How Speculative Can Speculative Decoding Be?

Zhuorui Liu, Chen Zhang, Dawei Songt
Beijing Institute of Technology
{zrliu, czhang, dwsong}@bit.edu.cn

Abstract
Large language models (LLMs) have drawn great attention from the field of natural language processing and beyond,
due to their impressive capability of autoregressive modeling, yet bringing an obvious problem, i.e., the largely
increased latency. An emerging idea to alleviate this problem is speculative decoding, which first uses a draft model
to draft tokens autoregressively and then makes the target model verify these tokens in parallel. The draft model is
typically smaller than the target model, and it essentially trades generation quality for speed. Thereby, speculative
decoding can be viewed as a speculative game for the target model in term of verification failures. That is, the lengthy
draft tokens proposed by the small draft models could fail in the verification stage. Naturally, a critical question
arises: how speculative can speculative decoding be, or in other words, how small can an adequate draft model
be and how large can an appropriate number of draft tokens be? This work aims to investigate these questions
and demonstrate how the scale of the draft model and the number of draft tokens would have an impact on the
overall latency of the speculative decoding. We theoretically show that neither of above two factors will be infinitely
speculative. Namely, there is a certain turning point for each of them. We then empirically show that the scale of
the draft model could be 10-20 x smaller than the target model and the optimal number of draft tokens should lie in 3-5.

Keywords: Speculative decoding, Draft model, Draft tokens

1. Introduction

In recent years, large language models (LLMs)
such as PaLM (Chowdhery et al., 2022), PaLM-
v2 (Anil etal., 2023), GPT-3 (Brown et al., 2020) and
ChatGPT (OpenAl, 2023b), have garnered a sig-
nificantly increasing attention. Notably, those con-
structed using transformer architectures (Vaswani
etal., 2017) and scaling up to billions of parameters
have showcased exemplary performance across
diverse tasks. This momentum has reverberated
beyond the realm of NLP, influencing areas like com-
puter vision (e.g., Zou et al., 2023; Kirillov et al.,
2023). Exemplifying this progression, GPT-4 (Ope-
nAl, 2023a), an LLM with trillions of parameters,
has captured the imagination of many. GPT-4’s
striking capabilities have highlighted the potential
of LLMs, prompting individuals from various disci-
plines to view this advancement as the dawn of a
new productivity paradigm.

While LLMs offer undeniable advantages, they
are facing a key challenge due to their immense
sizes. Such scales can impose substantial
hardware requirements and elevate inference la-
tency (Xiao et al., 2023; Hu et al., 2021), poten-
tially compromising the user experience, espe-
cially for large batches or time-sensitive tasks. To
mitigate this challenge, various strategies have
been proposed to expedite LLM inference and cur-

T Corresponding author. Also with the Open Univer-
sity, UK.

* The code is available at https://github.com/
ZhuoruilLiul2/SpecGame

tail latency (Guo et al., 2023; Yang et al., 2023).
Correspondingly, a range of approaches have
emerged (Zhang et al., 2024; Dao, 2023). A partic-
ularly promising approach is speculative decoding,
where a leaner draft model aids the generation pro-
cess (Chen et al., 2023). This draft model produces
a sequence of preliminary tokens (called draft to-
kens), which are subsequently sent to the LLM (the
target model) for verification in a single pass.

While this strategy has shown promise in ad-
dressing the inference latency problem and enhanc-
ing user experience with more efficient interactions,
it has also surfaced from a new set of challenges.
Specifically, the degree to which the latency is mit-
igated depends on the scale of the chosen draft
model and the number of draft tokens selected.

This observation raises a critical question: How
speculative can speculative decoding truly be?
Specifically, what would be the minimum viable
scale for the draft model, and what is the upper
limit for the number of draft tokens? We are the
first to dive into this important question. This is es-
sential for making a good use of the typically limited
resource for deployment while achieving an ideal
result.

We illustrate this intricacy in Figure 1. Our hypoth-
esis posits that initially, as the draft model assists,
the inference latency should decrease. Asthe scale
of the draft model diminishes, this latency reduc-
tion should continue up to a specific model size.
Beyond this point, the limited capacity of a smaller
draft model may hamper its ability to produce mean-
ingful tokens, leading to an increase in latency. We
substantiate this concept using mathematical for-

8265

LREC-COLING 2024, pages 8265-8275
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

https://github.com/ZhuoruiLiu12/SpecGame
https://github.com/ZhuoruiLiu12/SpecGame

Latency

v
I
|
1

The scale of draft model

(a) The impact of the scale of draft model.

Latency

2

1
The number of draft tokens

(b) The impact of the number of draft tokens.

