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Abstract
With the development of large language models (LLMs), detecting whether text is generated by a machine becomes
increasingly challenging in the face of malicious use cases like the spread of false information, protection of
intellectual property, and prevention of academic plagiarism. While well-trained text detectors have demonstrated
promising performance on unseen test data, recent research suggests that these detectors have vulnerabilities
when dealing with adversarial attacks such as paraphrasing. In this paper, we propose a framework for a broader
class of adversarial attacks, designed to perform minor perturbations in machine-generated content to evade
detection. We consider two attack settings: white-box and black-box, and employ adversarial learning in dynamic
scenarios to assess the potential enhancement of the current detection model’s robustness against such attacks.
The empirical results reveal that the current detection models can be compromised in as little as 10 seconds, leading
to the misclassification of machine-generated text as human-written content. Furthermore, we explore the prospect
of improving the model’s robustness over iterative adversarial learning. Although some improvements in model
robustness are observed, practical applications still face significant challenges. These findings shed light on the
future development of AI-text detectors, emphasizing the need for more accurate and robust detection methods.
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1. Introduction

Large language models (LLMs) (OpenAI, 2023;
Anil et al., 2023; Touvron et al., 2023) have rapidly
emerged as a dominant force within the field of
natural language processing (NLP). These mod-
els acquire extensive internal knowledge through
pre-training on large-scale self-supervised data, en-
dowing them the capacity to tackle various tasks,
from answering factual questions to generating flu-
ent text, and even performing complex reasoning,
which has significantly impacted diverse NLP ap-
plication domains. However, these advancements
have also raised ethical concerns on their inherent
risks (McKenna et al., 2023; Bian et al., 2023; Fer-
rara, 2023), including the spread of misinformation,
the hallucinations in generated content, and even
potential discrimination against specific groups.
The growing recognition of these issues has led
to the development of AI-text detection research.
Nevertheless, AI-text detector may inherit vulnera-
bilities from neural network models (Szegedy et al.,
2014), spurring related research (Sadasivan et al.,
2023; Krishna et al., 2023) aimed at conducting
paraphrasing attacks on AI detectors to mislead
their predictions. We believe that the exploration
of potential adversarial attacks on text detectors is
of paramount importance, as it allows for the iden-
tification of vulnerabilities in AI detectors before
their deployment in real-world applications, such
as student essay plagiarism detection, while also

facilitating the development of appropriate counter-
measures.

Current detection methods are typically catego-
rized into three groups: those relying on statisti-
cal measures (Mitchell et al., 2023) like entropy,
perplexity, and log-likelihood; those training neu-
ral classifiers (Guo et al., 2023) from supervised
data with human/AI-generated labels; and those
utilizing watermarking (Kirchenbauer et al., 2023)
to inject imperceptible pattern to the AI-generated
text. Unfortunately, limited research has explored
the adversarial perturbations targeting AI-text de-
tectors. Notably, Sadasivan et al. (2023); Krishna
et al. (2023) explored the use of paraphraser to
rewrite machine-generated content for adversarial
attacks. Simultaneously, Shi et al. (2023) utilized
LLMs to generate adversarial word candidates, and
created adversarial results using a search-based
method. While these prior studies have revealed
the vulnerabilities of AI detectors to adversarial per-
turbations, the influence of adversarial attacks on
the detector in real-world dynamic scenarios re-
mains largely unexplored.

In this paper, we propose a broader task: Ad-
versarial Detection Attack on AI-Text (ADAT). The
objective of ADAT is to perturb AI-generated text
in a semantically preserving manner, thereby in-
fluencing the detector’s predictions and enabling
machine-generated text to evade detection. Fig-
ure 1 outlines the general process of ADAT, along
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Large Language Models

Figure 1: Overview of the Adversarial Detection
Attack on AI-Text (ADAT) task.

with an example of attacks1. We consider both
black-box attack setting, where the attacker can
access only the target detector predictions without
any internal information of the detection model, and
white-box attack setting. To bridge the gap between
these settings, we employ an intermediate model
to unify the attack methods. Additionally, to ad-
dress the challenge of constructing a more robust
detection model, we introduce an adversarial learn-
ing approach in a dynamic scenario for the ADAT
task, whereas the detector iteratively updates its
parameters using adversarial samples. Our experi-
ments validate the enhanced robustness achieved
through this approach and highlight potential chal-
lenges. Building on the above considerations, we
introduce a novel and comprehensive framework
called the Humanizing Machine-Generated Con-
tent (HMGC) for ADAT tasks, which is designed
to facilitate the interaction process between the at-
tacker and the detector.

