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Abstract
Cross-modal retrieval is an important yet challenging task due to the semantic discrepancy between visual content
and language. To measure the correlation between images and text, most existing research mainly focuses
on learning global or local correspondence, failing to explore fine-grained local-global alignment. To infer more
accurate similarity scores, we introduce a novel High-Order Semantic Alignment (HOSA) model that can provide
complementary and comprehensive semantic clues. Specifically, to jointly learn global and local alignment and
emphasize local-global interaction, we employ the tensor-product (t-product) operation (Misha et al., 2011) to
reconstruct one modal’s representation based on another modal’s information in a common semantic space. Such a
cross-modal reconstruction strategy would significantly enhance inter-modal correlation learning in a fine-grained
manner. Extensive experiments on two benchmark datasets validate that our model significantly outperforms several
state-of-the-art baselines, especially in retrieving the most relevant results. The code used for the experiments is

publicly available on GitHub at https:/github.com/cnunlp/HOSA.
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1. INTRODUCTION

Multimedia data such as texts, images, audio, and
video, have been ubiquitous in our daily life. The
rich content of multimedia data has sparked peo-
ple’s need to obtain more comprehensive and en-
riched information on the same event or topic from
different modalities. In this study, we focus on the
task of image-text cross-modal retrieval, which aims
to retrieve images given text queries or find match-
ing textual descriptions given image queries. Itis a
challenging task to measure the relevance between
images and texts due to the semantic gap across
different modalities.

To learn the correlations between modalities,
early works (Long et al., 2016; Zhang et al., 2018;
Shen et al., 2017; Radford et al., 2021) primarily
focus on identifying a common embedding space
for the overall image and text, to find the semantic
correspondence between a whole picture and a
complete sentence. However, such coarse-grained
global alignment learning methods often induce
background noise while failing to effectively capture
the sophisticated interactions between modalities,
which impedes the correct image-text alignment.
For example, when users submit an image of “Slaty-
backed Gull" as the query, these methods treat it as
“Bird" and may return textual descriptions including
other bird species like “Herring Gull".

To acquire more accurate similarities, recent
works (Chenetal., 2021; Li et al., 2019) focus on de-
tecting fine-grained region-word correspondences.
Although improving the performance of image-text
retrieval to some extent, they are still one-sided

due to the neglect of global contexts. Based on this
observation, exploring both global correspondence
and local correspondence to measure cross-modal
similarity is increasingly favored by researchers.
These approaches (Ji et al., 2020a; Messina et al.,
2021a,b; Wei and Zhou, 2020; Liu et al., 2022;
Wang et al., 2023) first utilize cross-attention to
obtain the local alignment of regions and words,
and then compute scalar-based cosine distances
between region-word pairs to reflect the similarities
of overall image-sentence.

Nevertheless, these methods ignore that a re-
gion or a word may contain different semantics in
different global contexts. For example, the appear-
ance of the region “life preserver" shown on the left
part of Figure1 is similar to that of “tire", but they
are mismatched semantically in global contextual
information, i.e., “The bicycle has a clock as a tire"
and “The blue boat themed bathroom with a life
preserver on the wall". Besides, the interaction be-
tween the “blue boat”, “life preserver”, and “wall”
areas corresponding to the "bathroom" can also
provide richer semantic information.

Motivated by these, we propose a novel High-
Order Semantic Alignment (HOSA) model for un-
supervised fine-grained image-text retrieval, to ex-
plore the high-order correlations across modalities
from multiple perspectives, i.e., local correspon-
dence, local-global interaction, and global corre-
spondence. lts framework is shown in Figurel.
Specifically, region-level features of images are ex-
tracted by the bottom-up attention model based on
Faster-RCNN (Ren et al., 2015), and word-level
features of the text are extracted by the pre-trained
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BERT (Devlin et al., 2019) model, respectively. To
determine the high-order correlations across frag-
ments among different modalities, we employ t-
product (Misha et al., 2011) based on the circu-
lar convolution operation to reconstruct one modal
with another modal information. In this way, the re-
construction coefficients can characterize the local
and global correspondence between regions and
words/sentences under multiple instances between
different modalities, modeling the high-order se-
mantic alignment for image and text. For the sake
of more comprehensive semantic alignment, the
max-over-regions sum-over-words (4/,.S,,) pooling
strategy is adopted for aggregating the cosine sim-
ilarities between reconstructed regions and words.