Figure 1: An optimal scale for the draft model and
an optimal number of draft tokens exist. In (a), as
the horizontal axis increases, the scale of the draft
model decreases. This leads to an initial decrease
in latency, followed by an increase, attributed to the
reduced capacity of the draft model. In (b), given a
specific draft model and target model, the number
of draft tokens significantly influences latency. Both
an excess and a deficiency of tokens can adversely
affect the speedup.

mulations in subsequent sections. Similarly, for
a given draft model, the inference latency might
first decrease with an increasing number of draft
tokens but then escalate. This can occur because
an excessive number of tokens produced by the
draft model might not be optimally accepted by the
target model, resulting in increased latency.

A more rigorous validation of these hypotheses
will be presented in Section 3.

We carried out a range of experiments, varying
the size of the draft model and the number of to-
kens under standard conditions. Remarkably, our
findings reveal that in extreme circumstances, the
model can be scaled down far more than we initially
thought, while still achieving substantial speedup.
Moreover, the draft model’s capacity plays a piv-
otal role in influencing latency. We discern that

the optimal number of draft tokens lies the range
between 3 to 5, and that the smaller draft models
tend to outperform the larger ones, with the possi-
bility of scaling down by up to 60 times in extreme
situations.

The main contributions of this paper include:

+ Pioneering research on key factors influencing
the inference latency of speculative decoding.

« Comprehensive experiments exploring the
boundaries of speculative decoding, targeting
the aforementioned factors. Subsequent anal-
ysis yields insights into the optimal range of
draft tokens and the most effective scale of the
draft model.

2. Background

A wealth of research has focused on the pivotal
challenge of reducing LLMs' inference latency. Of-
ten, studies juxtapose compression and accelera-
tion technologies, given their shared objective of
boosting model efficiency. This alignment is evi-
dent in the comprehensive reviews by Choudhary
et al. (2020) and Xu and McAuley (2023).

Inference latency is fundamentally intertwined
with memory size. As such, strategies aimed at
compressing memory size inherently contribute to
reducing this latency. For example, pruning tech-
niques (e.g., LeCun et al., 1989; Lin et al., 2020;
Guo et al., 2020) endeavor to discard less cru-
cial weights. Quantization targets the reduction
of weight precision, while distillation approaches
(e.g., Hinton et al., 2015; Jiao et al., 2019; Sanh
et al., 2019; Zhang et al., 2023b; Yang et al., 2022;
Zhang et al., 2023d,c,a) seek broader performance
enhancements. These techniques have yielded sig-
nificant speed improvements, often with negligible
or zero compromise in performance.

Conversely, some strategies don’t inherently
modify memory size. Early exiting (EE) methodolo-
gies, exemplified by FastBERT (Liu et al., 2020),
SkipBERT (Wang et al., 2022), and BERXIT (Xin
et al., 2021), employ criteria to halt inference at
intermediary layers, facilitating quicker results. An-
other innovative method, token skipping (e.g., Ye
et al., 2021; Guan et al., 2022), bypasses select
tokens across layers based on their significance.

One of the most efficacious paradigms for accel-
eration embraces a trade-off between space and
time. As previously alluded to, leveraging a draft
model in tandem with the primary model for decod-
ing emerges as an optimal choice. This methodol-
ogy, termed speculative decoding, has multiple in-
carnations in the research ecosystem. Noteworthy
implementations include Google’s speculative de-
coding (Leviathan et al., 2023), DeepMind’s specu-
lative sampling (or SpS) (Chen et al., 2023), and

8266

HuggingFace’s assisted generation (or AsG) (Joao
Gante, 2023), among others.

The speculative decoding approach employs au-
toregressive models that consist of both the target
model and a draft model. In this context, when
we refer to autoregressive models, we mean mod-
els that generate sequences by regressing on their
own previous outputs. Typically, the straightforward
application of the target model to generate text di-
rectly serves as our baseline method, against which
we compare the speedup achieved using different
speculative strategies.

Let’'s consider a sequence of tokens z4,...,z,
as our input. The subsequent K tokens, denoted
by .11, ..., Tnik are either sampled or generated
from the draft model, acting as candidate tokens.
Based on this setup, we delve into various specu-
lative decoding algorithms.

For the autoregressive decoding method, abbre-
viated as ArD, our attention is squarely on the input
sequences. These autoregressive models gener-
ate the z,; token directly through the following
relationship:

o T) (1)

Here, ¢(-|-) represents the distribution of the next
token x derived from the target model. ArD contin-
uously generates tokens in this manner, one at a
time, until it reaches the specified maximum token
length.

The Speculative Sampling (SpS) algorithm oper-
ates in the following manner:

Tpyr ~ q(w|T, .

Token Acceptance Criteria SpS determines the
acceptance of the next candidate token %,,,; based
on:

U(Enpaler,))

r < min(1l, ==
P(Znt1]T1y .oy Tn)

Here:

* p(-|-) denotes the probability of the candidate
token z,,; as predicted by the draft model.

* ris a random number drawn from the uniform
distribution U0, 1].