Our main contributions could be summarized as
follows:
• To the best of our knowledge, ADAT is the first

rigorously defined task in the field of adversarial
attacks on AI-text detection. It encompasses both
white-box and black-box attack settings, serving
as a foundational reference for future research in
this domain.

• We introduce the HMGC framework, which offers
a general attack paradigm for ADAT tasks. Exten-
sive experiments reveal the efficacy of the HMGC
framework. In particular, we provide empirical ev-
idence highlighting the significance of perplexity
in AI-text detection.

• Our experimental results demonstrate that the
proposed adversarial learning approach in dy-
namic scenarios effectively enhances the robust-
ness of detection models, suggesting the poten-

1Sample is from real text attacks, available for testing
at https://huggingface.co/Hello-SimpleAI/
chatgpt-detector-roberta

tial to train a universal AI-text detector through
dynamic adversarial learning. The data and re-
lated resources are available online2.

2. Related Works

Large Language Model. The powerful capabil-
ities of large language models, exemplified by
GPT (OpenAI, 2023), PaLM (Anil et al., 2023), and
LLaMA (Touvron et al., 2023) have revolutionized
the application landscape within the field of natu-
ral language processing. These models can gen-
erate coherent and fluent text enriched with ex-
ternal knowledge, effectively tackling complex is-
sues across various domains, from physics (West,
2023) and medicine (DiGiorgio and Ehrenfeld,
2023) to mathematics (Li et al., 2023) and linguis-
tics (Liu et al., 2023b). Nonetheless, current lan-
guage models still grapple with issues like hallucina-
tion (McKenna et al., 2023), the inadvertent spread
of misinformation (Bian et al., 2023), and the poten-
tial for value discrimination (Ferrara, 2023) in prac-
tical applications. Consequently, the regulation of
large language models to mitigate the risk of signifi-
cant social problems has become increasingly vital.
We focus on studying how AI-generated text can
circumvent existing detection mechanisms, aiming
to provide valuable insights and perspectives for
the development of robust detection models.
AI-text Detection. Current text detection meth-
ods typically fall into three categories: 1) Statistical
methods (Gehrmann et al., 2019; Lavergne et al.,
2008; Solaiman et al., 2019; Mitchell et al., 2023; Su
et al., 2023) employ statistical tools to make zero-
shot distinctions between human and machine-
generated text using measures such as information
entropy, perplexity, and n-gram frequency. Recent
work in this category includes DetectGPT (Mitchell
et al., 2023), which observed that text generated
by language models often resides in the negative
curvature region of the log probability function, and
it proposed the defining curvature-based criteria
to distinguish AI-text. 2) Classifier-based methods
involve training text detection models based on su-
pervised data (Uchendu et al., 2020; Deng et al.,
2023; Mireshghallah et al., 2023), whereas recent
research (Guo et al., 2023; Liu et al., 2023c) of-
ten utilizes RoBERTa to train a binary classifier for
text detection. However, this method requires a
substantial amount of training data and faces chal-
lenges related to weak generalization (Bakhtin et al.,
2019) and limited robustness against attacks (He
et al., 2023; Qi et al., 2021). 3) Watermarking meth-
ods are emerging with the rise of decoder-only large
language models, which imprint specific patterns
on generated text. For instance, Kirchenbauer et al.

2https://github.com/zhouying20/HMGC

https://huggingface.co/Hello-SimpleAI/chatgpt-detector-roberta
https://huggingface.co/Hello-SimpleAI/chatgpt-detector-roberta
https://github.com/zhouying20/HMGC
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(2023) propose randomly partitioning the vocab-
ulary into a green list and a red list during text
generation, with the division based on the hash
of previously generated tokens. Meanwhile, Liu
et al. (2023a) introduces a watermarking method
akin to the RSA asymmetric cryptography. Chal-
lenges for this category include that the generated
text may lack smoothness, and the watermark pat-
tern is susceptible to leakage (Liu et al., 2023a).
Adversarial Attack. A few recent works have
made attempts to attack text detection models. For
example, Sadasivan et al. (2023); Krishna et al.
(2023) proposed to use paraphrasers to rewrite the
generated text of LLMs, successfully evading de-
tection by the 3 categories of models mentioned
above. Notably, our work shares common views
on the usage of adversarial learning with Hu et al.
(2023), but differs in that Hu et al. (2023) intro-
duced a paraphraser to enhance the robustness
of detector, whereas our work explores whether
the detector can continue to learn from multiple
rounds of attacks in dynamic scenarios to resist
adversarial attacks. Shi et al. (2023) demonstrated
the utility of word substitution attacks against AI-
text detectors. When compared to our approach,
it’s worth noting that their method relies on LLMs to
generate candidate words, which might encounter
efficiency challenges when computing resources
are limited. Building upon these observations, our
paper presents a comprehensive detector adver-
sarial attack framework called HMGC. The key dis-
tinction between our work and these studies lies
in our introduction of the ADAT task, providing a
formal paradigm for future research. Moreover, we
also emphasize our work as universal adversarial
perturbations, which can be applied to any input
for any target detector model.

