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Abstract
Due to the broad range of social media platforms, the requirements of abusive language detection systems are
varied and ever-changing. Already a large set of annotated corpora with different properties and label sets were
created, such as hate or misogyny detection, but the form and targets of abusive speech are constantly evolving.
Since, the annotation of new corpora is expensive, in this work we leverage datasets we already have, covering
a wide range of tasks related to abusive language detection. Our goal is to build models cheaply for a new target
label set and/or language, using only a few training examples of the target domain. We propose a two-step
approach: first we train our model in a multitask fashion. We then carry out few-shot adaptation to the target
requirements. Our experiments show that using already existing datasets and only a few-shots of the target task the
performance of models improve both monolingually and across languages. Our analysis also shows that our models
acquire a general understanding of abusive language, since they improve the prediction of labels which are present
only in the target dataset and can benefit from knowledge about labels which are not directly used for the target task.
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1. Introduction
The wide spread of social media allowed us to
communicate and share our opinions quickly and
conveniently. However, it gives place to abusive
content as well, which leaves some groups of peo-
ple vulnerable. To push back abusive online con-
tent, various automated systems, and more im-
portantly datasets (Poletto et al., 2021), were in-
troduced covering various text genres such as fo-
rum (de Gibert et al., 2018), Twitter (Struß et al.,
2019) or Instagram posts (Suryawanshi et al.,
2020) of various languages (Vidgen and Derczyn-
ski, 2020), user groups such as women (Fersini
et al., 2018) or LGBTQ+ (Leite et al., 2020) and
tasks including hate speech (de Gibert et al.,
2018), offensive language (Zampieri et al., 2019)
or toxicity (Leite et al., 2020) detection, etc.
On the other hand, there is constantly a need
to annotate new datasets supporting previously
unseen target scenarios. To reduce annotation
costs, related work leveraged transfer learning
to build systems across languages (Ranasinghe
and Zampieri, 2020) and domains (Glavaš et al.,
2020). But finding the right source datasets is of-
ten challenging, since the label sets could differ.
To alleviate the problem, previous work manually
altered the label sets of the source datasets in
order to match them to the target requirements.
However, this approach is problematic, because it
requires expertise in abusive language datasets,
since i) the rules developed by other researchers
for manual label matching are not reusable due to
the rapid change in the application requirements
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Figure 1: Two-step approach: ME is trained on
the (external) datasets we already have, followed
by its adaptation to the target task (Mt) with only a
few-shots. Labels not directly used for the target
task are underlined, target labels not contained in
the external datasets are bolded.

and ii) the definition of the same label in some
datasets could conflict, e.g., the offensive label
of the OLID dataset includes profane language
(Zampieri et al., 2019), while the same label does
not in HASOC (Mandl et al., 2019). Thus, a pre-
cise understanding of abusive language phenom-
ena is required. Additionally, iii) novel fine-grained
labels do not have alternatives to be transferred
from. Such fine-grained labels, e.g., related to a
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specific view of a given community regarding an
event, can be created on-the-fly as moderators or
affected people face them. Thus, our goal is to
eliminate the need for such rules and make infor-
mation transfer more flexible with minimal target
task annotations.
To this end, we introduce amethod leveragingmul-
tiple already existing (external) datasets in order
to understand general abusive language, allow-
ing to build models cheaply for the target require-
ments without the need for manual dataset modi-
fications. As shown in Figure 1, different datasets
can inform the model about different types of abu-
sive content. Some classes can directly be lever-
aged for the target task due to their matching la-
bel names and definitions. Others, such as la-
bels with matching names but conflicting defini-
tions or labels which are not contained in the tar-
get dataset at all, are leveraged only indirectly,
by contributing to the general abusive language
awareness of the model. Our approach consists
of two steps: jointly training a language model on
multiple external datasets using prompt-learning
(Schick and Schütze, 2021). We then adapt the
resulting model to the target requirements in the
second step, using only a few samples per label
from the target task (4-shots in the main exper-
iments), which could even be created on-the-fly.
Since the target task can contain unseen labels,
i.e., labels which are not contained in any of the
external datasets, or classes with conflicting label
definitions, at least a few annotated samples are
needed for model specialization.
We test our method on various tasks (e.g., hate,
abuse and misogyny detection or target iden-
tification) in both monolingual and cross-lingual
(English→German, →Italian, →Brazilian Por-
tuguese, and →Hindi) setups. Additionally, our
datasets cover multiple platforms including longer
forum posts and shorter Twitter messages. Our
experiments show improved performance when
training using the external datasets compared to
various baselines, including both monolingual and
cross-lingual settings, on both binary and fine-
grained test sets. We find that even unseen tar-
get labels are improved due to the better gen-
eral abusive language understanding of our mod-
els. Our ablation study shows that external-only
labels (labels which do not occur in the label set
of the task we are carrying out) improve perfor-
mance, showing that they contribute to general
understanding as well. We experiment with dif-
ferent target data sizes and find that although our
approach is more beneficial at lower sizes, when
more data is available it is also effective. Finally,
we perform model diagnostics using HateCheck
(Röttger et al., 2021), further supporting our claim
of better general abusive language understanding.

Our contributions are the following:1

• a multi-dataset training (MDT) approach, us-
ing prompt-learning based fine-tuning, for an
efficient few-shot training which supports the
ever-changing nature of abusive language
detection,

• applicability across languages and text gen-
res to support a wide range of target tasks
cheaply,

• comprehensive analyses for a better under-
standing of model behavior.

2. Related Work
To alleviate the issue of missing datasets for a
given target task, previous work leveraged trans-
fer learning techniques. Ranasinghe and Zampieri
(2020) built hate speech classifiers for Hindi,
Spanish and Bengali by relying only on an English
training dataset, while Glavaš et al. (2020) fol-
lowed a similar approach for cross-domain experi-
ments. They made the train and test corpora com-
patible using rule based label adaptation which, as
discussed above, is often difficult. In this work,
we eliminate this step and use external datasets
without any modifications. Furthermore, Wiegand
et al. (2018) showed that by adding seemingly sim-
ilar English samples to a small amount of German
training data the results decreased, while Nozza
(2021) found that in zero-shot cross-lingual mod-
els language specific interjections are often mis-
interpreted leading to errors. These results indi-
cate that selecting the right source dataset is not
straight forward (and perhaps impossible in some
cases). In this work, we leverage multiple exter-
nal datasets for a robust abusive language un-
derstanding, and use a few-shots from the target
dataset to specialize our models to the target do-
main. Similarly, Röttger et al. (2022) argues for the
use of a small amount of target language training
samples in order to extend hate detection to mul-
tiple languages. However, they focus on compati-
ble binary datasets, while our approach is compat-
ible with fine-grained tasks with unseen labels as
well.
In contrast to transfer learning, the goal of multi-
task learning (MTL) is to build a shared model us-
ing various tasks in order to improve the perfor-
mance on all of them, by exploiting common in-
formation in some tasks, and to perform multiple
tasks with a single model (Caruana, 1997). Stick-
land and Murray (2019) proposed an MTL method
based on pre-trained language models by intro-
ducing task specific parameters in each layer. Due
to negative task interference however, single task