Token Rejection and Sampling If the condition
in Equation (2) is not satisfied, the token %,,. is
rejected. The next token is then sampled based on
the distribution:

(@(@ns1lrr, s Tn) = P(Tnpa]@r, s Tn)) + (3)

The function (-) is defined as:

_ max(0, f(z))
>, max(0, f(z))

Upon sampling, SpS exits this iterative loop.

(f(@))+

Additional Token Sampling If all tokens in the
sequence are accepted, SpS samples an extra
token x,, k1 from the distribution:

Tt k41 ~ Q(T]T1, ooy Ty Tt 1y ooy Tt) (5)

Notably, in this scenario, SpS can provide a max-
imum of K + 1 tokens per iteration. This is more
efficient than traditional methods, making it advan-
tageous in certain applications.

AsG method is grounded in a greedy decoding
approach. Unlike sampling methods, it deterministi-
cally chooses the highest probability token at each
step. This deterministic approach is often faster
and can be crucial for certain applications. Instead
of sampling, AsG selects the token with the highest
conditional probability, as described:

o T) (6)

Once the candidate tokens %11, ..., Tnik are
generated, AsG performs critical steps:

Tpy1 = argmax p(Tpq1|z1, .-

Token Acceptance Criteria AsG forwards the
candidate tokens to the target model, which sub-
sequently produces a validation token sequence.
AsG then decides whether to accept the token #,,11
from the candidate token sequence based on a
strict match with the corresponding token in the
validation sequence. It is evident that if the token
Zna1 aligns with the token x,,, 1, AsG will accept the
token Z,,.1. This matching criterion is represented
by:

Acceptance = C(Zp+i, Tnti) (7)

In this context, the function C(-, -) is delineated as:

0, iffz)# g(x)

L) = ga) O

C(f(x),9(x)) = {

Provided that Equation (7) is met, AsG continues
this evaluation for the subsequent token Z,,4;4+1
until either Equation (7) is no longer fulfilled or the
token %, is the concluding one in the sequence.

Token Rejection and Sampling If the condition
in Equation (7) is unmet, the token Z,; is dis-
carded. At this juncture, AsG terminates the dis-
crimination loop, retaining all accepted tokens while
discarding the remaining candidate tokens from this
position onward. Additionally, AsG accepts the to-
ken situated immediately after the last accepted
position in the validation sequence, as generated
by the target model.

Additional Token Sampling Should all candi-
date tokens be accepted, AsG, akin to SpS, will
recognize the token positioned at the end of the val-
idation sequence, as produced by the target model.

8267

This additional acceptance serves to bolster the
efficiency of decoding. In summary, given a con-
secutive matching token count of N, AsG invariably
acknowledges N + 1 tokens within the validation
sequence, thereby offsetting the stringent matching
criterion.

For ease of understanding, Figure 2 shows the
process of ArD algorithm. And both of SpS and
AsG share the same idea which is illustrated in
Figure 3. They follow a similar process: individuals
utilize LLMs to complete their tasks. Upon text
generation by the LLMs, users review the output to
ensure it meets their criteria. If the generated text is
satisfactory, it is accepted; otherwise, users discard
it and opt to write on their own. Specifically, as for
SpS and AsG, they could maintain the same quality
of output as output of LLMs because of the internal
principle, for end-to-end tasks, these methods can
achieve the unanimous metrics as LLMs.

3. Research Questions

In this section, we delve into a detailed examination
of the questions raised in previous sections.

To initiate our discussion, let’s consider a specific
scenario where the number of draft tokens, denoted
as K, is 1. Our focus is the latency associated with
generating each token. Let’s hypothesize that the
probability of the target model accepting a token is
p. Furthermore, let @ and b represent the latencies
of the draft and target models in generating and
verifying draft tokens, respectively. We can define
the expected latency per token, E,;, for SpS as
follows:

a+b
Ept:p()

5 + (1 —p)(a+b))

—(1- g)(cﬂ—b)

In Equation (9), p represents the probability of each
token being accepted. This probability, p, is influ-
enced by the scale of the draft model, with K being
a contributing factor. Moreover, different draft mod-
els can also affect p. Specifically, we can express
it as:

p(z|scale, K) (10)

where z is the event of token acceptance. Within
the same family of models, it’s evident that the size
of a model correlates positively with its computa-
tional capacity empirically. Likewise, an increase
in model capacity leads to a proportional increase
in p. This relationship can be represented as:

p o capacity « scale (11)
Equation (9) depicts the maximum latency of SpSin
a specific scenario where K = 1 and a given draft
model is used. By altering the draft model from the

same family, we can adjust p to achieve an ideal
latency. The pressing question then becomes: how
can one minimize this latency? There may exist
an optimal scale for the draft model that minimizes
Ept-

From the preceding analysis, let's extend our
consideration to a general scenario where K =
k. The expected latency per token, E,;, which is
divided into two situations, can be expressed as:

Epy = (1 =p)(a+b)+ L(1) (12)

Here, L presents a recursive decomposition for the
overall latency, which is defined by:

L<i>={p5ib_p)?if+L(i+1>] T)
P T =

Upon scrutinizing Equation (12) and Equation (13),
it becomes evident that there might be an optimal
scale for the draft model that minimizes E,., which
can be referred to as the smallest size of the draft
model.