3. Preliminary

In this section, we introduce the key definitions of
the Adversarial Detection Attack on AI-Text (ADAT)
task.

3.1. Problem Statement
In the detection of machine-generated content,
when presented with a set of user requirements
U and their corresponding response articles T =
Thuman ∪ Tmachine, the objective of the detection
model D is to assign a score D(u, t) to each ar-
ticle to help users discern whether the article is
generated by machines, specifically for large lan-
guage models (LLMs) like ChatGPT or Bard. For
instance, given a threshold of 0.5, the detector gen-
erates detection probabilities for all articles, result-
ing in an array P = [D1, D2, ..., Dn], in which arti-
cles with a detection probability exceeding 0.5 are

CheckGPT HC3
Training size 720,000* 58,508
Testing size 90,000* 25,049
Avg #words 136.68 145.89
Domains News, Essay, Research QA

Table 1: Data statistics, where * denotes the data
are randomly split with seed 42, and #words de-
notes the number of words in one sample.

identified as machine-generated content, defined
as T machine = {t | D(ut, t) > 0.5}.
Adversarial Attack on Detection. We propose
the task of Adversarial Detection Attack on AI-
Text (ADAT). The objective is to introduce subtle
modifications to machine-generated articles, aim-
ing to fool the detector into classifying them as
human-authored. Formally defined, given user re-
quirements ut and a machine-generated article t,
the attack’s objective is to construct an effective
adversarial sample tadv based on t, ensuring its
detection probability falls below the classification
threshold. Concretely, we define a successful at-
tack as: D(ut, tadv) < threshold when D(ut, t) ≥
threshold, with the condition that Dis(t, tadv) ≤ ϵ.
Here, D(ut, t) and D(ut, tadv) are the detection
probabilities of the text before and after the attack,
respectively. Dis is the similarity distance eval-
uation function, and ϵ is a small value ensuring
minimal deviation of the text distribution in the ad-
versarial sample from the original text.
White-box and Black-box Attack. In terms of at-
tack methodologies against the detector, we estab-
lish two realistic settings: In the white-box attack
scenario, the attacker accesses comprehensive
information about the victim detector, including pa-
rameters, gradients, training data, and more. Con-
trastingly, in the black-box attack scenario, which
aligns more closely with practical applications, the
attacker can only access the output results of
the victim model. This means only D(u, tadv) or
even the binary predictions are provided. Typically,
this is further categorized into score-based black-
box attacking and decision-based black-box attack-
ing (Wu et al., 2023). In this work, we both consider
white-box attacks and decision-based black-box at-
tacks.
Dynamic Adversarial Attack Another crucial as-
pect of the detector is its ability to undergo continu-
ous updates using augmentation data from users or
other models. As mentioned above, Hu et al. (2023)
proposed leveraging a paraphraser as a data gener-
ation method to fortify the detector against rewriting
attacks during training, resulting in sufficiently ro-
bust and transferable detection results. However,
this approach remains confined to the model train-
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ing phase and doesn’t explore the robustness and
adaptability of the detector in a more dynamic sce-
nario. In this work, we introduce the concept of
dynamic attacks to iteratively optimize the inter-
play between attacker and detector across multiple
rounds. Detailed processes are shown in Section 4.

3.2. Benchmarking
To validate the performance of adversarial attacks
in different scenarios, we selected two datasets: 1)
CheckGPT (Liu et al., 2023c): Due to the unavail-
ability of the training data division or other details
of its detector except for the detector model check-
point and the full dataset, we consider this scenario
as a black box attack, and we partition the entire
dataset randomly into 80% training set, 10% vali-
dation set, and 10% test set. A surrogate model
is trained to act as a proxy for the attacker, and
subsequently, we assess the effect of the black box
attack on the released original model. 2) HC3 (Guo
et al., 2023): The data partitioning and model pa-
rameters are publicly available, making it suitable
for a white-box attack. We utilize the public test
set as the attack samples and employ the released
classifier as the victim model to evaluate the effec-
tiveness of the white-box attack. Further details
about both datasets are presented in Table 1.