1Our code is publicly available at:
https://cistern.cis.lmu.de/multi_hs

https://cistern.cis.lmu.de/multi_hs
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models perform best in many cases. To mitigate
the issue of task interference, Pfeiffer et al. (2021)
used adapters (Houlsby et al., 2019) in a multitask
setting, showing that fusing information learned by
task specific adapters can further boost the per-
formance on a target task. However, MTL is not
able to induce useful task dependencies when an
imbalanced set, in terms of dataset sizes, is avail-
able. In contrast, a set of auxiliary tasks were used
to improve the performance on a single target task
in (Watanabe et al., 2022). Similarly, Mehmood
et al. (2020) perform a final training step on the
target biomedical NER task after MTL, while Kapil
and Ekbal (2020) combine various abusive lan-
guage related datasets. However, these methods
rely on a large set of training data for the target task
in order to improve the performance, which is often
unavailable in the ever-changing field of abusive
language detection. Magnossão de Paula et al.
(2023) proposed to use task embeddings in order
to reduce negative transfer in MTL, but they only
consider binary abusive language detection tasks.
In comparison, we use a wide range of tasks with
heterogeneous label sets, including external-only
labels, when just a little target data is available,
and we show that this leads to a better general
abusive language understanding which positively
impacts even unseen target labels.
Our approach is also related to meta-learning
(Hospedales et al., 2021), where the goal is to
build a general model that is cheaply adaptable to
a target task that is unknown at the time of meta-
learning. In contrast, our goal is to build a clas-
sifier for a resource poor task that is known when
training the full model, by leveraging already exist-
ing highly related datasets without strong exper-
tise in abusive language phenomena. Addition-
ally, Wang et al. (2021) showed that meta-learning
has similar performance to MTL, thus we only use
MTL as a baseline for simplicity.

3. Approach
We consider two sets of training corpora in our
multi-dataset training (MDT) approach: external
datasets (DE = {Dei : i = 1..N}) which are not
directly related to the target task and the target
dataset (Dt) which is the target task for which we
aim to build a classifier. The former are off-the-
shelf datasets created for other tasks and/or lan-
guages containing a few thousands or sometimes
tens of thousands of samples. In contrast, since
our main goal is to reduce the costs of building
systems for novel target tasks, Dt contains only a
few samples, 4-shots per label in our main experi-
ments. MDT builds abusive language classifiers in
two steps (Figure 1). First, we train a single model
by fine-tuning a pre-trained LM (M0) using only the
external datasets in order to learn general abusive

language understanding (resulting in ME), which
we adapt to the specificities of the target task in the
second step (resulting in Mt). In contrast to MTL
or meta-learning, where the final model supports
multiple tasks, our final models (Mt) are built for
a single target task. This imitates the use cases
of social media platforms which need to build a
specialized model supporting their own specific re-
quirements. First, we discuss the used prompt-
learning technique (Schick and Schütze, 2021),
followed by the introduction of the two-step train-
ing.

3.1. Prompt-Learning
Prompt-learning was shown to be effective when
only a small training set is available. Instead of
using classification heads on top of pre-trained
LMs, it aims to solve the task at hand using text
generation. Depending on the used LM archi-
tecture, various techniques exist. We rely on
encoder-only LMs in our experiments, thus use the
method proposed by Schick and Schütze (2021),
which employs the masked language modeling
task (MLM) to perform text classification. Using
pattern-verbalizer-pairs (PVPs) an input sentence
is first transformed using the pattern, e.g., I’ll kill
you. → I’ll kill you. It was [MASK], and the task is to
output the probability distribution over the vocabu-
lary items at the masked position. Finally, the ver-
balizer maps the highest probability token, out of a
set of valid tokens (see below), to labels of a given
dataset, e.g., threatening → threat or neutral →
normal. During fine-tuning the model is trained to
predict the token associated with the correct input
label, using the MLM objective.
In our multi-dataset setup, we define PVPs for
all external datasets and the target dataset sep-
arately (PV PE = {PV Pei : i = 1..N} and PV Pt).
Having a dedicated pattern and verbalizer for each
dataset makes our approach easy to be special-
ized for each dataset, and at the same time easy
to use, since no single verbalizer handling all the
labels is required. We defined only two different
patterns: one for target detection datasets (X → X
It was targeted at [MASK], where X is the input text)
and another for the rest (X → X It was [MASK]). On
the other hand, the used verbalizers are specific
for the label set of each dataset, which can be de-
fined easily in general, i.e., we used 1-to-1 token to
label mapping in most cases. We refer to Table 6
of the Appendix for more details about the exact
patterns and verbalizers for each used dataset.

3.2. Multi-Dataset Training
Step 1: General Model Training (M0 → ME) In
each step of the training process we randomly se-
lect an external dataset Dei and a batch of sam-
ples from it. Other than the shared model core,
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i.e., the pre-trained LM, we use the PVP related
to Dei for the forward-backward pass. For each
dataset Dei we use cross-entropy loss as the ob-
jective function Lei to update the model. We run
this process until convergence.

Step 2: Model Specialization (ME → Mt) In
order to adapt ME to the target task, we simply
continue training it on Dt by using the Dt specific
PVP. Similarly to the above, we use cross-entropy
loss Lt to update the model until convergence. As
shown by our experiments, the general abusive
language understanding learned byME helps this
step to build a better model using just a few train-
ing samples.

4. Experimental Setup
4.1. Datasets
We selected a wide range of datasets for our ex-
periments, covering various abusive language de-
tection tasks, languages and text genres. We give
a short overview in the following and further de-
tails, such as number of samples, exact PVPs,
etc., in Table 6 of the Appendix.

AMI was created for the Evalita 2018 shared
task on Automatic Misogyny Identification (Fersini
et al., 2018), containing English and Italian tweets.
We use both the binary and fine-grained misogyny
labels as well as the target identification labels.

GermEval was introduced for the shared task on
the Identification of Offensive Language in Ger-
man tweets (Struß et al., 2019). We used both
binary and fine-grained label sets.

HASOC The shared task on Hate Speech and
Offensive Content Identification (Mandl et al.,
2019) introduces datasets for English, German
and Hindi containing Twitter and Facebook posts.
We used its fine-grained abuse and target identifi-
cation labels.

HatEval was built for SemEval 2019 Task 5
about the detection of hate speech against immi-
grants and women in Spanish and English Twitter
messages (Basile et al., 2019). We used its binary
hate speech and target identification label sets.

LSA is a large scale fine-grained abusive
dataset of English Tweets (Founta et al., 2018).

MLMA Ousidhoum et al. (2019) introduced a
multilingual and multi-aspect hate speech dataset
of English, French and Arabic Tweets. We lever-
aged the fine-grained hostility labels in English.

OLID The Offensive Language Identification
Dataset contains English tweets annotated with
offensive labels on three layers (Zampieri et al.,
2019). We used its binary offensive text and tar-
get identification subsets.