In parallel, there could be a single value or a
range for K that, in conjunction with a specific fam-
ily of draft models, minimizes E,;. Building upon
this analysis, our aim is to identify the optimal K
and the ideal scale of the draft model.

4. Experiments

4.1. Experiments Setup

We employ the test dataset from LAMBADA (Pa-
perno et al., 2016) as prompts. The LAMBADA
dataset comprises the full text of 2,662 novels for
training, 4,869 passages for validation, and 5,153
passages for testing. The draft model generates
subsequent text based on these prompts, which is
then verified by the LLM to determine the accep-
tance of the tokens. Throughout this process, we
measure two primary durations: the average gener-
ation time based on the number of prompts, which
evaluates the acceleration effect, and the average
generation time per token.

To conduct the experiments, several hyperpa-
rameters must be established, including sample
size, the number of tokens generated in each it-
eration, and the number of tokens generated with
the assistance of the small model. In our experi-
ments, we execute the entire process 500 times to
compute the average time. We set the maximum
length of generated tokens at 128. We also vary
the number of tokens generated with assistance,
incrementing from 1 to 7, to discern how large the
number of draft tokens could be. The batch size is
set to 1 for these experiments.

For our model series, the selection criteria for the
model family were twofold: firstly, the family should

8268

She was standing |- --_» — - - —» | She was standing here,
here, looking at windo
] : 1 : 1
Voo L 2 v
: at | window
| [}

looking
I

Figure 2: Autoregressive LLM drives the text generation process. Based on the given prompt, ArD initially
produces the token “looking”. Subsequently, using the prompt and this first token, it autoregressively
generates the next token, "at". This process is repeated until the end.

T i
U 1
\ I \

She was standing |----> -———> She was standing
here, here, looking at him
1 : 1 : 1
Yoo L2 v
looking | at | him
I___1 I___1 1
U 1 1
\ v \2
She was standing |- ---» - - - -» | She was standing here,
here, looking at him | ooking at hir outside |
) 1 1 1 1 /
v A A \
outside

Figure 3: The SpS optimizes the text generation process. Initially, as depicted in Figure 2, the draft model
produces a sequence of tokens. These tokens are subsequently concatenated and introduced to the
target model for validation. Based on this validation, the target model either accepts or discards the tokens.
For instance, in the figure, the draft model generates the phrase “looking at him”. This concatenated
phrase is then passed to the target model. The target model accepts the initial token but discards the
succeeding two, choosing instead to generate the word “outside” as its next token and subsequently

terminating the validation.

contain as many draft models as possible; sec-
ondly, there should be a noticeable size difference
between the draft models and the target model. Dif-
ferent model families can not be mixed, because the
vocabulary must be the same, and different training
data may also result in different distribution between
draft model and target model, decreasing the perfor-
mance. We utilized models such as Pythia (Bider-
man et al., 2023), Cerebras-GPT (Dey et al., 2023),
LLaMA (Touvron et al., 2023), BLOOM (Scao et al.,
2022), and GPT2 (Radford et al., 2019) to inves-
tigate the speculative capacity of the draft model
and to analyze the outcomes. Additionally, to ex-
periment with various scales of draft models, we
incorporated several smaller-scale models from dif-
ferent model families, including TinyLLaMA (Zhang

et al., 2023e), DistilGPT2 (Sanh et al., 2019), and
OpenLLaMA (Geng and Liu, 2023). Furthermore, in
pursuit of the same objective, we also tested pruned
models as draft models in some experiments, utiliz-
ing the LLM-pruner (Ma et al., 2023) as our pruning
algorithm and attaching some pruned draft model
experiments in SpS. It's worth noting that due to
pruning algorithm reason, we don’t use KV-cache
mechanism in some SpS experiments, such as
BLOOM and LLaMA, leading to corresponding out-
puts with AsG used KV-cache often surpass those
achieved with SpS in terms of speed and get lower
latency, and also getting relatively higher speed up.

8269

7000 -

6000 -

Latency

5000 -

4000 -

8000 -

7500 -

7000 -

Latency

5500 -

5000 -

4500 -

6500 -

6000 -

Pythia-70M
=== Pythia-160M

Pythia-410M
== Pythia-1B

Pythia-1.4B

0 1 2 3 4 5 6 7

Number of draft tokens (K)

(a) Pythia-2.8B

Cerebras-111M
== Cerebras-256M

Cerebras-590M
== Cerebras-1.3B

Cerebras-2.7B

0 1 2 3 4 5 6
Number of draft tokens (K)