4. Methodology

In this section, we start by providing an overview
and mathematical definitions of our proposed at-
tack methodologies. Following this, we outline the
detailed process of establishing a unified frame-
work that bridges the gap between black-box and
white-box attack scenarios in Section 4.1 through
a surrogate victim model. Furthermore, we delve
into the core of our adversarial attack method in
Sections 4.4, 4.2, and 4.3 by elucidating the con-
straints, word importance, and word replacement
strategy. Finally, in Section 4.5, we introduce our in-
novative evaluation paradigm focused on dynamic
adversarial attacks.
Algorithm Overview. The HMGC framework we
introduce can be conceptualized as an ongoing
interaction between the attacker and the detector.
When presented with machine-generated text, the
attacker iteratively modifies the text in an attempt
to fool the detector. This process continues until
the detector finally classifies the adversarial text
as human-generated. We illustrate the general
process in pseudo Algorithm 1. More specifically,
the attacker in our HMGC framework comprises
four key concepts: the surrogate detection model
Dθ, the word importance ranker R, the encoder-
based word swapperM, and a set of constraints
C = {c1, c2, ..., ck}. The final objective of the ADAT

Algorithm 1 HMGC
Input: the original detection model Dori, pre-
collected training dataset TC , a target text t, and an
encoder modelMmlm, a set of attack constraints
C
Parameter: τ threshold for human-written detec-
tion, k maximum words can be replaced in one
attack
Output: adversarial text tadv
1: Initialize tcurr to represent the current text to

be attacked: tcurr ← t
2: procedure 1. Train Surrogate Model
3: for tc in TC do
4: PD ← predict all tc using Dori

5: end for
6: Train surrogate model Dθ on TC using PD as

the target label in terms of Eq.2
7: procedure 2. Pre-attack Assessment
8: Predict whether the current sample is human-

written: ph ← Dθ(tcurr)
9: procedure 3. Word Importance Ranking

10: Wcurr = {w1, w2, ..., wn} ← Split current sam-
ple to words

11: Calculate word importance Iwi
based on gradi-

ent and perplexity for each word with Eq.5
12: W [: k]← Sort Wcurr based on importance
13: procedure 4. Mask Word Substitution
14: for wi in W [: k] do
15: Replace wi in tcurr with MASK token
16: Obtain M candidates {pm}Mm=1 with Eq.6
17: p∗m ← argmaxM

m=1(Dθ(tcurr + pm))
18: topt ← Fill in p∗m for tcurr
19: if Dθ(topt) < Dθ(tcurr) then
20: tcurr ← topt
21: end if
22: Post-checking for tcurr with Eq.7 on C
23: end for
24: procedure 5. Post-attack Checking
25: if Dθ(tcurr) < τ or reach attack limits then
26: return tadv = tcurr ▷ Algorithm terminates
27: else
28: goto procedure 3. ▷ Repeat the process
29: end if

task could be formulated as:

tadv = argmin
tadv

Dθ(tadv),

s.t. tadv ∈ {ttgt} ∪M(ttgt, R(wi)),∑
ci∈C

1 (ci(tadv)) = |C|.
(1)

4.1. Surrogate Victim Model
Under the black-box attack setting, obtaining the in-
ternal information of the detection model directly is
not feasible. To compute the importance of words,
it is necessary to train a surrogate model that emu-
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lates the behavior of the original detection model
and can provide gradients for adversarial attacks
as a proxy. Following (Guo et al., 2023), we train
the surrogate model based on RoBERTa (Liu et al.,
2019) with the binary classification task. The train-
ing supervision signal is distilled directly from the
predictions of the original model. Formally, leverag-
ing a pre-collected training dataset T, we employ
the original detection model Dori to predict each
sample, obtaining a set of prediction results, PD.
Subsequently, we initialize the surrogate detection
model Dθ using the original RoBERTa for training,
whereas the training objective is as follows:

Lθ = −
(
pilog(ŷi)

)
+ (1− pi) log(1− ŷi)), (2)

where pi ∈ PD, and ŷi = Dθ(ti), ti ∈ T.

