the right part of the
figure we can see the reasoning steps that the sys-
tem must follow and resolve. This example is pre-
sented in English for clarity, but our entire dataset
is in Italian.

3.1. Dataset creation
We created a dataset of 356 stories in Italian which
compiles 117 plausible and 239 implausible sto-
ries. To compose the dataset, we focused on
concrete actions that could be visualized in the
physical world, avoiding mental actions such as
“to think” or “to like”. Several benchmarks focus-
ing on plausible reasoning offer limited context,
often consisting of just one sentence, accompa-
nied by similarly brief options to complete the con-
text (Gordon et al., 2012; Zellers et al., 2018; Bisk
et al., 2020a). Instead, we created 5-sentence
stories, giving more context and requiring reason-
ing over multiple sentences with associated phys-
ical state changes. In all the stories, we avoided
nonsensical sentences, in fact, each sentence is
plausible alone, but could be implausible if associ-
ated with another specific sentence in an implau-
sible story. With these characteristics, the task re-
quires reasoning over the entire context. To cre-
ate the stories, we took inspiration from the Story
Cloze Test (Mostafazadeh et al., 2017) and ROC-
Stories Corpora (Mostafazadeh et al., 2016). The
Story Cloze Test is composed by four-sentence
stories with a missing ending, requiring a system
to choose the most appropriate conclusion. The
ROCStories dataset has two specific characteris-
tics: 1) it includes a diverse range of causal and
temporal commonsense relations between daily
events, and 2) it offers a high-quality collection of

everyday life stories that can be utilized for story
generation.
An essential part of our evaluation process is con-
stituted by the presence of physical state annota-
tion. Systems must identify the underlying phys-
ical states that make a story not plausible in our
physical world. During the creation of the dataset,
we took into account 20 physical attributes that
were included in the annotation phase, and we
composed stories that contained those attributes.
Following the work of Gao et al. (2016) and Bosse-
lut et al. (2017), these are the 20 physical states
that we wanted to have in our stories:

• for human actors: location, hygiene, con-
scious, dressed, wet;

• for objects: location, exist, clean, power,
functional, in pieces, wet, open, temperature,
solid, occupied, running, movable, mixed, ed-
ible.

In the first two rows of Table 1 we can see an ex-
ample of plausible story from the GITA dataset to-
gether with the English translation. In this exam-
ple, the human actor is Marco, and the five sen-
tences are ordered in the required way: the action
of opening something, picking something up and
using it. We can see that some of the previously
listed physical states appear: Marco is conscious
because he is doing something, the refrigerator is
open because the actor can take something out of
it, the cup is not occupied by anything and can be
functional.
We tried to avoid subjectivity and restrict poten-
tial confounding factors arising from complex lan-
guage usage. The use of simple language en-
abled us to shift our focus away from linguistic pro-
cessing and semantic phenomena, directing more
attention towards investigating machines’ reason-
ing abilities, specifically their physical common-
sense understanding. Therefore, we constructed
our simple sentences in a straightforward declara-
tive structure. This usually involves beginning with
the agent of the story, followed by a verb, a direct
object, and an optional indirect object.
Implausible stories are built upon the plausible
ones, preserving the same actor and objects; in
doing so we ensured that implausible variations re-
mained coherent and believable, and we avoided
nonsensical information. To create implausible
stories, we implemented two different methods:

1. we switched the order of two sentences;

2. we substituted a plausible sentence with an
implausible one.

These two methods resulted in two different parti-
tions of our dataset: the Order dataset of implau-
sible stories, and the Cloze dataset of implausible
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sentence 1 sentence 2 sentence 3 sentence 4 sentence 5
T Marco ha aperto

il frigo.
Marco ha preso
il latte dal frigo.

Marco ha preso
la tazza.

Marco ha ver-
sato il latte nella
tazza.

Marco ha bevuto il
latte.

Marco opened
the refrigerator.

Marco took the
milk from the re-
frigerator.