(c) Cerebras-GPT-6.7B

Latency

Latency

17000 - BLOOM-560M
== BLOOM-1.1B

16000 - BLOOM-1.7B
=== BLOOM-3B
15000 - BLOOM-460M
14000 -
13000 -
12000 -
11000 -
10000 -
0 1 2 3 4 5 6 7
Number of draft tokens (K)

(b) BLOOM-7.1B

10000+ DistilGPT2

= GPT2-Smallest
GPT2-Medium
9000~ e GPT2-Large

8000 -

7000 -

6000 -

5000 -

0 1 2 3 4 5 6 7
Number of draft tokens (K)

(d) GPT2-XL

Figure 4: The average decoding latency across different model families utilizing the SpS decoding strategy
is presented. The horizontal axis indicates the number of tokens decoded by the smaller model in a
single instance. Notably, when k& = 0, only the original base model is used to sample tokens without
any assistance. The latency in the Figures of all experimental results in this paper are measured in
milliseconds. We used smoothed data to plot this and next figures.

55000 -

50000 -

45000 -

40000 -

Latency

30000 -

25000 -

20000 -

15000 -

35000 -

TinyLLaMA-1.1B
=== OpenLLaMA-3B
LLaMA-7B
== TinyLLaMA-830M

o 1 2 3 4 5 6 7
Number of draft tokens (K)

Figure 5: LLaMA-13B SpS.

4.2. Main Results

As previously discussed, we have chosen several
model families for our study.

Representative Results. The results from the
SpS experiments are depicted in Figure 4 and Fig-
ure 5. Each subfigure within this figure represents
a distinct target model. In contrast, the AsG experi-
ments results are shown in Figure 6 and Figure 7,
serving as a control group to mitigate the effects
of the algorithm. As for LLaMA series of exper-
iments, its target model has the largest number
of parameters in the whole experiments which is
beyond the size in others(1B to 7B), and the draft
models used are fewer compared to others, many
of them are not released by Meta, resulting in dif-

8270

9000 -

Pythia-70M
=== Pythia-160M

Pythia-410M
== Pythia-1B

Pythia-1.4B

8000 -

7000 -

6000 -

Latency

5000 -

4000 -

0 1 2 3 4 5 6 7
Number of draft tokens (K)

(a) Pythia-2.8B

Cerebras-111M
= Cerebras-256M

Cerebras-590M
== Cerebras-1.3B

Cerebras-2.7B

8000 -

7500 -

7000 -

6500 -

Latency

6000 -

5500 -
5000 -
4500 -

0 1 2 3 4 5 6 7
Number of draft tokens (K)

(c) Cerebras-GPT-6.7B

BLOOM-560M
== BLOOM-1.1B
BLOOM-1.7B
== BLOOM-3B

8000 -

7500 -

7000 -

Latency

6500 -
6000 -

5500 - SN RV NNV MRS
0 1 2 3 4 5 6 7
)

Number of draft tokens (K

(b) BLOOM-7.1B

DistilGPT2
== GPT2-Smallest
8000 GPT2-Medium
== GPT2-Large

7000 -

6000 -

Latency

5000 -

4000 -

0 1 2 3 4 5 6 7
Number of draft tokens (K)

(d) GPT2-XL

Figure 6: AsG.

26000 -

TinyLLaMA-1.1B
=== OpenLLaMA-3B
LLaMA-7B

24000 -

22000 -

20000 -

18000 -

Latency

16000 -

14000 -

12000 -

2 3 4 5 6 7
Number of draft tokens (K)

Figure 7: LLaMA-13B AsG.

ferent trend, so we list this set of results separately
for both highlighting the importance of draft model
and further analysis in later of this Section. The

optimal speedups and associated metrics for each
target model experiment are provided in Table 1.

Back to Initial Question. From Figure 4 and Fig-
ure 5, it’s evident that nearly every combination of
the draft model and K results in a speedup. How-
ever, the magnitude of acceleration varies. This
leads us back to our initial queries: What is the
maximum number of draft tokens (K) that can be
used, and how minimal can the draft model be to
still be effective for speculative decoding?

The Optimal Range of Draft Token. Observing
the trends in Figure 4 and Figure 5, we note that as
K increases, the inference latency first decreases
and thenrises. In most scenarios, an ideal speedup
is achieved when K ranges between 310 5, and itis
independent from the draft model family we select,
it's a general conclusion. A token count for the draft
that is either too large or too small tends to diminish
the acceleration level, sometimes even resulting in

8271

Target Model Sampling Method Draft Model K Speed Up Scaling
Autoregressive None 0 1x 1%
Pythia-2.8B SpS Pythia-70M 5 1.984 x 40x
AsG Pythia-70M 5 1.766 % 40x
Autoregressive None 0 1x 1%
BLOOM-7.1B SpS BLOOM-1.1B 4 1.583x 6.45x%
AsG BLOOM-560M 2 1.053x 12.68x
Autoregressive None 0 1x 1x
Cerebras-GPT-6.7B SpS Cerebras-GPT-111M 4 1.507 x 60.36 x
AsG Cerebras-GPT-111M 4 1.387 % 60.36 x
Autoregressive None 0 1x 1x
GPT2-XL SpS GPT2-Smallest 5 1.695x 12.097 x
AsG DistilGPT2 5 1.827 x 18.29x
Autoregressive None 0 1x 1x
LLaMA-13B SpS TinyLLaMA-1.1B 3 1.506x 11.82x
AsG TinyLLaMA-1.1B 2 1.096 x 11.82x