Dataset Labels
External datasets (DE)

AMI binary misogyny En misogyny, normal

AMI fine-grained misogyny En

stereotype, dominance,
derailing,
sexual_harassment,
discredit

AMI binary target En active, passive
HASOC fine-grained abusive En hate, offensive, profanity
HASOC binary target En targeted, untargeted
HatEval binary target En individual, group

LSA fine-grained abusive En abusive, hateful, spam,
normal

MLMA fine-grained hostility En
abusive, hateful, offensive,
disrespectful, fearful,
normal

SRW fine-grained abusive En sexism, racism, normal
Target datasets (Dt)

HASOC fine-grained abusive En hate, offensive, profanity
HASOC fine-grained abusive Hi hate, offensive, profanity
HASOC fine-grained abusive De hate, offensive, profanity
GermEval fine-grained offensive
De

profanity, insult, abusive,
normal

ToLD-Br fine-grained toxicity Pt-Br
LGBTQ+phobia, obscene,
insult, racism, misogyny,
xenophobia, normal

OLID fine-grained target En individual, group, other
Stormfront binary hate En hate, normal
HatEval binary hate En hateful, normal
HatEval binary hate Es hateful, normal
OLID binary offensive En offensive, normal
GermEval binary offensive De offensive, normal
AMI binary misogyny En misogyny, normal
AMI binary misogyny It misogyny, normal

Table 1: Multi-dataset setup including exter-
nal (DE) and target (Dt) datasets. We con-
sider similarly defined but differently named la-
bels to be the same, such as hate and hate-
ful, sexism and misogyny or individual and ac-
tive. We bold unseen labels and underline labels
which aren’t used in any target dataset. We re-
move external datasets from DE which are from
the same source as a given target dataset (in case
of AMI, HASOC and HatEval).

SRW is an English Twitter set created for sexism
and racism detection (Waseem and Hovy, 2016).
Stormfront was created for hate speech de-
tection containing English forum posts from the
Stormfront white supremacist forum (de Gibert
et al., 2018). It is annotated with binary labels.
ToLD-Br is a Brazilian Portuguese Twitter
dataset annotated for toxicity detection (Leite
et al., 2020). We used its fine-grained label
set containing a wide range of labels, including
misogyny.

4.2. Multi-Dataset Setup
In the following we describe our multi-dataset
setup, i.e., the 9 corpora in the external set (DE)
and the 13 target (Dt) datasets. For a high-level
overview of the setup, including labels of the exter-
nal and target datasets, we refer to Table 1. Note
that although we list multiple target datasets, we
build a dedicated model for each of them sepa-
rately (Mt) in step 2 using ME which is trained on
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all the datasets in DE jointly in step 1. Although
the goal of MDT is to allow for an easy external
dataset selection specific to a target task, we only
consider a single external set for all target datasets
to save resources. However, this general setup
shows that an external set can be selected with-
out very careful data selection, and gives a lower
bound of the achievable performance as we ex-
pect more benefits from a more specialized setup.
The goal of the setup is to include a wide range
of datasets related to abusive language detec-
tion, such as hate speech, offense, abuse, sex-
ism, racism detection as well as target identifica-
tion. Additionally, we include datasets from the
same task category but with different label sets,
e.g., HASOC fine-grained abusive (hate, offen-
sive, profane) and SRW fine-grained abusive
(sexism, racism, normal). We only include English
datasets in DE , while we used both English and
non-English corpora (De, Hi, It, Pt-Br) as the tar-
get datasets to test cross-lingual transfer as well.
Furthermore, we test on Stormfront which contains
forum posts instead of Twitter and Facebook mes-
sages as the datasets in DE do. To avoid data
leakage between the external train and the target
test sets (in case of AMI, HASOC and HatEval), i.e.,
to filter samples which have the same input sam-
ples but with different labels or inputs from differ-
ent languages with the same labeling methodol-
ogy, we remove all datasets from DE which are
from the same authors as the test set, e.g., we omit
all AMI external datasets when trainingME in step
1 in case we test on AMI binary misogyny It.2

4.3. Compared Systems
We compare MDT to four types of baseline sys-
tems. We use off-the-shelf pre-trained LMs and
train them using the few-shot setup as in the sec-
ond step of our proposed approach without train-
ing them on the external datasets (LM-base). As
shown by Gururangan et al. (2020) fine-tuning
LMs on the domain of the task of interest by
further MLM training on unlabeled data can im-
prove down-stream task performance. In order
to test the effectiveness of this step in contrast to
our approach which leverages labels instead, we
run MLM on the external datasets of the above-
mentioned setups for one epoch (MLM). To test
the importance of the two separate steps of our ap-
proach we performmultitask learning, i.e., both the
external datasets and the target dataset are used
in a single step similarly as in step 1 in Section 3
(MTL). Additionally, we test adapter-fusion (Pfeif-
fer et al., 2021) which eliminates negative task in-
terference by first, training independent adapters

2Note that this filtering step requires us to train sep-
arate ME models in these cases, resulting in 4 different
ME models overall.

on each dataset, followed by combining them for
the target task (Fusion).3

Model parameters We use xlm-roberta-base
as our base LM (Conneau et al., 2020) for
all the baselines and our MDT setups as well.
In our early experiments we tested bert-base-
multilingual-cased (Devlin et al., 2019) as well,
which resulted in similar conclusions. However,
XLM-R benefited slightly more from MDT which
suggest that even larger models might be able to
exploit general information from external datasets
to a higher degree. For evaluation we used
macro averaged F1 score averaged over 5 differ-
ent seeds4 in order to reduce the high variance is-
sue of few-shot classification (Zheng et al., 2022).
We follow the standard n-shot setting for few-shot
learning. Due to the high label bias of abusive lan-
guage datasets, a large number of samples have
to be considered for annotation in order to increase
the training size of the minority classes with even a
few examples. Thus, we selected n = 4 as a rea-
sonable trade-off between costs and the amount of
training data for the target datasets (step 2). We
experiment with different n values shown in Fig-
ure 2. We used the full training and validation sets
of the external datasets (step 1). For all datasets
we use the official train, validation and test splits
if given, otherwise we take 80/20 train/test split
of the full dataset and/or an additional 80/20 split
of the train set for final training and validation if
the latter is not given. For the implementation we
used the Huggingface transformers (Wolf et al.,
2020) andOpenPrompt (Ding et al., 2022) libraries
for prompt-learning. The used hyperparameters
are: batch size 1,5 gradient accumulation steps
16, warm-up steps 10, learning rate 5 × 10−5 and
dropout 0.1. We ran a single epoch on each exter-
nal dataset in step 1, since we found that longer
training made our models biased towards some
of the most frequent labels. In contrast, we used
early stopping on the target n-shot validation set
in step 2.

5. Results
First, we present our main results followed by the
analysis of different few-shot sizes and the model
performance on each label separately. Then we
discuss an ablation study for a better understand-
ing of how the external datasets affect the final per-
formance. Finally, we briefly discuss our experi-
ments on HateCheck.