Marco took the
cup.

Marco poured
the milk into the
cup.

Marco drank the
milk.

F
(or-
der)

Marco ha preso il
latte dal frigo.

Marco ha aperto
il frigo.

Marco ha preso
la tazza.

Marco ha ver-
sato il latte nella
tazza.

Marco ha bevuto il
latte.

Marco took the
milk from the re-
frigerator.

Marco opened
the refrigerator.

Marco took the
cup.

Marco poured
the milk into the
cup.

Marco drank the
milk.

F
(clo-
ze)

Marco ha chiuso
il frigo.

Marco ha preso
il latte dal frigo.

Marco ha preso
la tazza.

Marco ha ver-
sato il latte nella
tazza.

Marco ha bevuto il
latte.

Marco closed
the refrigerator.

Marco took the
milk from the re-
frigerator.

Marco took the
cup.

Marco poured
the milk into the
cup.

Marco drank the
milk.

Table 1: Example of a plausible story, an implausible story from the Order dataset, and an implausible
story from the Cloze dataset.

stories respectively. In the Order dataset there are
122 implausible stories, while in the Cloze dataset
there are 117 implausible stories.

3.1.1. Order implausible stories
The plausible stories only work in the causal se-
quence that we created. In Table 1, the plausible
story sees Marco as the protagonist, and physical
states such as open and occupied as critical for
the unfolding of the events.
In the first row of Table 1, there is an example
of a plausible story. In the third row, we see
the corresponding implausible story for the order
dataset, in which Marco, first, takes the milk out
from the refrigerator and then open the refrigera-
tor, generating a physically impossible situation:
it is not possible to take something out of a closed
refrigerator. By switching the first and the second
sentences, we created an implausible story.
In the entire dataset, we decided to generate
implausible stories changing the order of only two
sentences for story.

3.1.2. Cloze implausible stories
The second approach involves the substitution of a
sentence from the plausible story with a new sen-
tence. Although the new sentence itself is not in-
herently implausible, its placement within the se-
quence renders it implausible.
In Table 1, the first sentence of the line F (Cloze),
in the fifth row, was changed: Marco closes the
refrigerator before taking out the milk. Again, the
action is physically impossible: if the refrigerator is
closed, nothing can be taken out from it.

3.2. Dataset annotation
GITA is annotated on three levels. In the first
level, we annotated the plausibility/implausibility of
a story with TRUE or FALSE. In the second level,
in implausible stories we indicated between which
sentences the conflict was, and in the third level
we labelled the involved physical states in each
sentence.
In the dataset, a plausible story is identified using
a story number, while implausible stories are iden-
tified using the same story number as the plau-
sible version, but with an additional C or O af-
ter the story number, where the letter C refers to
the Cloze dataset, and the letter O refers to the
Order dataset. Each story has been annotated
using these elements: story id, worker id, actor
of the story, objects of the story, physical states,
sentences of the story, as well as number of sen-
tences, and conflicting sentences, among others.
The complete list and the specific meaning of each
element are in Appendix A, while an example of a
complete annotation can be found in Appendix B.
The annotation was conducted on a JSON file, and
the complete JSON file is available in our reposi-
tory under the license CC BY-NC-SA 4.0.1
The annotation of physical states is organized by
sentence: for each sentence in each story we see
the 20 states. The physical states were annotated
following Table 2, based on the attribute space fea-
tures framework proposed by Gao et al. (2016)
and Bosselut et al. (2017). Each physical state
can be annotated using a number from 0 to 8, ex-

1https://github.com/GiuliaAPensa/
GITAdataset

https://github.com/GiuliaAPensa/GITAdataset
https://github.com/GiuliaAPensa/GITAdataset
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cept from human physical states that only present
three dimensions. The dimension of the location
state is adapted to the features of location itself; at
the same time, the human location state presents
three specific dimensions. These two states are
unique in that each number in our classification
corresponds to a specific physical change. For
instance, in the case of location number 7 signi-
fies ”taken out of a container”. Conversely, for
all other attributes, except human location, it in-
dicates that the attribute was false in the previous
step, with uncertainty about its status in the cur-
rent one. The other physical states are annotated
with more generic labels.