Table 1: We showcase the optimal acceleration levels attained. The results for each target model are
presented in three distinct rows. Each row details the draft model used, the value of K, the speedup ratio,
and the model scaling ratio. These parameters are crucial in achieving the best speedup effect across
different sampling methods. Within the table, "Autoregressive" refers to the baseline method that target
model is responsible for generation. Consequently, in this row, there’s no accompanying draft model, and
the value of K is designated as 0. This table we show the exact data rather than smoothed.

a latency slower than when solely using the target
model. Furthermore, Table 1 confirms this optimal
K range across various sampling methods. While
there are instances where the optimal K lies out-
side this range, the difference in speedup between
the K values within this range and the optimal K
from Figure 7 is negligible.

How Small The Draft Model Can Be? To deter-
mine the minimum effective size of the draft model,
we conducted several experiments. As observed
in Table 1, the draft model can be scaled down to
between 6 and 18 times smaller than the target
model while still maintaining a high acceleration
level within the optimal K range. In more extreme
cases, as depicted in Figure 4a and Figure 4c, the
draft model can be reduced to 40 and 60 times
smaller than the target model, respectively, and still
achieve comparable or even superior speedups. In-
tuitively, one might hypothesize that a larger-scale
model, while more powerful, would also be slower
in inference. Furthermore, as the size gap between
the draft model and the target model widens, la-
tency should initially decrease and then increase.
However, the data from Figure 4 suggests the op-
posite: the smaller the draft model, the better the
speedup achieved. This leads us to believe that
the draft model can be significantly reduced in size
and still deliver superior performance. The scales
of the draft models we’ve examined so far might
not be small enough to observe the point at which
the latency curve begins to rise. In simpler terms,
we haven't yet identified the optimal scale for draft

model acceleration.

Compression Techniques Can’t Be Applied Di-
rectly. Relying solely on methods like pruning to
generate a series of smaller draft models is not suf-
ficient to determine the optimal scale. As illustrated
in Figure 4b and Figure 5, pruned models exhibit
varied performance, often deviating from the gen-
eral trends observed in our experiments. Specif-
ically, the pruned BLOOM model underperforms
in terms of speedup, whereas the pruned TinyL-
LaMA model demonstrates superior performance.
In Figure 5, the performance of the OpenLLaMA
draft model (Geng and Liu, 2023) appears to be
an outlier, leading us to hypothesize that its capac-
ity might be inadequate for generating consistent
experimental results. Meanwhile, the distribution
of draft model should align with target model for
normal result (Zhou et al., 2023). Simply pruning
a model doesn’t guarantee that the resulting draft
model will perform effectively, and as such, may not
yield valid experimental findings. The outcomes
from these pruned models may not provide a de-
cisive conclusion regarding the optimal scale for
the draft model due to their post-pruning capaci-
ties. To thoroughly investigate the ideal size of the
draft model, alternative strategies, such as train-
ing models from scratch or employing knowledge
distillation (Hinton et al., 2015), should be explored.

8272

5. Conclusions

In this paper, we delve into the extent of specula-
tion in speculative decoding. Specifically, we ex-
plore the maximum appropriate number of draft
tokens (K') and the minimum effective size of the
draft model, and find that this K is applicable to
different draft models. To neutralize the specific
effects of SpS, we employ two sampling algorithms
and conduct experiments using five distinct model
families. Our experiments yield an ideal range for
K and lead to a counterintuitive finding: smaller
draft models often offer superior speedup levels.
Remarkably, a draft model with a size gap of 60
times smaller than the target model can achieve the
optimal performance in some special cases. We
believe that after some processing (e.g. construct-
ing a special draft model like Zhou et al., 2023),
this finding, namely around 60 times smaller draft
model could get an ideal performance, is applicable
to more general scenarios. For larger scale models,
although further experimentation is yet to be done,
the blog of Hugging Face (Joao Gante, 2023) has
also suggested an increase of size gap. This is
indeed consistent with our findings. We hope that
our findings will inform a series of follow-on explo-
rations, e.g., pursuing methods to generate smaller
draft models, pinpoint the optimal draft model scale
and uncover underlying patterns.

Limitations

This work is focused on addressing the limitations
of speculative decoding. Due to the constraints of
computation resources, we solely investigated the
model scope of 3-13B. For extrapolation to larger
model scale, we need to perform more practical
experiments. Furthermore, we used some pruned
models as well as some existing draft models to
detect the acceleration effect. However, some of
these models are of a poor generation capabil-
ity, leading to a poor speculative decoding perfor-
mance which may not be related to the model scale.
Therefore, how to construct a useful and smaller
draft model to align with the target model for spec-
ulative decoding is still an open research ques-
tion worth further exploration. Solving the problem
would lay a solid basis for us to more accurately
detect the scale bounds.