4.2. Word Importance Ranking
In our preliminary experiments, we observed that
the detector exhibits greater sensitivity to individual
words within the text, particularly those that oc-
curred in user requirements. So perturbing impor-
tant words within the text tends to be more effective
in carrying out adversarial attacks. To address this,
we have proposed a dual-aspect word importance
ranking algorithm that combines model gradients
and perplexity derived from large language models.
Firstly, it is intuitive that attacks are more effective
on tokens with higher gradients on the victim model,
whereas higher gradients indicate greater impacts
on the final result. Consequently, we consider the
gradient norm value corresponding to the i-th token
as the first aspect of word importance:

Igwi
=

∥∥∥∥∥ ∂Lθ

∂ewi

∥∥∥∥∥
1

, (3)

where Lθ is the loss of the objective function; ewi

is the embedding vector for the i-th token in the
surrogate model.

Furthermore, existing research (Guo et al., 2023;
Liang et al., 2023) on AI-text detection has em-
phasized the importance of language perplexity as
a key indicator for distinguishing between human
and machine-generated text. Typically, machine-
generated content exhibits lower perplexity. To en-
hance the effectiveness of our attacks, we intro-
duce additional constraints aimed at increasing the
perplexity of the adversarial results, whereas we
propose the use of LLM perplexity as a measure
for our word importance ranking. More specifically,
for each input token, we calculate the perplexity
importance as the difference in language perplexity
before and after the i-th token is removed:

Ipwi
= ppl(t\wi

)− ppl(t), (4)

where t\wi
represents the text after removing the

i-th token.

Subsequently, by introducing α as the weighting
factor, we obtain the final word importance score:

Iwi
= (1− α)Igwi

+ αIpwi
. (5)

4.3. Mask Word Replacements
Here, for an adversarial attack, we sequentially ob-
tain synonymous candidates for each word based
on its word importance score in descending order
and replace them back into the original text. For
instance, for the i-th important token in the text t,
we: 1) Replace the token with [MASK]. 2) Utilize the
encoder-based modelMmlm to predict the logits
for the masked position and perform softmax. 3)
Select the top k words with the highest scores as
candidates. 4) Replace the candidate words back
into the original text one by one, and get the final
result following a greedy search strategy. It’s worth
noting that the source for synonym generation can
be any suitable algorithm, such as word embedding
spaces (Mrksic et al., 2016) or querying WordNet3.
However, our early experiments have shown that
using an encoder-based model is the most effective
way for a random replacement. In summary, we
generate candidate synonyms as:

pim = softmax
m=1,2,...,k

(
Mmlm(t\wi

+ [MASK]i)
)
. (6)

4.4. Attack Quality Constraints
Following the word replacement process, it can be
challenging to ensure that the semantics of the orig-
inal text remain relatively unchanged. For instance,
a sentence like “I like that guy” might be transformed
into “I hate that guy” after perturbation, resulting
in a complete reversal of sentiment. To maintain
both syntactic correctness and semantic consis-
tency, we introduce three additional constraints to
control the extent of deviation: 1) POS Constraint
enforces that the candidate word must align with
the part of speech of the word it’s replacing, e.g.,
adjectives cannot be used to substitute nouns. 2)
Maximum Perturbed Ratio Constraint limits the pro-
portion of replacement words in the original text
within a certain threshold. 3) USE Constraint uti-
lizes the Universal Sentence Encoder (USE) (Cer
et al., 2018) as a sentence similarity scorer to mea-
sure the distance between the context window of
the replacement word and the original text to ad-
dress the possible semantic shift problem. If the
difference is too substantial, the attack is aban-
doned. In formal terms, for each constraint ci and
the current adversarial text tadv:

ci(tadv) =

{
true if tadv satisfies ci

false else
(7)

3https://wordnet.princeton.edu/

https://wordnet.princeton.edu/


8432

4.5. Dynamic Detector Finetuning
As mentioned in Section 3.1, in the dynamic at-
tack setting, following each round of attacks that
gather a substantial collection of adversarial sam-
ples, we proceed to continue training the surrogate
model in terms of Eq. 2. This process is designed
to strengthen the detector’s defense capabilities
against one specific form of attack, thereby en-
abling us to simulate a real-world application sce-
nario where the detector accumulates user queries
and continually enhances its capabilities.

5. Experiments

In this section, we first introduce our experimental
setup. Next, we compare the performance between
HMGC and the baselines in both black-box and
white-box attack settings. We then move to the
dynamic attack setting, conducting 10 rounds of
attack-then-detect iterations to assess the impact
of adversarial learning on attack efficacy. Finally,
we conduct ablation experiments to analyze the
significance of different modules within HMGC.