Label Human Location Object Location Other Attributes
0 irrelevant irrelevant irrelevant
1 disappeared disappeared false → false
2 moved picked up true → true
3 - put down true → false
4 - put on false → true
5 - removed → no
6 - put in container → true
7 - taken our of container false →
8 - moved true →

Table 2: Label space and meanings for physical
states.

After concluding the annotation of all physical
states in our stories, we applied two different clas-
sifiers (like the ones that Storks et al. (2021) pre-
sented in their work), a precondition classifier and
an effect classifier. The precondition classifier ex-
tracted the label referred to the precondition from
each physical state and the effect classifier ex-
tracted the label of the effect state. To better un-
derstand this feature, this is the first sentence of
the implausible story (Cloze) in Table 1:

• Marco ha chiuso il frigo. (Marco closed the
refrigerator.)

In this sentence, the entity frigo (refrigerator), was
annotated for the open physical state as true →
false with the number 3 of our Table 2. Each clas-
sifier classified this number with a label for the pre-
condition and another for the effect. In this way,
from that specific state label 3 (true → false or, in
our example, open refrigerator → closed refrigera-
tor) the classifiers extracted open: 2 (true → true)
for the precondition and 1 (false → false) for the
effect, meaning that the refrigerator was first open
and then closed. During the analysis of our re-
sults (see Section 4.4), we take into consideration
the precondition-effect labels when comparing the
actual labels assigned to each physical state with
the predictions of the model.
To ensure consistency and reduce human ef-
fort, we developed a custom environment and a
Python script to streamline the annotation process.
This semi-automated annotation process helped
us process sentences from different story types,

extract entities and actors, and organize them for
manual annotation. The script provided a user-
friendly terminal interface, and it is available in our
repository. In terms of annotation efficiency, man-
ually annotating one plausible story and two im-
plausible ones typically took around 50 minutes.
However, using our semi-automated annotation
interface, we were able to complete the same task
in approximately 20 minutes. Consequently, in-
stead of the estimated 100 hours for annotating
the entire dataset, we reduced the time to around
40 hours. Additionally, some annotations required
review and occasional revisions, hence we esti-
mated that the overall effort was of approximately
50-55 hours.
Table 3 lists the statistics of the resulting dataset:
number of plausible/implausible stories and num-
ber of physical state labels.

Measure GITA test set
# plausible stories 117

# implausible stories (ORDER) 122
# implausible stories (CLOZE) 117
# physical state labels (ORDER) 2,911
# physical state labels (CLOZE) 2,819

Table 3: Statistics of the GITA dataset.

4. Validation Experiments
In this section we present the experiments that
serve to validate the effectiveness and reliability
of the proposed dataset.

4.1. Tasks
Based on the GITA dataset and following the steps
of Storks et al. (2021), we propose a series of
tasks that form a human-interpretable reasoning
process, supported by a chain of evidence.

1. Physical state classification: Leveraging
our physical state annotations, we propose
two subtasks for each entity within every story
choice: precondition and effect state classifi-
cation. For instance, if we consider the sen-
tence “John cut the cooked potato in half” with
the entity “potato”, the first subtask involves
predicting that the potato is solid as a precon-
dition for being cut (e.g., the precondition label
for the solidity attribute is true). The second
subtask entails predicting that the potato is in
pieces as an effect resulting from the cutting
action (e.g., the effect label for the in pieces
attribute is true).

2. Conflict detection: Next, the task of conflict
detection entails identifying sentence pairs
of the form Si → Sj. Here, Sj represents
the breakpoint, indicating the point at which
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the story becomes implausible based on the
given context. Si serves as the evidence that
explains the breakpoint, typically causing a
conflicting world state.