Acknowledgements

This work is funded in part by the Natural Science
Foundation of China (grant no: 62376027) and Bei-
jing Municipal Natural Science Foundation (grant
no: 4222036 and 1S23061).

Bibliographical References

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin
Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bai-
ley, Zhifeng Chen, et al. 2023. Palm 2 technical
report. arXiv preprint arXiv:2305.10403.

Stella Biderman, Hailey Schoelkopf, Quentin Gre-
gory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu
Purohit, USVSN Sai Prashanth, Edward Raff,
et al. 2023. Pythia: A suite for analyzing large
language models across training and scaling. In
International Conference on Machine Learning,
pages 2397-2430. PMLR.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, et al. 2020. Language mod-
els are few-shot learners. Advances in neural
information processing systems, 33:1877-1901.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irv-
ing, Jean-Baptiste Lespiau, Laurent Sifre, and
John Jumper. 2023. Accelerating large language
model decoding with speculative sampling.

Tejalal Choudhary, Vipul Mishra, Anurag Goswami,
and Jagannathan Sarangapani. 2020. A compre-
hensive survey on model compression and accel-
eration. Artificial Intelligence Review, 53:5113—
5155.

Aakanksha Chowdhery, Sharan Narang, Jacob
Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, et al.
2022. Palm: Scaling language modeling with
pathways. arXiv preprint arXiv.:2204.02311.

Tri Dao. 2023. Flashattention-2: Faster atten-
tion with better parallelism and work partitioning.
arXiv preprint arXiv:2307.08691.

Nolan Dey, Gurpreet Gosal, Hemant Khachane,
William Marshall, Ribhu Pathria, Marvin Tom,
Joel Hestness, et al. 2023. Cerebras-gpt: Open
compute-optimal language models trained on
the cerebras wafer-scale cluster. arXiv preprint
arXiv:2304.03208.

Xinyang Geng and Hao Liu. 2023. Openllama: An
open reproduction of llama.

Yue Guan, Zhengyi Li, Jingwen Leng, Zhouhan
Lin, and Minyi Guo. 2022. Transkimmer: Trans-
former learns to layer-wise skim. arXiv preprint
arXiv:2205.07324.

8273

http://arxiv.org/abs/2302.01318
http://arxiv.org/abs/2302.01318
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama

Cong Guo, Jiaming Tang, Weiming Hu, Jingwen
Leng, Chen Zhang, Fan Yang, Yunxin Liu, Minyi
Guo, and Yuhao Zhu. 2023. Olive: Accelerat-
ing large language models via hardware-friendly
outlier-victim pair quantization. In Proceedings
of the 50th Annual International Symposium on
Computer Architecture, pages 1-15.

Demi Guo, Alexander M Rush, and Yoon Kim.
2020. Parameter-efficient transfer learning with
diff pruning. arXiv preprint arXiv:2012.07463.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun
Liu. 2019. Tinybert: Distilling bert for nat-
ural language understanding. arXiv preprint
arXiv:1909.10351.

Joao Gante. 2023. Assisted generation: a new
direction toward low-latency text generation.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen
Lo, et al. 2023. Segment anything. arXiv preprint
arXiv:2304.02643.

Yann LeCun, John Denker, and Sara Solla. 1989.
Optimal brain damage. Advances in neural infor-
mation processing systems, 2.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In Proceedings of the 40th
International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning
Research, pages 19274-19286. PMLR.

Zi Lin, Jeremiah Zhe Liu, Zi Yang, Nan Hua, and
Dan Roth. 2020. Pruning redundant mappings
in transformer models via spectral-normalized
identity prior. arXiv preprint arXiv:2010.01791.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang,
Haotang Deng, and Qi Ju. 2020. Fastbert: a
self-distilling bert with adaptive inference time.
arXiv preprint arXiv:2004.02178.

Xinyin Ma, Gongfan Fang, and Xinchao Wang.
2023. Llm-pruner: On the structural prun-
ing of large language models. arXiv preprint
arXiv:2305.11627.

OpenAl. 2023a. Gpt-4 technical report.

OpenAl. 2023b. Introducing chatgpt. https://
openai.com/blog/chatgpt.

Denis Paperno, German Kruszewski, Angeliki
Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda,
and Raquel Fernandez. 2016. The lambada
dataset: Word prediction requiring a broad dis-
course context. arXiv preprint arXiv:1606.06031.

Alec Radford, Jeffrey Wu, Rewon Child, David
Luan, Dario Amodei, llya Sutskever, et al. 2019.
Language models are unsupervised multitask
learners. OpenAl blog, 1(8):9.