To our knowledge, we are the first to adopt
a modal reconstruction strategy using the t-
product (Misha et al., 2011) operation to explore
high-order semantic consistency in image-text
alignment. We perform comprehensive exper-
iments, demonstrating the effectiveness of our
method for fine-grained image-text retrieval. Our
HOSA model shows remarkable superiority com-
pared with the most advanced approaches in two
evaluation metrics R@1 and RQ5. We also con-
duct an in-depth analysis to investigate the ways of
modal reconstruction.

2. RELATED WORK

In the literature, many approaches have been pro-
posed for image-text retrieval, which can be roughly
divided into three groups.

Global alignment methods focus on learning
cross-modal similarity directly for the entire images
and sentences, by projecting them into a common
latent space (Zhang et al., 2018; Long et al., 2016)
or exploiting visual-semantic embeddings (Faghri
et al., 2018; Chen et al., 2021; Zheng et al., 2020;
Radford et al., 2021). As a result, they often fall
short of deeply mining the intricate relationships
between visual objects and textual terms. There-
fore, when confronted with natural scenes involving
multiple objects and more complex descriptions,
their performance may not meet expectations.

Local alignment methods seek to explore local
correlations between image regions and sentence
words for more accurate cross-modal alignment.
Karpathy and Fei-Fei (2015) pioneered aligning lo-
cal image regions detected by multi-modal RNN
with words in the sentence. Subsequently, Lee
et al. (2018) utilized stacked cross attention to align
salient regions and keywords, underscoring the ef-
fectiveness of region-word alignment and inspiring
subsequent works. FPAN (Wang et al., 2019) was
proposed to emphasize the importance of different
positions within each region. CAMP (Wang et al.,
2020) innovatively introduced an adaptive regula-

tion of the information flow in cross-modal message
transmission. Although these methods improve the
cross-modal retrieval performance, they fail to thor-
oughly mine the intra-modal correlations in the con-
text of these fine-grained fragments. Unlike this,
we model adaptively multi-level correspondences
and comprehensively explore fine-grained visual-
semantic similarity for more complete alignment.

Multi-order alignment methods aim to exploit
both global and local correspondence to achieve
more accurate cross-modal matching. Ji et al.
(2020a) employed the attention mechanism to lo-
cate semantically meaningful portions for local
alignment, and used memory networks to capture
long-term contextual knowledge for global align-
ment. Wei and Zhou (2020) combined adversarial
networks for local alignment and utilized attention
mechanisms for global alignment. Qu et al. (2020)
designed a gating self-attention mechanism for con-
text modeling and a multi-view summarization mod-
ule for asymmetry matching, to obtain local and
global correspondence. Messina et al. (2021b,a)
achieved multi-order reasoning within the same
modality for regions and words by employing the
Transformer Encoder Reasoning Network. Wang
et al. (2023) leveraged infrequent textual content to
mitigate the long-tail effect in image-text matching
for local alignment, and then utilized the attention
mechanism to achieve global alignment. They align
image regions and text words by locally associating
visual semantics and mechanically aggregate the
semantic similarity between matched region-word
pairs to measure the overall image-text correlation.

Despite the superior performance for cross-
modal retrieval, the above approaches cannot im-
plement local-global interaction, which also plays
an important role in semantic alignment. Generally,
each region-word pair may be inconsistent from the
global perspective image-text. The main reason is
that individual regions or words may have different
semantics from global contexts. Thus, in this paper,
we focus on a novel high-order semantic alignment
to comprehensively explore the correlations among
fragments and the entire context.