5.1. Experimental Setup
5.1.1. Evaluation Metrics

Attack performance measures. In line with pre-
vious research (Mitchell et al., 2023), we employ
the AUC-ROC and the confusion matrix to evaluate
the attack performance: 1) AUC-ROC is a perfor-
mance measure that assesses the area under the
receiver operating characteristic curve, whereas
a higher AUC-ROC score indicates better detec-
tion performance. 2) Confusion matrix provides
a detailed breakdown of the model’s performance,
with ’positive’ denoting human-written content. We
report the following three metrics: Positive predic-
tive value (PPV) TP

TP+FP , i.e., the proportion of
human-written cases among all predicted cases
classified as human-written. True negative rate
(TNR) TN

TN+FP , i.e., the accuracy in classifying
machine-generated text. We also denote the de-
crease of TNR as ∆Acc, which quantifies the re-
duction in the accuracy of machine-generated sam-
ple detection after the attack. It is calculated as
TNR before Attack−TNR after Attack

TNR before Attack .
Text quality measures. Here, we use the following
metrics to evaluate the text quality after the adver-
sarial attack. Flesch reading ease: Higher Flesch
scores indicate that the material is easier to read.
To assess the impact of text’s readability, we use
the difference ratio of the Flesch score, denoted as
∆Flesch%. Perplexity from LLMs: It measures
the level of uncertainty of a given document. We
calculate the change in perplexity before and after
the attack with Pythia-3B (Biderman et al., 2023) to

measure the overall quality of an adversarial text,
denoted as ∆ppl.

5.1.2. Baselines

Referring to recent research (Sadasivan et al.,
2023; Krishna et al., 2023; Shi et al., 2023), we in-
vestigate three primary categories of baseline algo-
rithms for the ADAT task: Word-level perturbation
treat tokens in the input as the smallest attack units.
It disrupts the detection model by substituting spe-
cific words in the original text, typically with words
that have similar meanings. We consider WordNet
and BERT MLM predictions as the sources for syn-
onyms. Sentence-level perturbation commonly
employs a seq-to-seq model to rephrase or rewrite
sentences from the original text, thereby perturbing
the distribution of the original content. In our study,
we examined two strategies serving as baselines:
introducing irrelevant sentences and utilizing BART
to replace random sentences from the original text.
Full-text rewriting perturbation involves using a
rewriter to directly substitute the original text, ef-
fectively evading detection. We considered three
methods: back translation which translates the orig-
inal English text into German and then translates it
back to English, and crafting the prompt to instruct
a LLaMA-2 to rewrite the article, aiming to maximize
the divergence from the original text. Moreover, we
also employ the SoTA paraphraser DIPPER (Kr-
ishna et al., 2023) with the lex=40, order=40, the
most effective setting in their paper.

5.1.3. Model Ablations

As discussed in Section 4, four variations of the
HMGC model are implemented by modifying the
constraint module and the word importance calcu-
lation method: 1) HMGC.−POS does not enforce
the replacement and original words to belong to
the same part of speech. 2) HMGC.−USE elim-
inates the constraints related to semantic space
consistency using USE (Cer et al., 2018). 3)
HMGC.−MPR, where there is no restriction on
the proportion of words that can be replaced. 4)
HMGC.−PPL removes the constraint of semantic
perplexity in the word importance method, rely-
ing solely on the gradient information of the victim
model.

5.1.4. Implementation Details

For the black-box attack using CheckGPT datasets,
we adopt RoBERTa as the surrogate model, where
we distilled the original detection performance over
two epochs on the 720k training data. In detail,
the maximum sequence length is set to 512, and
the learning rate is set to 5e-6. As for both white-
box and black-box attacks, we select 10k samples
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Model White-box Attack on HC3 Black-box Attack on CheckGPT Duration
AUC ↓ PPV ↓ TNR ↓ ∆Acc ↑ AUC ↓ PPV ↓ TNR ↓ ∆Acc ↑ Sec/Sample ↓

WordNet Syn 98.36 98.73 97.30 2.55 91.39 85.56 83.07 16.81 ≈ 0
MLM Syn 97.79 98.19 96.15 3.70 87.68 80.46 75.65 24.24 0.1
Irr Sent 98.66 99.00 97.89 1.96 95.88 92.66 92.06 7.81 ≈ 0
MLM Sent 95.80 96.40 92.17 7.69 94.26 89.97 88.83 11.05 5.27
Back Trans 99.20 99.51 98.97 0.87 94.89 90.99 90.07 9.80 3.26
LLaMA-2-7B 95.94 96.52 92.45 7.41 96.13 93.09 92.56 7.31 9.51
LLaMA-2-13B 97.97 98.37 96.52 3.33 96.23 93.26 92.76 7.11 10.61
DIPPER 98.62 98.78 97.82 2.02 88.77 81.90 77.84 22.05 14.43
HMGC 51.06 68.29 2.70 97.29 76.64 68.35 53.57 46.35 9.25

Table 2: Attack performance of white-box and black-box setting on HC3 and CheckGPT.