Victor Sanh, Lysandre Debut, Julien Chaumond,
and Thomas Wolf. 2019. Distilbert, a distilled ver-
sion of bert: smaller, faster, cheaper and lighter.
arXiv preprint arXiv:1910.01108.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana lIli¢, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, Frangois
Yvon, Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language
model. arXiv preprint arXiv:2211.05100.

Hugo Touvron, Thibaut Lavril, Gautier lIzacard,
Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric
Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume
Lample. 2023. Llama: Open and efficient foun-
dation language models.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
tukasz Kaiser, and lllia Polosukhin. 2017. Atten-
tion is all you need. Advances in neural informa-
tion processing systems, 30.

Jue Wang, Ke Chen, Gang Chen, Lidan Shou, and
Julian McAuley. 2022. Skipbert: Efficient infer-
ence with shallow layer skipping. In Proceedings
of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 7287-7301.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao
Wu, Julien Demouth, and Song Han. 2023.
Smoothquant: Accurate and efficient post-
training quantization for large language models.
In International Conference on Machine Learning,
pages 38087-38099. PMLR.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu,
and Jimmy Lin. 2020. DeeBERT: Dynamic early
exiting for accelerating BERT inference. In Pro-
ceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages

8274

https://doi.org/10.57967/hf/0638
https://doi.org/10.57967/hf/0638
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
http://arxiv.org/abs/2303.08774
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204

2246-2251, Online. Association for Computa-
tional Linguistics.

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin.
2021. Berxit: Early exiting for bert with better
fine-tuning and extension to regression. In Pro-
ceedings of the 16th conference of the European
chapter of the association for computational lin-
guistics: Main Volume, pages 91-104.

Canwen Xu and Julian McAuley. 2023. A survey
on model compression and acceleration for pre-
trained language models. In Proceedings of the
AAAI Conference on Artificial Intelligence, vol-
ume 37, pages 10566—-10575.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao,
Daxin Jiang, Linjun Yang, Rangan Majumder,
and Furu Wei. 20283. Inference with reference:
Lossless acceleration of large language models.
arXiv preprint arXiv:2304.04487 .

Yi Yang, Chen Zhang, and Dawei Song. 2022.
Sparse teachers can be dense with knowledge.
In Proceedings of the 2022 Conference on Em-
pirical Methods in Natural Language Processing,
pages 3904-3915, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguistics.

Deming Ye, Yankai Lin, Yufei Huang, and Maosong
Sun. 2021. Tr-bert: Dynamic token reduction
for accelerating bert inference. arXiv preprint
arXiv:2105.11618.

Chen Zhang, Dawei Song, Zheyu Ye, and Yan Gao.
2023a. Towards the law of capacity gap in distill-
ing language models.

Chen Zhang, Yang Yang, Jiahao Liu, Jingang
Wang, Yunsen Xian, Benyou Wang, and Dawei
Song. 2023b. Lifting the curse of capacity gap
in distilling language models. In Proceedings
of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 4535-4553, Toronto, Canada.
Association for Computational Linguistics.

Chen Zhang, Yang Yang, Jingang Wang, and
Dawei Song. 2023c. Task-agnostic distillation
of encoder-decoder language models.

Chen Zhang, Yang Yang, Qifan Wang, Jiahao
Liu, Jingang Wang, Yunsen Xian, Wei Wu, and
Dawei Song. 2023d. Minidisc: Minimal distillation
schedule for language model compression.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang,
and Wei Lu. 2023e. Tinyllama.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett,

et al. 2024. H20: Heavy-hitter oracle for efficient
generative inference of large language models.
Advances in Neural Information Processing Sys-
tems, 36.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat,
Aditya Krishna Menon, Afshin Rostamizadeh,
Sanjiv Kumar, Jean-Francgois Kagy, and Rishabh
Agarwal. 2023. Distillspec: Improving specula-
tive decoding via knowledge distillation. arXiv
preprint arXiv:2310.08461.

Xueyan Zou, Jianwei Yang, Hao Zhang, Feng Li,
Linjie Li, Jianfeng Wang, Lijuan Wang, Jianfeng
Gao, and Yong Jae Lee. 2023. Segment every-
thing everywhere all at once.

8275

https://doi.org/10.18653/v1/2022.emnlp-main.258
https://arxiv.org/abs/2311.07052
https://arxiv.org/abs/2311.07052
https://doi.org/10.18653/v1/2023.acl-long.249
https://doi.org/10.18653/v1/2023.acl-long.249
http://arxiv.org/abs/2305.12330
http://arxiv.org/abs/2305.12330
http://arxiv.org/abs/2205.14570
http://arxiv.org/abs/2205.14570
https://github.com/jzhang38/TinyLlama
http://arxiv.org/abs/2304.06718
http://arxiv.org/abs/2304.06718

	Introduction
	Background
	Research Questions
	Experiments
	Experiments Setup
	Main Results

	Conclusions