3. Methodology

In order to comprehensively capture the high-order
correlations across modalities, we propose a novel
High-Order Semantic Alignment (HOSA) model
for fine-grained image-text retrieval. Figure 1 il-
lustrates the proposed framework, which contains
three main modules: feature representation with
embedding modal-specific segments, high-order
semantic alignment by exploring global and local
correspondence and local-global interaction, and
cross-modal relevance measuring by aggregating
local similarities. Next, we will first define general
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Figure 1: The framework of the HOSA model. An image with m regions and a text with [ words are
encoded in a d—dimensional common space via a stack of transformer layers, and H € R>*™*4 s the
reconstruction coefficient tensor, characterizing the high-order semantic alignment across modalities.

notations and then describe each module in detail.

3.1. Notations

Generally, tensors and matrices are denoted by
bold calligraphy letters, e.g., .4, and bold upper
case letters, e.g., A, respectively. Vectors are de-
noted by boldface lowercase letters, e.g., a, and
scalars are denoted by lowercase letters, e.g., a.
For a three-order tensor A € Rt *"2*"s ysing Mat-
lab notations, A; = A(i, :, ), A(:,4,:), A = A(:,:
,1) corresponds respectively to the i-th horizontal,
lateral and frontal slice. A tube fiber of tensor A is
defined by holding the first two indices fixed and
varying the third, e.g., A(3, j, :) is the ij-th tube of
A. The Frobenius(F) norm of a matrix A and a ten-
sor A is defined as [|A[|3 = 3=, ;a7; and || A} =
>k Al k)?, respectively. AT € Rr2xmxns jg
the transpose of tensor A.

Ais atensor obtained by taking the Fourier trans-
form along the third mode of A, i.e, A(i,j,:) =
Fft(A(i,j,:)). In Matlab notation, A = fft(A,][],3),
and one can also compute A from A via A =

if ft(A, [],3).

3.2. Feature Representation

Image Representation: Considering multiple lo-
cal features are more accurate to describe an im-
age than a single global feature, we aim to rep-
resent each input image with a set of features
R = {r;,ry, - ,t}, r; € R% i € [1,m]. Specifi-
cally, the representation r; denotes the i—th salient
region or object in an image. Following (An-
derson et al.,, 2018), we utilize the pre-trained
Faster-RCNN (Ren et al., 2015) model on Visual
Genomes (Krishna et al., 2017) by bottom-up and
top-down attention to select and extract features
for salient regions.

Each representation r; is defined as the mean-
pooled convolutional feature for the i—th region or

object. In our experiment, the Faster-RCNN fea-
ture is 2048 dimensional and m = 36; the top 36
regions with the most information related to the
geometry are selected from the bounding boxes.
Then, we utilize the Transformer Encoders followed
in TERAN (Messina et al., 2021a) to obtain initial
region representations with a common embedding
space. Specifically, four transformer encoder lay-
ers are adopted with sequences or sets of entities
as input, reasoning upon these entities without con-
sidering their intrinsic nature. A linear projection
layer is added between transform encoder layers
to transform the embeddings into d-dimensional
vectors {v; € R} .

Text Representation: Following the recent
trends in Natural Language Processing, we use
a pre-trained BERT (Devlin et al., 2019) model for
sentence texts to extract world-level textual repre-
sentations. Similar to image representation, we
also add a liner projection layer between the four
transformer encoder layers to transform them into
a d dimensional embedding space, denoted as
{t; € RY}._,. Specifically, t; encodes the j-th
word and [ is the number of words.

3.3. High-Order Semantic Alignment

To facilitate the comprehensive semantic under-
standing and final cross-modal similarity calcula-
tion, we devise a High-Order Semantic Alignment
(HOSA) module to capture the complicated seman-
tic relationships hidden in image-text pairs.