Round Automatic Metrics Duration
AUC PPV TNR ∆Acc Sec

1 49.05 49.18 0.44 99.56 9.25
2 46.64 49.06 1.69 98.30 15.11
3 48.47 45.85 4.79 95.21 20.99
4 62.87 56.61 32.61 67.35 26.40
5 75.89 68.61 58.91 40.83 30.40
6 83.16 80.62 78.27 21.29 32.30
7 88.58 87.12 87.09 12.53 33.10
8 90.00 90.17 90.23 9.47 33.40
9 90.80 87.30 87.25 12.19 33.17
10 87.25 85.96 85.06 14.85 32.00

Table 3: Attack performance in a dynamic environ-
ment on CheckGPT. The first-round model repre-
sents the original surrogate model, evaluated on
test data generated by its adversarial attacks. The
second-round model signifies the model that has
undergone an adversarial learning process and is
evaluated on the test data generated by its adver-
sarial attack. This process continues iteratively for
subsequent rounds.

from their test set for attacking. In the dynamic
attack, we randomly divide the 90k test data into 10
equal parts. After each attack, 80% of the attack
results are incorporated as new training data, while
20% of the attack results (equivalent to 1.8k) are
utilized for evaluating the model. For the attacker,
the perplexity weighting factor α is set at 0.2, the
window size for the USE in the fluency constraint is
50, the minimum tolerance threshold γ is 0.75, and
the maximum proportion of replaceable words does
not exceed 40% of the original text. All experiments
were conducted on a machine equipped with six
3090 GPUs.

5.2. Experimental Results

Detectors are vulnerable to adversarial attack.
Table 2 shows the results of both the baseline mod-
els and our proposed HMGC in white-box and black-
box attack settings for the two datasets. Notably,
white-box attacks naturally provide precise insights
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Figure 2: Detection performance across different
attack rounds. As the attack rounds intensify, the
detector builds resilience against this form of attack.

into the internal information of the detection model,
making them less robust against disturbance. The
AUC, for instance, demonstrates a significant drop
in detection performance, plummeting from 99.63%
pre-attack to a mere 51.06%, which is akin to that of
a random binary classifier. It should be noted that
the HC3 dataset comprises more human-generated
articles (67.82%), leading to a PPV much higher
than 50%. Meanwhile, for a more intuitive mea-
sure ∆Acc, after the attack, the model’s misclassi-
fication rate for machine-generated content surged
by 97.29%. Furthermore, in the more challeng-
ing black-box attack setting, our proposed HMGC
demonstrated considerable effectiveness. It suc-
cessfully perturbed approximately 46% of machine-
generated articles, marking a 22% improvement
compared to the optimal baseline model. In gen-
eral, regardless of whether in white-box or black-
box attack settings, our proposed HMGC method
consistently outperforms all the baseline models.
Training method for the detector significantly in-
fluences its robustness. Analyzing the baseline
performance from Table 2, it is evident that mod-
els produced through different training methods
exhibit varying degrees of robustness against gen-
eral perturbations. The original CheckGPT model,
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Model White-box Attack on HC3 Black-box Attack on CheckGPT Text Quality
AUC ↓ PPV ↓ TNR ↓ ∆Acc ↑ AUC ↓ PPV ↓ TNR ↓ ∆Acc ↑ ∆flesch% ∆ppl

HMGC 51.06 68.29 2.70 97.29 76.64 68.35 53.57 46.35 -7.74 6.17
HMGC.−USE 49.96 67.80 0.50 99.50 75.99 67.76 52.29 47.64 -7.76 6.36
HMGC.−MPR 50.82 68.18 2.21 97.79 76.65 68.36 53.59 46.33 -7.75 6.17
HMGC.−POS 50.04 67.84 0.65 99.35 77.95 69.59 56.20 43.72 -6.36 5.86
HMGC.−PPL 50.46 68.02 1.49 98.51 80.64 72.29 61.57 38.34 -6.08 5.66