3We use prompt-training in contrast to the original
work which uses classification heads.

4We use a single seed for MTL since it is trained on
a large set of inputs jointly.

5Due to limited GPU memory, we could not test on
larger batch sizes.
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fine-grained
abusive offensive toxicity target

HASOC (1/3) GermEval ToLD-Br OLID
En Hi De De (1/4) Pt-Br (4/7) En (1/3) avg.

LM-base 32.76±5.94 33.59±5.68 32.55±11.71 21.48±2.22 8.25±3.54 36.94±3.80 27.59
MLM 35.98±7.70 35.81±3.79 28.70±9.94 21.97±3.89 8.98±2.76 40.88±5.38 28.72
MTL 13.22±0.00 16.38±0.00 24.10±0.00 19.84±0.00 10.69±0.00 14.11±0.00 16.39

Fusion 37.35±8.06 34.29±4.14 29.18±8.09 21.33±3.88 8.26±1.20 42.45±4.03 28.81
MDT 40.48±5.37 34.36±2.59 33.96±7.83 27.70±3.78 12.83±1.78 49.55±2.92 33.14

binary
hate offensive misogyny

Stormfront HatEval OLID GermEval AMI
En En Es En De En It avg.

LM-base 52.82±6.36 57.31±4.98 45.60±6.78 52.70±7.18 50.89±5.33 57.31±4.25 60.33±10.45 53.85
MLM 54.88±4.89 58.91±2.53 46.37±9.00 53.63±7.09 52.81±1.16 48.68±8.20 64.24±5.82 54.22
MTL 54.22±0.00 54.40±0.00 48.85±0.00 56.00±0.00 47.05±0.00 49.73±0.00 45.32±0.00 50.80

Fusion 46.79±7.50 53.91±4.41 45.94±1.57 64.67±2.70 56.95±1.95 34.95±5.30 39.11±11.17 48.91
MDT 60.41±5.75 60.20±5.52 54.47±0.79 64.81±8.55 65.02±4.17 47.77±1.36 66.98±4.03 59.95

Table 2: Macro averaged F1 scores and standard deviation (%) on the fine-grained and binary target
datasets of our multi-dataset approach using 4-shot training. In case there are unseen labels in a given
target dataset, we highlight them together with the overall number of labels in parentheses. The best
result for each target dataset is in bold.

Our main results with 4-shot training are presented
in Table 2. On a higher level it can be seen that
MDT improved over all baselines in 11 out of 13
cases (in 12 cases compared to LM-base). MDT
is significantly better (α = 0.05) than LM-base on
all datasets except on AMI En and HASOC De. We
used the significance test proposed in (Dror et al.,
2019), which accounts for the challenges of com-
paring deep neural networks, including the difficul-
ties due to the use of multiple random seeds. The
method compares the score distributions gener-
ated by different runs (random seeds) of a given
model type using an approach based on Almost
Stochastic Dominance relation of the distributions.
The MLM, MTL and Fusion baselines also im-
prove over the LM-base system, however, not as
consistently and to a lesser extent than our ap-
proach. MTL and Fusion even achieve lower per-
formance than LM-base when the averaged per-
formance over all datasets is considered. This in-
dicates that i) relying on the labels other than only
the domain adaptation effect of MLM is beneficial,
ii) the two-step approach of MDT is more effective,
since the very low number of samples of the tar-
get dataset are suppressed by the external data
samples when they are added directly into MTL
and iii) the small number of target dataset sam-
ples is not enough to properly fuse dataset specific
adapters (Fusion). Additionally, training on the ex-
ternal datasets makes the models more consistent
over different runs, as shown by the decreased
standard deviation values on most of the datasets.

MDT achieves comparable average improve-
ments on the fine-grained and the binary target

datasets. Looking at the former set, not only seen
but unseen labels as well were improved (even
on ToLD-Br with more than half of its labels un-
seen), suggesting that the general abusive lan-
guage aware ME model helps learning the fine-
grained label sets of these datasets even with
only a few-shots being available. We discuss
the improvements on the different labels in more
details below in the per label analysis section.
The only exception is the HASOC fine-grained
abusive Hi dataset, where the MLM baseline
achieved the best results, although MDT also im-
proved over LM-base. Our conjecture is that this is
partly due to the high ratio of English content in the
dataset caused by its code-mixed nature, and as
Table 2 suggests, MLM tends to perform better on
English target datasets compared to non-English
sets.

Although all labels of the binary target datasets are
seen, as mentioned the definitions of some labels
are different. For example, the offensive label of
the OLID binary offensive En target dataset in-
cludes profanity, while the same label in the ex-
ternal HASOC fine-grained abusive En dataset
does not. However, due to the inclusion of ex-
ternal training samples that are directly labeled as
profane, the model is trained on all the necessary
information. It only has to learn to combine them
in the final model of a given target dataset, such as
profanity and the more restrictive offensive label of
HASOC into the general offensive label of OLID.

All the used external datasets are English. Com-
paring the improvements of the monolingual and
cross-lingual setups of MDT, i.e., English and non-
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hate offensive profane
LM-base 30.64 24.39 43.24

MDT 52.94 26.64 41.85

(a) HASOC fine-grained abusive En

group individual other
LM-base 41.85 51.06 17.92

MDT 60.07 65.69 22.89

(b) OLID fine-grained target En

misogyny racism insult xenophobia LGBTQ+phobia obscene normal
LM-base 2.84 0.36 9.60 0.79 2.32 14.17 27.65

MDT 1.73 0.61 12.48 0.31 3.72 24.98 45.98

(c) ToLD-Br fine-grained toxic Pt-Br

hate normal
LM-base 30.28 75.36

MDT 36.86 83.95

(d) Stormfront binary hate En

misogyny normal
LM-base 55.26 65.40

MDT 69.33 64.64

(e) AMI binary misogyny It

Table 3: Per label 4-shot F1 scores (%). Unseen labels are bolded.

English target datasets, we found that the external
datasets are more beneficial monolingually. The
average improvements are 9.51% (ignoring AMI
misogyny En) and 6.09% respectively. This is not
surprising given that cross-lingual transfer learning
is almost always less effective. Still, it shows that
the combination with English external datasets is
beneficial to non-English test corpora as well. This
is an important use case for reducing costs by dra-
matically reducing the need for human annotation.
Additionally, all the external datasets contain Twit-
ter or Facebook posts, while the Stormfront tar-
get dataset contains forum posts which tend to be
longer and have different language use compared
to microblog posts. Even in this case, the improve-
ments of MDT are large compared with the base-
line showing the generality of our model.