3. Story classification: The end task revolves
around determining the plausibility of two sto-
ries. This determination is based on the con-
flicts detected within the two stories. By con-
sidering the presence of conflicts, the model
can assess the viability and coherence of
each story, facilitating the classification of the
more plausible one.

By incorporating physical state classification, con-
flict detection, and story classification, we analyze
the aspects of coherent reasoning, supported by
evidence-driven analysis.

4.2. Model and experimental set-up
We trained our model on the English training set
provided by Storks et al. (2021) and tested it on
our Italian dataset. For this reason, we ran our ex-
periments using XLM-RoBERTa (Conneau et al.,
2020), a multilingual LLM based on RoBERTa’s
architecture, which is a variant of the transformer
neural network architecture, and it is designed to
handle multilingual data.
Following the steps of Storks et al. (2021), the ar-
chitecture’s parameters were trained through gra-
dient descent on the overall loss L:

L = λpLp + λfLf + λcLc + λsLs (1)

L sums individual cross-entropy loss functions Lp
for precondition classification, Lf for effect classi-
fication, Lc for conflict detection, and Ls for story
choice classification, each balanced by respective
weights λp, λf, λc, λs summing to 1.

4.3. Evaluation metrics
In order to evaluate the model, we employ the fol-
lowing evaluation metrics:

• Accuracy assesses the traditional measure
of end task accuracy, which quantifies the
proportion of testing examples where plausi-
ble stories and implausible stories are accu-
rately identified.

• Consistency measures the proportion of
testing examples where not only the plausible
story is correctly identified, but also the con-
flicting sentence pair for the implausible story
is accurately identified. The aim is to demon-
strate the model’s consistency in recognizing
conflicts when reasoning about plausibility.

• Verifiability evaluates the proportion of test-
ing examples where not only the plausible

story and the conflicting sentence pair for
the implausible story are correctly identified,
but also the underlying physical states (i.e.,
preconditions and effects) that contribute to
the conflict are accurately identified. This
demonstrates that the detected conflict can be
validated through a correct understanding of
the underlying implausible change of physical
states. For the notion of verifiability, we re-
fer to Storks et al. (2021): to be verifiable,
a story needed to have at least one physi-
cal state label predicted in the preconditions
of the breakpoint sentence and one physi-
cal state label predicted in the effects of the
evidence sentence, and all such predictions
must be correct.

4.4. Results
Taking into consideration the three different met-
rics, in Table 4 we report the results in our test set.

Accuracy Consistency Verifiability
Cloze 72.6 19.6 2.5
Order 58.1 1.6 0.8

Table 4: Results of GITA on the Italian test set.

The model performed better in the Cloze dataset
than theOrder dataset. The end task was correctly
predicted in the 72.6% of the cases for the Cloze
dataset, whereas the intermediate tasks fell short
in terms of predictability. This disparity between
the accuracy of the end task and the lack of pre-
dictability in the intermediate tasks demonstrates
the incongruity that stands between the capacity
of predicting the high-level classification task for
which the system was fine-tuned, and the capacity
of the same system to justify the steps in the rea-
soning process that brought to the final decision.
We examine the performance of the system in the
Cloze dataset according to the three key metrics:

• the accuracy of 72.6% reflects the 84 pairs of
stories out of 117 that were correctly identified
as plausible and implausible;

• the consistency of 19.6% refers to the 23 im-
plausible stories, where the model was able
to spot the conflict sentences;

• and the 2.5% verifiability refers to the three in-
stances when our model was able to predict
the correct physical states present in our sto-
ries.

From this analysis of the data, we can recognize
the difficulty encountered by the model to spot the
right physical states in our 23 consistent implausi-
ble stories.
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sentence 1 sentence 2 sentence 3 sentence 4 sentence 5
T Olivia è in cam-

era da letto.
Olivia ha aperto
la valigia.

Olivia ha messo in
valigia due cami-
cie.