Given a visual feature set V € R"*™*4 and a
text feature set 7 € R"*"*?, where V, = {v,}/", €
R™*? denotes the ¢g—th image with m regions,
T; = {t;}}=1 € R represents the j-th sen-
tence text with [ words, and n denotes the number
of image-text pairs. To minimize modal discrep-
ancy and mitigate the semantic gap between im-
ages and texts, we introduce a mapping function
H € R*mxd o align visual and text representa-
tions. Additionally, considering the high-order rela-

8157



tionship between region-word and region-sentence,
we assume that each region in an image can be rep-
resented linearly by words of the correspondence
sentence. In other words, vision can be well recon-
structed through textual descriptions in a common
semantic space. It can be formulated as

min |V = 7« #| 3 (1)
where T x H is the t-product (Misha et al., 2011) of
two three-order tensors. It can be calculated as

T « H = fold(bcire(T) bvec(H)), (2)

here bcire(T) is the block circulant matrix with the
size of nl x ld obtained from d frontal slices of tensor
T as

O 5 C)) T2)

7@ 7O T73)
beire(T)=| . . . (3)

T Td-1) at)

Here, buvec(H) is to vectorize the tensor #H along its
frontal slices, i.e.,

H)

H(2)
bvec(H)=| . |, (4)

and fold(bvec(H)) = H takes bvec(H) back to ten-
sor form.

Obviously, Eq.(1) is for representing visual infor-
mation with textual descriptions through a linear
combination of circulant, and reveals local corre-
spondence of region-word, i.e.,V(i,5,:) = T (i, k, :)
x H(k, j,:), local-global (region-sentence/ image-
word) interaction, i.e.,V(i,5,:) = Ti « H(:, 7,:), Vi =
T (4,7,:)*H;, and global correspondence of image-
sentence, i.e., V; = T; x H.

Instead of directly using the fragment embed-
dings (Ji et al., 2020a; Messina et al., 2021b,a;
Wei and Zhou, 2020; Qu et al., 2020), we con-
sider utilizing the global inter-modal interactions
to obtain fine-grained features. It allows the frag-
ment features to contain rich semantic information
across modalities. Meanwhile, benefiting from the
t-product operation, the obtained mapping function
‘H can characterize both local and global structures
among the fragments hidden in multiple instances.

It should be noted that the employment of the
t-product (x) based on the circular convolution oper-
ation not only facilitates a more comprehensive un-
derstanding of semantic relationships but also en-
sures computational efficiency. Specifically, Com-
pared to the complexity of using dot product opera-
tion to achieve circular convolution,i.e., O(ni?>dm),
our model is more efficient, reducing computa-
tional costs to O((nld)log(nld) + nld) for using Fast

Fourier Transform (FFT) (Rojo and Rojo, 2006),
which is illustrated in Theorem 9.1 in the Appen-
dices.

3.4. Cross-modal Relevance Measuring

Once we achieve fine-grained features with high-
order relationship alignment information, we iden-
tify the semantic relevance between an image V;
and sentence 7;.

Let a region v; in the ¢-th image (V(q, 7, :)) be the
query, and its representation can be reconstructed
by textual information with the complicated region-
sentence interaction, i.e., V(q,i,:) = T, * H(:,i,:
). The similarity between the region v; in the ¢-
th image and the word t; of the r-th sentence is
computed as

Va0, )T (i)
V(a7 97
©)

where § is the region-word cosine similarity tensor
withn x n x m x [.

Following the max-over-regions sum-over-words
(M,-S,) pooling function used in (Messina et al.,
2021a; Lee et al., 2018), the global similarity S,
between the ¢-th image and the r-th sentence is
computed as

8(q,’l"7i,j) = COS({’ivtj) =

S, = max
ar i=1,2,...,m

J=1

S(q,r,i, j)- (6)

Such computing similarity strategy means finding
the top relevant region for each word, and then
summing up these top relevant similarity scores.

For the matching part, we follow (Messina et al.,
2021a; Faghriet al., 2018; Lee et al., 2018) to adopt
a hinge-based triplet ranking loss, focusing the at-
tention on hard negatives, i.e., the negatives closest
to each training query. The loss function can be
formulated as

Lqr = m@x[a +8g —Sgr]4+ + m@x[a +8¢r —Sqrl+,
T q

7)
where [z];. = maxz(0,2), and « is a margin pa-
rameter. To improve computational efficiency, hard
negatives are found in each minibatch, instead of
the entire training set.