N-shot analysis Due to the high label bias of
abusive language datasets, we consider 4-shots
of the target datasets for efficiency. For exam-
ple, out of the 12 833 training samples in the ToLD-
Br dataset only 11 (0.08%) are labeled as racism,
meaning that a given annotator has to look at
more than a thousand text inputs to increase the
number of this minority label with just one sam-
ple. For a more complete picture of the perfor-
mance of our approach however, we present ex-
periments with different n values on a few se-
lected datasets in Figure 2, while results on all the
datasets are in Table 7 in the appendix. Similarly
to Zhao et al. (2021) we find that although we av-
erage our results over 5 seeds, the performance
can be unstable at lower n values. It even de-
creases with the increase of training samples in
same cases. However, MDT steadily outperforms
LM-base, the gap only decreases at higher n val-
ues. Still, even at n = 64 the baseline performs
worse on 2 of the 3 datasets. In contrast, MDT has

1 4 8 16 32 64

20

40

60

80

n-shots
HASOC fine-grained abusive En

GermEval fine-grained offensive De
ToLD-Br fine-grained toxicity Pt-Br

Stormfront binary hate En
AMI binary misogyny It

LM-base
MDT

Figure 2: F1 scores (%) at different number (n-
shots) of target dataset samples comparing LM-
base with our MDT approach. Some datasets
have less than 64 samples available for the minor-
ity label.

the largest improvements compared to the base-
line at lower n values, which shows the strong ad-
vantage of using external datasets, especially for
target datasets such as ToLD-Br, for which acquir-
ing even one racism sample is expensive.

Per label analysis We present per label F1

scores on a few selected datasets in Table 3. In
case of the fine-grained HASOC dataset in subtable
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(a), the label hatewas significantly improved, while
the performance on offensive and profane were
improved and decreased respectively with a sim-
ilar margin. All labels were improved on the OLID
dataset in subtable (b), even the unseen other la-
bel by almost 5 percentage points. Most inter-
estingly, 3 out 4 unseen labels (5 out of 7 over-
all) were improved on the ToLD-Br dataset in sub-
table (c). Our conjecture is that the unseen in-
sult label is related to the fearful label of the ex-
ternal MLMA dataset, since texts causing fear of-
ten involve insults as well, which leads to this im-
provement. Additionally, as stated by the authors
of ToLD-Br (Leite et al., 2020), the unseen insult
and obscene labels were often confused by the
annotators, indicating their similarity, thus the lat-
ter could have also benefited from the fearful in-
stances of MLMA. Similarly, the LMBTQ+phobia la-
bel is to some extent related to sexism external
instances, thus MDT can leverage their similar-
ity automatically without the need for manual la-
bel modifications. In contrast, xenophobia, which
is somewhat related to racism, was not improved.
However, since both models achieve less than 1
percent F1, we believe that xenophobia is simply
too hard to classify, which is the reason for no im-
provements in MDT. On the binary target datasets
in subtables (d) and (e) the results are similar as
in case of the fine-grained datasets, however all
labels were improved in Stormfront, while only
misogyny improved in AMI.
Ablation study We were interested in the addi-
tional value of labels which are not directly used
in the target datasets. Thus, we removed the
external-only labels from the external datasets in
step 1, i.e., all labels which are not part of a given
target dataset, and performed step 2 as normal
(MDTabl). We present experiments on datasets
where MDT outperformed LM-base in Table 4. In
the majority of the cases, especially for the binary
datasets, we found that removing labels from the
external datasets deteriorates the model’s perfor-
mance supporting our claim that by training first on
a large set of diverse datasets the model can learn
a general knowledge of abusive language which
is then beneficial for the target task. Even though
some labels in the external datasets aren’t directly
used for a given target task they are still beneficial.
HateCheck is a test suite containing 29 func-
tional tests grouped into 11 classes (Röttger et al.,
2021). It focuses on testing various aspects of
hate speech detection models. It defines the
following test classes: derogation (F1-4), threat-
ening language (F5-6), slur usage (F7-9), pro-
fanity usage (F10-11), profane reference (F12-
13), negation (F14-15), paraphrasing (F16-17),
non-hate when mentioning protected groups (F18-
19), counter speech (F20-21), abuse against non-

MDT MDTabl

fin
e-
gr
ai
ne

d HASOC abusive En 40.48 36.96
HASOC abusive Hi 34.36 38.38
HASOC abusive De 33.96 32.55

GermEval offensive De 27.70 28.04
ToLD-Br toxicity Pt-Br 12.83 8.20

OLID target EN 49.55 44.73

bi
na

ry

Stormfront hate En 60.41 53.43
HatEval hate En 60.20 56.91
HatEval hate Es 54.47 52.69

OLID offensive En 64.81 45.09
GermEval offensive De 65.02 56.95

AMI misogyny It 66.98 65.45
avg. 47.56 43.28

Table 4: Macro averaged 4-shot F1 scores of our
ablation study which have labels removed from the
external datasets that are not needed in the target
datasets (MDTabl).

LM-base MDT
F1-4 45.23 61.95
F5-6 48.59 49.72
F7-9 28.88 30.36

F10-11 50.00 52.38
F12-13 74.91 74.73
F14-15 29.15 24.89
F16-17 73.18 49.53
F18-19 27.14 9.57
F20-21 8.30 4.44
F22-24 14.51 21.82
F25-29 41.46 59.44

Table 5: Macro averaged 4-shot F1 scores on the
HateCheck functional test classes using HatEval
binary hate En as the target dataset. The results
are averaged over test cases in the classes. The
naming FX − Y refers to the test class containing
test cases between X and Y .

protected targets (F22-24) and spelling variations
(F25-29). We evaluated MDT using HatEval
binary hate En as the target dataset compared
to LM-base in Table 5. We found that MDT im-
proves on cases testing a higher level of hate
speech understanding, such as derogation and
threatening, or slur and profanity usage, while the
performance decreases on cases testing linguis-
tics phenomena, such as negation or paraphras-
ing. These results further support our claim that
MDT results in models with better abusive lan-
guage understanding. On the other hand, they
also highlight sensitivity to linguistic phenomena
which should be improved in future work.

6. Conclusions
Due to the large variety of the abusive content to
be filtered, lack of resources is a major problem,
larger than for many other NLP tasks. In order to
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eliminate the need for expensive dataset annota-
tion for novel application scenarios, and thus re-
duce costs, we proposed a two-step multi-dataset
approach (MDT) which exploits datasets we al-
ready have to learn general abusive language un-
derstanding and requires only a few annotated
samples for the target task. Our experiments on
various datasets showed that external datasets
improve few-shot classification across tasks, text
genres and languages. Additionally, our analysis
reveals that external-only labels also contain use-
ful information and consequently, that unseen la-
bels can be improved as well, arguing for the utility
of our approach.