Olivia ha
chiuso la vali-
gia.

Olivia ha trovato il
passaporto.

Olivia is in the
bedroom.

Olivia has
opened the
suitcase.

Olivia has packed
two shirts in the
suitcase.

Olivia has
closed the
suitcase.

Olivia found her
passport.

F Olivia è in cam-
era da letto.

Olivia ha aperto
la valigia.

Olivia ha messo in
valigia due cami-
cie.

Olivia ha
chiuso la vali-
gia.

Olivia ha preso
una camicia dalla
valigia.

Olivia is in the
bedroom.

Olivia has
opened the
suitcase.

Olivia has packed
two shirts in the
suitcase.

Olivia has
closed the
suitcase.

Olivia has taken a
shirt from the suit-
case.

Table 5: Story No. 102 (102-C0)

4.5. Analysis of the results

In this section we present an analysis of the con-
sistent stories and the cases we encountered in
the predictions. We decided to have a closer look
at the 23 consistent stories of the Cloze dataset,
in order to understand the behavior of the model.
For each physical state in one story we have both
precondition and effect predictions. In these 23
consistent stories, out of 414 physical states in
both precondition and effect predictions, only 112
were correctly predicted, reaching a 27% of cor-
rectly predicted physical attributes.
Looking at the stories where most of the attributes
were correctly identified by the model, we focus
on stories number 102-C0, and 94-C0 in the Cloze
partition. In story 102 (Table 5), we reached a 60%
of correct physical states, out of 15 states 9 were
well predicted. The 9 identified states were loca-
tion, open, and contain. In story 94 (Table 6), 6 out
of 12 states were well predicted, all of them were
location attributes that the model had no issue in
predicting.
In our dataset, three stories appeared as verifi-
able: they constituted the proportion of testing
examples where not only the plausible story and
the conflicting sentence pair for the implausible
story were correctly identified but also the under-
lying physical states (i.e., preconditions and ef-
fects) that contributed to the conflict were correctly
identified. As we said, in order to be verifiable, a
story needed to have at least one physical state
label predicted in the preconditions of the break-
point sentence, and one physical state label pre-
dicted in the effects of the evidence sentence, and
all such predictions had to be correct. Among the
total of 23 consistent stories, these three stories
accounted for 13%. In these particular stories,
the accuracy of predicting the total physical states
reached 25%, 28%, and 39% respectively. This
finding suggests that the identification of the total
number of physical states did not play a significant

role in determining the plausibility of the story.
An example of one of the three verifiable stories
in the dataset is story 66-C0 (Table 7). In Story
66-C0, the evidence sentence is sentence No. 3
(“Giusy closed the shower door”), and the break-
point is sentence No. 4 (“Giusy steps into the
shower”). These two sentences generate the con-
flict in the story: if the shower door is closed, Giusy
cannot step in. As anticipated, one correct pre-
diction in the precondition physical states of the
breakpoint, in this example sentence No. 4, and
one correct prediction of effect physical states in
the evidence sentence, in this example sentence
No. 3, were correct. In this specific case, the pre-
condition label in sentence No. 4 referred to hu-
man location was the only one correctly predicted
by the model in the sentence (the correct label
was human location: 2, which in our classification
means that the human agent moved). While in
sentence No. 3, the effect label open: 1, referred
to the entity doccia (shower), was correctly iden-
tified, meaning that the shower was annotated as
closed in that sentence.
These are, in general, some of the specific be-
haviours of the model:

• Best predicted physical states: the model
recognized the location attribute many times,
while attributes such as clean, and function
were recognized in only a few stories.

• Ratio of true/false predictions for each
state: we calculated the number of actual
physical attributes in each consistent story.
About 55% of the location and human location
states were correctly predicted by our model,
50% of the wearing states were foreseen by
the model (although we only see a total of 2
actual cases for this attribute), and pieces and
solid states also reached 40% of positive pre-
dictions.