4. Experiments

4.1.
4.1.1.

Experimental Setup
Datasets

To validate the effectiveness of our method, all the
experiments are conducted on the MSCOCO (Chen
et al., 2015) dataset and the Flickr30K (Young et al.,
2014) dataset. In both datasets, we follow the split
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proposed by (Messina et al., 2021a). The detailed
information is shown as follows.

* Flickr30k is an image-captioning dataset, in-
cluding 31,783 images, and each image is
also given with five caption sentences. Among
them, 28,000 images are reserved for training,
1,000 for validation, and 1, 000 for testing.

* MSCOCO is another image-captioning dataset
consisting of 123, 287 images, each with five
textual descriptions. In particular, it contains
113, 287 images for training, 5,000 images for
validation, and 5,000 images for testing. At
test time, the retrieval results are reported by
testing on full 5% test split and averaging over
5-fold of 1k test images.

4.1.2. Implementation Details

Our method HOSA is implemented in a conda en-
vironment with TensorFlow 2.11.0 and Python 3.8,
and all the experiments are conducted on a Linux
server with a GeForce RTX 2080 Ti (12GB mem-
ory). In feature representation, for each image,
the region vector extracted by a bottom-up atten-
tion (Anderson et al., 2018) is 2, 048-dimensional.
As for the textual data, the word vector extracted by
the pre-trained BERT model (Devlin et al., 2019) is
768-dimensional. For simplicity, the weights of the
BERT model implemented by HuggingFace' are
fixed during the training stage.

Following previous approaches (Messina et al.,
2021b,a), we separately transform each region and
word feature vector into a 1, 024-dimensional com-
mon space with Transformer Encoders for image-
text alignment. The model is trained for 30 epochs
with the Adam optimizer (Kingma and Ba, 2014).
The learning rate is initialized as 1e — 5 for the first
20 epochs and then decayed by 10 times for the
remaining 10 epochs. The mini-batch size is set
to 40, and the margin parameter in Eq.(7) is set to
0.02, respectively.

4.1.3. Evaluation Metrics

Following previous work (Ji et al., 2020b; Lee et al.,
2018; Messina et al., 2021a), we measure the per-
formance with RQK (recall at K), defined as the
percentage of queries whose ground truth is ranked
within the top K results. It can be calculated as

N
1 (i)
ROK = — ; RLY, (8)

where N is the number of instances in the testing
set. For the i-th test instance, RL&? is setto 1 if
the top K retrieved objects have the ground-truth

'https://huggingface.co/bert-base-uncased

result, otherwise, it is 0.RQ{1, 5,10} are adopted
in the evaluation.

4.2. Performance Comparison

To demonstrate that HOSA can embody the advan-
tage of local-global interaction, we compared it with
thirteen state-of-the-art models on two datasets.
These compared models can be roughly divided
into global alignment, local alignment, and multi-
order alignment learning methods. The global
alignment ones, i.e., VSE++ (Faghri et al., 2018),
DPC (Zheng et al., 2020) and CLIP(Radford et al.,
2021), explore the semantic correlations between
the entire image and text. The local alignment
ones,i.e., SCAN (Lee et al., 2018) and VSRN (Li
et al., 2019), explore region-word correspondence
to identify the relationships between image and
text.

The multi-order alignment ones, i.e., SMAN (Ji
et al.,, 2020b), AAMEL (Wei and Zhou, 2020),
RESG (Liu et al., 2022), M3A-Net (Ji et al., 2020a),
TERN (Messina et al., 2021b), TERAN (Messina
etal., 2021a), RAAN (Wang et al., 2023) and MSG-
CNN (Yu et al., 2023), integrate global and local
correspondences to further align image and text.
Note that, we directly quoted the results from their
original papers. For each metric, the best result is
in bold and the second one is underlined.