Limitations
The aim of our approach is that given the require-
ments (labels and their definitions) of a target task,
train an abusive language classifier using external
datasets. Although our approach supports select-
ing more closely related datasets, e.g., only hate
speech or only misogyny and sexism datasets, we
used a broad range of abusive language related
external datasets in our experiments for simplicity,
and to save computational resources. On the one
hand, this setup shows the general applicability of
MDT. However, our results do not show the po-
tential of more specialized (but still easy to set up)
configurations.
Additionally, we only used English corpora as ex-
ternal datasets. Although English has the most
abusive language resources, datasets of other
languages could also be used for this purpose.
Our results show that MDT is more beneficial
monolingually than cross-lingually, thus using re-
sources from the same language as a non-English
target dataset could be beneficial, which we did not
test in this work.
Finally, our analysis on HateCheck reveals some
weaknesses of our approach which indicate fu-
ture directions in combining abusive language
datasets.
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A. Additional Details
We present details of the used datasets in Table 6,
such as source platform, number of samples (we
only used 4 samples per label for training in the
main experiments and an overall 16 samples fol-
lowing the original label distribution for validation in
case of the target datasets) and used PVPs. We
kept PVPs simple and uniform across datasets us-
ing English PVPs even for non-English datasets
as well. We note however that in our initial exper-
iments we tested machine translated PVPs which
did not lead to significantly different results (Zhao
and Schütze, 2021). Additionally, if a given to-
ken related to a label is split by the tokenizer, e.g.,
dominance → [domina, #nce], we take the aver-
aged probabilities of the subwords at the [MASK]
position as the probability of the related label. Fi-
nally, we show complete results of all setups in Ta-
ble 7 (containing each target dataset in a separate
subtable stretching over multiple pages).
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source #train #valid #test verbalizer Pattern

AMI fine-grained misogyny En Twitter 1,428 357 460

stereotypical → stereotype
dominance → dominance
derailing → derailing
harassment → sexual_harassment
discrediting → discredit

X → X It was [MASK]

AMI binary misogyny En Twitter 3,200 800 1,000 sexist → misogyny
neutral → normal X → X It was [MASK]

AMI binary misogyny It Twitter 3,200 800 1,000 sexist → misogyny
neutral → normal X → X It was [MASK]

GermEval fine-grained offensive De Twitter 4,007 1,002 3,532

profane → profanity
insulting → insult
abusive → abusive
neutral → normal

X → X It was [MASK]

GermEval binary offensive De Twitter 4,007 1,002 3,532 offensive → offensive
neutral → normal X → X It was [MASK]

HASOC fine-grained abusive En Twitter, Facebook 1,808 453 288
hate → hate
offensive → offensive
profane → profanity

X → X It was [MASK]

HASOC fine-grained abusive De Twitter, Facebook 325 82 136
hate → hate
offensive → offensive
profane → profanity

X → X It was [MASK]

HASOC fine-grained abusive Hi Twitter, Facebook 1,975 494 605
hate → hate
offensive → offensive
profane → profanity

X → X It was [MASK]

HatEval binary hate En Twitter 3,055 764 850 hate → hateful
neutral → normal X → X It was [MASK]

HatEval binary hate Es Twitter 3,560 890 500 hate → hateful
neutral → normal X → X It was [MASK]

LSA fine-grained abusive En Twitter 29,728 7,433 9,291

abusive → abusive
hate → hateful
spam → spam
neutral → normal

X → X It was [MASK]

MLMA fine-grained hostility En Twitter 5,549 1,388 1,735

abusive → abusive
hate → hateful
offensive → offensive
disrespectful → disrespectful
fearful → fearful
neutral → normal

X → X It was [MASK]

OLID binary offensive En Twitter 10,592 2,648 860 offensive → offensive
neutral → normal X → X It was [MASK]

SRW fine-grained abusive En Twitter 6,504 1,626 2,033
sexist → sexism
racist → racism
neutral → normal

X → X It was [MASK]

Stormfront binary hate En Stormfront forum 6,849 1,713 2,141 hate → hate
neutral → normal X → X It was [MASK]

ToLD-Br fine-grained toxicity Pt-Br Twitter 12,833 3,209 4,011

homophobic → LGBTQ+phobia
obscene → obscene
insulting → insult
racist → racism
sexist → misogyny
xenophobic → xenophobia
neutral → normal

X → X It was [MASK]

HASOC binary target En Twitter, Facebook 4,681 1,171 1,153 targeted → targeted
general → untargeted X → X It was [MASK]

AMI binary target En Twitter 1,428 357 460 individual → active
group → passive X → X It was targeted at [MASK]

HatEval binary target En Twitter 3,732 933 1,318 individual → individual
group → group X → X It was targeted at [MASK]

OLID fine-grained target En Twitter 3,100 776 213
individual → individual
group → group
other → other

X → X It was targeted at [MASK]

Table 6: Dataset statistics for each (dataset, label configuration, language) triple. From left to right
we indicate the source platform of the dataset, the number of total train, validation and test samples,
used verbalizers (<predicted word> → <label>) which also indicates the labels of a given dataset, and
patterns (where X is the input sentence). We kept our PVPs simple, i.e., most labels are mapped 1-to-1 to
the same word, and we defined only two patterns. Note that we also used English PVPs for non-English
datasets, since it was shown to perform well (Zhao and Schütze, 2021). Since different datasets often
name the negative abuse class differently (e.g. no-hate, not-offensive, normal, etc.), we unified them by
using the frequent normal label name. Additionally, similarly defined but differently named labels, such
as hate and hateful or sexism and misogyny, are united by using the same verbalizers for them.
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hate offen. profa. avg.
1-shot