Table 4: Attack performance and text quality comparisons between HMGC and its ablations.

which only trained the top-level LSTM with frozen
RoBERTa, showed a limited capacity to withstand
minor perturbations. Substituting some words with
BERT yielded a substantial improvement, increas-
ing ∆Acc by 24%. On the other hand, the HC3
with full parameter fine-tuning appeared more ro-
bust. Notably, considering the relative trends, it
becomes apparent that using a language model to
generate candidate words and sentences demon-
strates greater adversarial performance compared
to heuristic replacement methods. Moreover, em-
ploying a prompt to guide LLMs in rewriting the text
proves to be more versatile. Even without prompt
engineering, it can still achieve notable adversarial
effects on all detection models.
Adversarial learning can effectively enhance de-
tector performance. As depicted in Table 3, the
increase in the number of rounds of dynamic ad-
versarial learning, which represents the continued
training for the detector with adversarial samples,
positively correlates with the detector’s robustness.
Meanwhile, this enhancement comes at the cost of
increased time required to perform an adversarial
attack. Specifically, in the initial 3 rounds of attacks,
the detector remains relatively vulnerable, with its
AUC index dropping to approximately 0.5 whereas
the time required for each attack approximately dou-
bles. Subsequently, equilibrium is reached after
roughly 7 rounds of attacks, corresponding to itera-
tive learning from 50,000 adversarial examples. At
this point, the attacker can produce an attack every
30 seconds, albeit with only about a 10% success
rate. This trend is visually illustrated in Figure 2.
Despite the improved robustness, the detector re-
mains impractical for real-world applications, as
it still yields an error rate of over 10% when clas-
sifying adversarial content as human-written. In
summary, these experimental results demonstrate
the positive impact of iterative adversarial learning
in dynamic scenarios on enhancing detector robust-
ness. Since the current detector does not incorpo-
rate adversarial attack considerations in its model
design, our research contributes valuable insights
for the development of future detection models.
Trade-off: evasion of detection or preservation
of original semantics. We conducted an abla-
tion analysis to examine the key modules in the
HMGC model design. From the results in Table 4,

we observe the following: 1) In the white-box at-
tack setting, which is relatively straightforward, the
ablation analysis of the model causes only minor
fluctuations in attack accuracy, typically within 1 or
2 percentage points. These variations may stem
from the random factors involved in the attack ex-
periments. 2) The black-box attack setting effec-
tively demonstrates the significance of the perplex-
ity word importance we proposed. When the mod-
ule is removed as HMGC.−PPL, the attack suc-
cess rate decreases by 8%, indicating the effec-
tiveness of word perplexity in the ADAT task. 3)
Ablation results for other modules show that the
attack success rate is directly proportional to the
language perplexity of the adversarial text. For in-
stance, when the USE constraint is removed as
HMGC.−USE , the attack success rate increases by
approximately 1%, but the corresponding language
perplexity also rises by 0.2. From these observa-
tions, we can deduce that an effective strategy to
evade AI-text detection is introducing external noise
to increase text perplexity. However, this approach
may face the challenge of semantic shifts between
the original text and the adversarial text. Balancing
these factors should be a crucial consideration in
future research on AI-text detection.

6. Conclusion

In this paper, we introduce the Adversarial Detec-
tion Attack on AI-Text (ADAT) task, which includes
two attack settings: white-box and black-box at-
tacks. Furthermore, we propose a novel approach
involving adversarial learning in dynamic scenar-
ios to enhance the resistance of detection models
against adversarial attacks. Our algorithm demon-
strations and experimental results prove the vul-
nerability of the current design in detection models,
revealing their susceptibility to even minor perturba-
tions that can effectively disrupt the final prediction
results. To perform effective adversarial attacks,
we present the Humanizing Machine-Generated
Content (HMGC) framework, which emulates the
interactive attack process between an attacker and
a detector, continuously refining the attack strategy
based on the rewards provided by the detector. Our
proposed approach, supported by extensive experi-
mental results, not only highlights the vulnerabilities
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in existing AI-text detection methods but also sheds
light on the risks and directions for future research
in the AI-detection domain.

In future work, we plan to expand our framework
to support sentence-level and document-level sub-
stitutions to produce more fluent adversarial texts.
Concurrently, we will refine the adversarial learn-
ing approach in dynamic scenarios to train a more
robust, stable, and versatile AI-text detector. More-
over, beyond the ADAT tasks, exploring more gen-
eral content correction technology for the AI-text
also appears to be a promising direction for further
research.
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