• Location and human location attributes:
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sentence 1 sentence 2 sentence 3 sentence 4 sentence 5
T Giusy ha preso

un pennello.
Giusy ha preso
le tempere.

Giusy ha preso la
tavolozza.

Giusy ha
messo le tem-
pere sulla
tavolozza.

Giusy ha iniziato
a dipingere un
quadro.

Giusy has
taken a paint-
brush.

Giusy has taken
the tempera
paints.

Giusy has taken
the palette.

Giusy has put
the tempera
paints on the
palette.

Giusy has started
painting a picture.

F Giusy ha preso
un pennello.

Giusy ha preso
le tempere.

Giusy ha preso la
tavolozza.

Giusy ha fatto
tutto a pezzi.

Giusy ha iniziato
a dipingere un
quadro.

Giusy has
taken a paint-
brush.

Giusy has taken
the tempera
paints.

Giusy has taken
the palette.

Giusy has put
the tempera
paints on the
palette.

Giusy has broken
everything into
pieces.

Table 6: Story No. 94 (94-C0)

these two states are the only ones that have a
full specific classification (Table 2) and at the
same time are those states that appear to be
better predicted.

• Incoherence of the LLMs: these are the
cases where a state could be well predicted
in a sentence but wrongly guessed in other
sentences of the same story. For example,
a human location attribute can be identified
in a sentence, and then predicted again in
another sentence of the same story, where
no attributes were associated to a human ac-
tor. In these cases, the model seemed stuck
with the correct prediction of human location
and, in its over-confidence, it repeated the
prediction for the following sentences. Again,
it looks like no reasoning method was applied
in the assignation of the correct predictions of
physical changes and that the model was not
consistent.

• Random guesses: the presence of numer-
ous randomly assigned attributes in many sto-
ries aligns with the suspicion of an unpre-
dictable and irrational categorization of phys-
ical states. An example is the confusion be-
tween open and power attributes throughout
the dataset, or the correct prediction of a state
but the wrong guess of the number related to
it. There are cases in which the prediction
looked completely random: for example, the
functional and the contain attributes were pre-
dicted as power, while the running attribute,
which did not appear in a story, was instead
predicted in the precondition classification.

The lower-level task appears challenging to learn,
highlighting the need for further investigation and
refinement in our approach.

5. Discussion

In this discussion section, we delve deeper into the
significance of our findings. The presented analy-
sis highlights the complexities inherent in training
LLMs to comprehend and predict physical states
within narrative contexts. An area of further explo-
ration is the extension of the structured annotation
approach employed in this study to encompass a
broader range of attributes. This expansion of the
annotation space may yield additional insights into
the performance of LLMs and their ability to under-
stand diverse aspects of physical states.
A hypothesis arises regarding the model’s profi-
ciency in predicting location states: our hypothe-
sis is that this proficiencymay be linked to potential
biases within the training dataset, where a signifi-
cant number of examples featuring the location at-
tribute might exist. This observation emphasizes
the importance of careful dataset curation and bal-
ance to avoid an over-representation of specific
attributes, which could skew the model’s perfor-
mance.
In contrast to our approach, one of Storks et al.’s
(2021) experiments achieved an accuracy of 97%,
when considering only the end task sentence clas-
sification, avoiding the intermediate tasks. This
shows that reasonable supporting evidence is not
required in order to achieve high accuracy of the
end task. This outcome invites scrutiny of the va-
lidity of prevailing state-of-the-art results in the do-
main of commonsense benchmarks, which often
lack the manifestation of coherent reasoning be-
yond end classification tasks (Davis, 2023). This
inherent simplification of tasks underscores the ex-
isting skepticism surrounding the capacity of cur-
rent methodologies to fully capture and compre-
hend commonsense knowledge. Furthermore, al-
though some researchers have only focused on



827

sentence 1 sentence 2 sentence 3 sentence 4 sentence 5
F Giusy entra in

bagno.
Giusy si toglie i
vestiti.