LM-base 20.37±16.46 34.26±2.39 25.90±12.28 26.85±3.80

MDT 31.80±21.12 30.37±10.10 34.41±20.77 32.19±2.87

4-shot
LM-base 30.64±17.57 24.39±8.99 43.24±5.11 32.76±5.94

MLM 38.35±21.08 31.91±5.89 37.67±11.63 35.98±7.70

MTL 0.00±0.00 39.66±0.00 0.00±0.00 13.22±0.00

Fusion 50.72±13.25 18.14±11.70 43.20±16.42 37.35±8.06

MDT 52.94±6.68 26.64±13.34 41.85±17.39 40.48±5.37

MDT-abl 49.94±10.26 19.01±5.60 41.93±13.72 36.96±2.77

8-shot
LM-base 36.09±18.50 28.12±8.97 49.68±5.98 37.96±5.32

MDT 54.44±8.98 23.55±13.52 42.44±8.61 40.14±3.48

16-shot
LM-base 52.37±12.34 26.66±5.91 54.62±7.43 44.55±3.80

MDT 62.35±5.45 23.21±5.76 56.37±8.98 47.31±2.23

32-shot
LM-base 60.08±11.25 18.43±12.46 54.77±9.13 44.43±3.22

MDT 61.53±8.39 18.26±14.98 55.28±6.11 45.03±2.20

64-shot
LM-base 39.86±23.03 30.31±5.62 53.82±9.36 41.33±10.86

MDT 60.07±4.17 25.59±7.61 41.23±23.92 42.29±10.14

(a) HASOC fine-grained abusive En

hate offen. profa. avg.
1-shot

LM-base 42.46±22.52 46.03±20.92 10.56±6.93 33.02±12.44

MDT 24.35±18.43 65.74±10.60 18.16±5.98 36.08±7.51

4-shot
LM-base 28.81±22.59 47.96±24.69 20.88±4.24 32.55±11.71

MLM 29.85±18.60 36.99±21.05 19.26±5.83 28.70±9.94

MTL 0.00±0.00 72.30±0.00 0.00±0.00 24.10±0.00

Fusion 35.10±13.09 35.15±21.92 17.29±6.50 29.18±8.09

MDT 33.82±19.38 49.80±11.04 18.25±4.09 33.96±7.83

MDT-abl 28.59±16.25 47.73±27.24 21.33±13.17 32.55±11.16

8-shot
LM-base 16.45±14.06 48.32±18.31 18.15±5.24 27.64±4.79

MDT 36.94±14.65 42.17±18.52 20.55±5.22 33.22±6.65

16-shot
LM-base 26.37±22.50 62.63±10.75 16.98±5.52 35.33±8.64

MDT 43.96±12.16 60.61±9.98 23.63±6.81 42.73±7.51

32-shot
LM-base 5.95±7.35 54.02±8.79 20.67±9.13 26.88±2.44

MDT 34.71±16.89 49.94±17.30 15.99±10.30 33.55±7.46

64-shot
LM-base 25.98±16.26 60.51±9.13 19.28±7.88 35.26±5.96

MDT 27.59±12.55 54.48±12.94 23.66±2.62 35.24±5.26

(b) HASOC fine-grained abusive De

hate offen. profa. avg.
1-shot

LM-base 29.00±15.58 24.21±16.02 27.77±13.25 26.99±2.91

MDT 33.87±13.10 29.49±16.19 27.90±22.33 30.42±5.26

4-shot
LM-base 25.57±18.46 33.84±11.71 41.37±12.38 33.59±5.68

MLM 23.09±16.30 34.63±14.80 49.71±5.74 35.81±3.79

MTL 0.00±0.00 49.13±0.00 0.00±0.00 16.38±0.00

Fusion 45.92±5.71 19.45±11.77 37.51±6.16 34.29±4.14

MDT 40.01±7.27 16.16±17.45 46.89±6.58 34.36±2.59

MDT-abl 44.52±6.07 18.81±15.40 51.82±8.43 38.38±5.45

8-shot
LM-base 40.28±14.55 31.14±12.85 42.40±14.03 37.94±2.53

MDT 47.25±3.31 19.72±8.11 44.61±8.93 37.19±1.72

(c) HASOC fine-grained abusive Hi

abus. insult profa. normal avg.
1-shot

LM-base 15.82±9.22 15.48±6.61 3.87±1.31 40.61±16.10 18.94±4.00

MDT 13.95±5.56 5.82±7.13 7.37±2.28 74.81±7.15 25.49±2.90

4-shot
LM-base 15.94±9.67 18.61±2.32 2.90±0.66 48.46±5.99 21.48±2.22

MLM 19.41±6.14 17.43±3.81 3.47±1.20 47.57±11.07 21.97±3.89

MTL 0.00±0.00 0.00±0.00 0.00±0.00 79.38±0.00 19.84±0.00

Fusion 12.24±4.51 13.35±5.24 4.10±0.79 55.63±17.20 21.33±3.88

MDT 23.30±9.48 14.53±4.17 8.60±2.00 64.35±7.62 27.70±3.78

MDT-abl 30.52±2.34 14.54±3.43 0.00±0.00 67.11±9.65 28.04±2.20

8-shot
LM-base 23.02±14.20 22.06±2.11 4.01±1.15 49.82±12.13 24.73±4.54

MDT 25.53±8.68 13.73±7.96 8.39±2.13 70.72±6.50 29.59±3.17

16-shot
LM-base 32.19±8.24 15.98±5.00 2.08±1.92 61.01±7.12 27.82±2.01

MDT 20.99±11.91 9.06±7.93 9.50±2.11 69.22±15.18 27.19±3.34

32-shot
LM-base 18.74±14.08 22.86±5.56 6.95±2.38 68.90±11.86 29.36±4.68

MDT 23.02±15.61 9.21±8.95 9.36±2.63 72.27±10.43 28.46±6.16

(d) GermEval fine-grained offensive De

misogyny racism insult xenophobia LGBTQ+hobia obscene normal avg.
1-shot

LM-base 0.90±0.95 0.58±0.29 9.34±2.72 0.09±0.18 1.60±1.51 9.86±5.41 38.46±11.40 8.69±2.58

MDT 1.40±1.04 0.11±0.22 7.98±7.22 0.39±0.47 1.83±1.77 22.57±4.42 43.35±11.39 11.09±1.42

4-shot
LM-base 2.84±4.14 0.36±0.20 9.60±2.68 0.79±1.07 2.32±1.25 14.17±2.23 27.65±17.87 8.25±3.54

MLM 1.31±0.96 0.88±0.42 8.76±5.02 0.35±0.48 2.76±2.04 15.01±2.74 33.83±16.75 8.98±2.76

MTL 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 2.25±0.00 15.77±0.00 56.80±0.00 10.69±0.00

Fusion 0.75±0.41 0.31±0.10 8.71±2.59 0.07±0.13 2.73±0.82 7.74±3.00 37.48±2.10 8.26±1.20

MDT 1.73±0.82 0.61±0.89 12.48±6.33 0.31±0.38 3.72±3.62 24.98±4.50 45.98±6.12 12.83±1.78

MDT-abl 1.41±0.50 1.11±1.58 8.69±1.84 2.78±2.01 4.62±2.60 13.82±4.49 24.95±11.60 8.20±2.23

8-shot
LM-base 1.62±0.99 0.69±0.85 13.80±3.92 0.46±0.39 2.65±0.47 16.39±1.98 34.89±12.98 10.07±1.95

MDT 2.35±0.83 0.67±0.82 9.20±7.54 0.94±1.10 2.97±1.95 23.45±4.82 43.88±8.39 11.92±2.51

(e) ToLD-Br fine-grained toxic Pt-Br
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group indivi. other avg.
1-shot