Giusy chiude la
porta della doccia.

Giusy entra in
doccia.

Giusy apre il rubi-
netto della doccia.

Giusy enters
the bathroom.

Giusy un-
dresses.

Giusy closes the
shower door.

Giusy steps
into the
shower.

Giusy turns on the
shower faucet.

Table 7: Story No. 66 (66-C0)

the end tasks (Bisk et al., 2020b; Yang et al.,
2021), the efforts aimed at shedding light on the
undergoing linguistic phenomena that condition
commonsense information (Storks et al., 2021)
seem more productive in advancing towards ef-
fective commonsense understanding. Prioritiz-
ing objective evaluations and adopting more prag-
matic benchmarks in NLU holds the potential for
substantial advancements in our understanding
of LLMs’ capabilities and limitations in managing
commonsense knowledge.

6. Conclusion
In this work, we focused on physical common-
sense evaluation in LLMs. We described the man-
ual creation and annotation of GITA in Italian, as
well as its automation, we evaluated a pre-trained
language model’s performance on it, and provided
insights into its capabilities in physical common-
sense reasoning. The findings from our study in-
dicate that when it comes to acquiring common-
sense language understanding, supervising LLMs
solely through high-level classification tasks of-
ten yields inconsistent and unverifiable reasoning.
These models struggle to capture intermediate ev-
idence that contributes to the completion of the
end task. We consider advisable to shift the re-
search focus to truthful benchmarks, and empha-
size the importance of evaluating pre-trained lan-
guage models’ ability to understand physical com-
monsense in a more realistic way.
In the short term, we strongly advise to direct fu-
ture efforts towards a novel form of analysis that
instills greater trust and specificity. This analysis
should prioritize either the successful completion
of the end task or the evaluation of tiered tasks.
By doing so, we can establish a more reliable and
targeted approach that addresses the immediate
concerns and limitations we have encountered.
In future work, we aim to further refine the anno-
tation process and to add new stories to the Ital-
ian dataset. We will also try to extend the anno-
tation task to at least another professional, since
it can be very interesting to incorporate multiple
perspectives to gain a more comprehensive anal-
ysis of the dataset. Moreover, we aim to apply
our benchmark to generative systems to evalu-
ate their performance and adaptability. This anal-
ysis has highlighted challenges in low-level task

performance, and assessing GenAI systems us-
ing our test set can provide valuable insights for
improvement. Making the dataset available will
allow for further work on physical commonsense
understanding in Italian.
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A. Annotations in the dataset
These are the attributes that encode the metadata
and linguistic information in the GITA dataset:

• story_id: refers to the number of the story for
both plausible and implausible stories.

• worker_id: refers to the name assigned to
a specific worker during the creation of the
story.

• type: refers to cloze or order and it is a label
used only in implausible stories.

• idx: refers to the implausible dataset, where
there is more than one implausible story for a
given story number; for example, if we have
more than one implausible version of a plau-
sible story (we createdmore than an implausi-
ble story changing the order of our sentences
more than once), the index number indicates
to which implausible example we are refer-
ring.

• aug: refers to possible automatic data aug-
mentation techniques that can be taken into
account for future works to resolve an overfit-
ting problem.

• actor: refers to the human agent of the story.

• location: refers to the room where the story
takes place.

• objects: refers to all the inanimate entities
that we find into each story.

• sentences: includes the 5 sentences in the
story.

• length: refers to the number of sentences in
each story.

• example_id: corresponds to the story num-
ber and includes letters for implausible sto-
ries.

• plausible: is TRUE when the story is plausi-
ble and FALSE when it is implausible.

• breakpoint: refers to the sentence where the
story becomes implausible, where the con-
flict becomes evident; in plausible stories the
breakpoint is always -1.

• conlict_sents: refers to the other sentence
in the story that together with the break-
point sentence makes the story implausible;
in plausible stories this field is blank.

• conlict_pairs: refers to the conflict pair of
sentences, gathering the two previous labels;
in plausible stories this field is blank.