LM-base 46.96±9.06 43.39±8.12 7.90±9.76 32.75±3.48

MDT 62.58±3.50 57.42±13.12 20.02±7.92 46.67±4.45

4-shot
LM-base 41.85±9.31 51.06±8.90 17.92±7.84 36.94±3.80

MLM 47.17±6.13 57.48±6.38 17.99±7.07 40.88±5.38

MTL 14.12±0.00 0.00±0.00 28.22±0.00 14.11±0.00

Fusion 58.21±3.19 51.48±10.50 17.66±8.32 42.45±4.03

MDT 60.07±11.50 65.69±8.59 22.89±6.60 49.55±2.92

MDT-abl 60.80±10.54 57.07±14.66 16.33±6.93 44.73±4.15

8-shot
LM-base 49.17±5.58 49.02±15.79 21.61±6.07 39.93±4.80

MDT 67.00±3.35 65.98±8.36 21.50±7.27 51.49±3.66

(f) OLID fine-grained target En

hate normal avg.
1-shot

LM-base 26.31±0.62 66.77±6.47 46.54±3.51

MDT 35.03±5.29 82.58±12.35 58.81±7.55

4-shot
LM-base 30.28±4.58 75.36±9.38 52.82±6.36

MLM 25.45±12.15 84.31±9.19 54.88±4.89

MTL 16.30±0.00 92.13±0.00 54.22±0.00

Fusion 30.18±3.51 63.40±11.55 46.79±7.50

MDT 36.86±2.87 83.95±9.03 60.41±5.75

MDT-abl 23.61±8.76 83.26±3.93 53.43±4.44

8-shot
LM-base 31.14±3.76 80.78±4.96 55.96±3.10

MDT 39.34±1.68 86.52±4.13 62.93±2.70

16-shot
LM-base 34.80±4.63 83.82±7.12 59.31±4.60

MDT 40.23±2.50 87.74±2.17 63.99±1.31

32-shot
LM-base 36.45±4.96 82.29±5.44 59.37±4.99

MDT 40.79±1.42 86.31±3.15 63.55±1.29

64-shot
LM-base 38.79±7.06 84.71±4.90 61.75±5.54

MDT 40.38±1.97 86.93±3.58 63.66±2.05

(g) Stormfront binary hate En

hateful normal avg.
1-shot

LM-base 46.18±13.74 62.61±8.12 54.40±5.75

MDT 46.49±11.06 54.76±7.88 50.62±3.70

4-shot
LM-base 55.20±3.04 59.42±10.52 57.31±4.98

MLM 55.08±5.70 62.73±8.40 58.91±2.53

MTL 38.72±0.00 70.09±0.00 54.40±0.00

Fusion 57.43±5.20 50.40±8.22 53.91±4.41

MDT 61.04±4.19 59.35±12.05 60.20±5.52

MDT-abl 56.18±4.34 57.63±8.86 56.91±2.82

8-shot
LM-base 48.29±12.01 63.44±11.82 55.86±5.42

MDT 61.87±1.41 65.62±7.88 63.75±3.83

16-shot
LM-base 53.38±10.13 64.45±3.70 58.91±4.10

MDT 61.95±4.45 65.02±6.73 63.48±3.62

32-shot
LM-base 62.72±3.13 65.49±6.95 64.10±2.48

MDT 64.30±5.29 64.97±6.95 64.63±3.71

64-shot
LM-base 61.90±6.97 70.57±4.09 66.23±2.27

MDT 63.73±4.54 69.86±4.22 66.79±2.40

(h) HatEval binary hate En

hateful normal avg.
1-shot

LM-base 44.34±14.02 46.96±22.46 45.65±7.07

MDT 46.49±11.06 54.76±7.88 50.62±3.70

4-shot
LM-base 51.81±6.45 39.39±19.59 45.60±6.78

MLM 42.27±12.12 50.46±25.12 46.37±9.00

MTL 28.19±0.00 69.52±0.00 48.85±0.00

Fusion 54.05±6.81 37.84±8.96 45.94±1.57

MDT 50.25±2.08 58.69±3.00 54.47±0.79

MDT-abl 44.02±2.61 61.36±3.56 52.69±0.96

8-shot
LM-base 40.61±6.04 63.78±2.79 52.20±3.70

MDT 54.02±3.96 59.23±3.47 56.62±0.87

(i) HatEval binary hate Es
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offensive normal avg.
1-shot

LM-base 38.57±9.68 76.77±8.12 57.67±2.96

MDT 55.34±3.21 85.90±2.43 70.62±0.70

4-shot
LM-base 34.71±6.52 70.69±19.28 52.70±7.18

MLM 39.93±6.42 67.32±17.26 53.63±7.09

MTL 39.48±0.00 72.53±0.00 56.00±0.00

Fusion 54.17±2.20 75.17±5.15 64.67±2.70

MDT 55.55±3.70 74.06±14.25 64.81±8.55

MDT-abl 37.94±4.08 52.24±17.81 45.09±7.42

8-shot
LM-base 40.74±5.06 70.41±12.03 55.58±5.76

MDT 56.24±1.27 83.67±4.22 69.95±1.61

(j) OLID binary offensive En

offensive normal avg.
1-shot

LM-base 38.25±9.81 60.26±10.28 49.25±2.94

MDT 57.85±5.75 75.16±5.34 66.50±1.79

4-shot
LM-base 41.91±5.26 59.86±15.74 50.89±5.33

MLM 43.45±6.83 62.17±5.94 52.81±1.16

MTL 53.45±0.00 40.64±0.00 47.05±0.00

Fusion 50.96±3.03 62.95±6.31 56.95±1.95

MDT 55.74±3.17 74.31±9.90 65.02±4.17

MDT-abl 33.83±17.91 60.47±19.37 47.15±7.19

8-shot
LM-base 40.43±6.96 71.57±2.23 56.00±2.57

MDT 57.70±1.33 71.64±7.18 64.67±3.35

(k) GermEval binary offensive De

misogyny normal avg.
1-shot

LM-base 45.47±5.26 65.75±2.71 55.61±3.40

MDT 49.81±14.77 39.48±10.09 44.64±3.18

4-shot
LM-base 56.02±3.10 58.61±9.18 57.31±4.25

MLM 59.22±5.13 38.14±19.71 48.68±8.20

MTL 31.28±0.00 68.18±0.00 49.73±0.00

Fusion 42.23±26.40 27.68±33.90 34.95±5.30

MDT 53.57±5.14 41.97±5.13 47.77±1.36

MDT-abl 57.54±7.07 50.77±4.11 54.16±2.78

8-shot
LM-base 58.15±4.89 55.99±11.84 57.07±4.98

MDT 53.57±3.48 48.07±8.03 50.82±5.02

(l) AMI binary sexism En

misogyny normal avg.
1-shot

LM-base 56.37±17.70 59.66±11.53 58.02±8.47

MDT 53.10±8.67 45.78±13.44 49.44±4.03

4-shot
LM-base 55.26±21.34 65.40±4.06 60.33±10.45

MLM 69.23±5.45 59.25±10.89 64.24±5.82

MTL 40.79±0.00 49.86±0.00 45.32±0.00

Fusion 53.51±26.77 24.72±30.39 39.11±11.17

MDT 69.33±5.39 64.64±5.10 66.98±4.03

MDT-abl 66.54±7.19 64.35±5.03 65.45±4.02

8-shot
LM-base 70.77±3.42 60.21±5.12 65.49±3.17

MDT 68.95±8.80 65.65±6.41 67.30±6.46

16-shot
LM-base 74.11±2.37 70.00±10.28 72.05±5.73

MDT 75.82±3.34 71.74±3.27 73.78±2.98

32-shot
LM-base 77.83±6.63 73.35±5.90 75.59±6.12

MDT 78.33±1.54 73.77±4.60 76.05±2.52

64-shot
LM-base 81.23±1.86 76.76±3.94 79.00±2.84

MDT 80.40±1.22 74.81±4.19 77.61±2.65

(m) AMI binary misogyny It

Table 7: Per label and macro averaged F1 scores for each target dataset. LM-base, MLM, MTL and
Fusion rows indicate the model trained on the target task only, the masked language modeling, multitask
learning and adapter fusion baselines,MDT our proposed approach, whileMDT-abl. refers to the ablation
studies where external only labels are removed from the external datasets.
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