• states: includes all the physical states anno-
tations for all entities in all sentences; we will
look into this in the following section.
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B. Annotation environment

ac to r :
Marco
ob jec ts :
f r i g o l a t t e tazza %cucch ia io
story_number (same as s t o r y_ i d in

quotes ) :
‘0 ’
s t o r y_ i d (NO quotes , NO l e t t e r , on ly

number ) :
0
worker_id ( i n quotes ) :
‘GAP ’
type ( n u l l for pos i t i ve , order , or

cloze , in quotes ) :
n u l l
i dx ( nu l l , or same as NUMBER in

s to r y number ) :
n u l l
aug ( fa lse ) :
fa lse
l o c a t i o n ( in quotes ) :
‘ cucina ’
sentences :
Marco ha aper to i l f r i g o . Marco ha

preso i l l a t t e . Marco ha
preso l a tazza . Marco ha preso
i l cucch ia io . Marco ha messo

i l cucch ia io ne l l a tazza .
leng th :
5
example_id (same as s to r y number , i n

quotes ) :
‘0 ’
p l aus i b l e :
true
breakpo in t :
−1
con f l_sen ts ( type only [ ] ) :
[ ]

Listing 1: Annotation environment.

C. Example of annotated sentence

{ "0" :
{"story_id": 0,
"worker_id": "GAP",
"type": null,
"idx": null,
"aug": false ,
"actor": "Marco",
"location": "cucina",
"objects": "frigo , latte , tazza ,

cucchiaio",

"sentences":
["Marco ha aperto il frigo.",
"Marco ha preso il latte.",

"Marco ha preso la tazza.",
"Marco ha preso il cucchiaio.",
"Marco ha messo il cucchiaio nella tazza

."],

"length": 5,
"example_id": "0",
"plausible": true,
"breakpoint": -1,
"confl_sents": [],
"confl_pairs": [],

"states":
[{"h_location": [[" Marco ", 0]],
"conscious": [[" Marco ", 2]],
"wearing": [[" Marco ", 0]],
"h_wet": [[" Marco ", 0]],
"hygiene": [[" Marco ", 0]],
"location": [
["frigo", 0],
["latte", 0],
["tazza", 0],
["cucchiaio", 0]],
"exist": [
["frigo", 2],
["latte", 0],
["tazza", 0],
["cucchiaio", 0]],
"clean": [
["frigo", 0],
["latte", 0],
["tazza", 0],
["cucchiaio", 0]],
"power": [
["frigo", 2],
["latte", 0],
["tazza", 0],
["cucchiaio", 0]],
"functional": [
["frigo", 2],
["latte", 0],
["tazza", 0],
["cucchiaio", 0]],
"pieces": [
["frigo", 0],
["latte", 0],
["tazza", 0],
["cucchiaio", 0]],
"wet": [
["frigo", 0],
["latte", 0],
["tazza", 0],
["cucchiaio", 0]],
"open": [
["frigo", 4],
["latte", 0],
["tazza", 0],
["cucchiaio", 0]],
"temperature": [
["frigo", 0],
["latte", 0],
["tazza", 0],
["cucchiaio", 0]],
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"solid": [
["frigo", 0],
["latte", 0],
["tazza", 0],
["cucchiaio", 0]],
"contain": [
["frigo", 0],
["latte", 0],
["tazza", 0],
["cucchiaio", 0]],
"running": [
["frigo", 2],
["latte", 0],
["tazza", 0],
["cucchiaio", 0]],
"moveable": [
["frigo", 0],
["latte", 0],
["tazza", 0],
["cucchiaio", 0]],
"mixed": [
["frigo", 0],
["latte", 0],
["tazza", 0],
["cucchiaio", 0]],
"edible": [
["frigo", 0],
["latte", 0],
["tazza", 0],
"cucchiaio", 0]]}

Listing 2: Example of annotated sentence.
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