Next, we will conduct qualitative and ablation
studies to investigate how the HOSA can detect
complicated semantic relationships between modal-
ities and then improve fine-grained image-text re-
trieval task performance.

4.3. Ablation Study

Based on the comparison results in Table 1-Table
3, we have the following observations:

+ Compared with the global alignment ap-
proaches, the local alignment ones obtain bet-
ter results, indicating that fine-grained corre-
spondence information is beneficial to learning
more accurate semantic alignment.

» Compared with global or local alignment mod-
els, multi-order alignment ones achieve bet-
ter performance, demonstrating the important
role of global or local correspondence in cross-
modal semantic alignment.

+ Comparing to the multi-order alignment ap-
proaches, i.e., M3A-Net (Ji et al., 2020a),
AAMEL (Wei and Zhou, 2020), RESG (Liu
et al., 2022), CAMERA (Qu et al., 2020) and
TERN (Messina et al., 2021b), our HOSA im-
proves the performance of image retrieval and
sentence retrieval tasks on two datasets. The
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Methods Image Retrieval Sentence Retrieval
R@Q1 R@5 R@10 | RQl1 RQ@5 RQ10
Global Alignment
VSE++ (Faghri et al., 2018) 52.0 84.3 92.0 | 646 90.0 957
DPC (Zheng et al., 2020) 471 79.9 90.0 | 656 89.8 955
CLIP (Radford et al., 2021) 525 855 932 | 653 912 96.3
Local Alignment
SCAN (Lee et al., 2018) 58.8 884 948 | 727 948 984
VSRN (Li et al., 2019) 60.8 884 941 | 740 943 978
Multi-order Alignment
M3A-Net (Ji et al., 2020a) 584 871 94.0 | 704 91.7 96.8
AAMEL (Wei and Zhou, 2020) | 59.9 89.0 951 | 743 954 982
RESG (Liu et al., 2022) 64.1 905 96.0 | 781 96.2 98.0
CAMERA (Qu et al., 2020) 62.3 901 952 | 759 955 98.6
TERN (Messina et al., 2021b) 545 86.9 942 | 655 91.0 965
TERAN (Messina et al., 2021a) | 65.0 91.2 96.4 | 77.7 959 98.6
RAAN (Wang et al., 2023) 61.8 895 958 | 76.8 964 983
MSG-CNN (Yu et al., 2023) 62.8 90.0 952 | 78.7 958 98.8
HOSA 67.0 927 969 | 79.7 97.0 99.2

Table 1: Performance comparison of HOSA with the state-of-the-art baselines on MSCOCO 1k test set.

Methods Image Retrieval Sentence Retrieval
R@1 RQ5 RQ10 | R@Ql RQ5 RQ10
Global Alignment
VSE++ (Faghri et al., 2018) 30.3 594 724 | 413 711 812
DPC (Zheng et al., 2020) 253 534 664 | 412 705 811
CLIP (Radford et al., 2021) 26.1 646 812 | 480 775 882
Local Alignment
SCAN (Lee et al., 2018) 38.6 693 804 |504 822 90.0
VSRN (Li et al., 2019) 379 685 794 |503 796 879
Multi-order Alignment
M3A-Net (Ji et al., 2020a) 383 657 769 |489 752 844
AAMEL (Wei and Zhou, 2020) | 39.9 713 81.7 | 519 842 91.2
RESG (Liu et al., 2022) 418 727 820 |551 825 903
CAMERA (Qu et al., 2020) 39.0 705 815 |531 813 8938
TERN (Messina et al., 2021b) 314 625 753 | 402 711 819
TERAN (Messina etal., 2021a) | 426 725 829 | 556 839 91.6
RAAN (Wang et al., 2023) 39.6 654 746 | 645 885 923
MSG-CNN (Yu et al., 2023) 425 712 843 | 570 854 93.2
HOSA 430 729 839 |569 839 914

Table 2: Performance comparison of HOSA with the state-of-the-art baselines on MSCOCO 5k test set.

main reason is that they focus on the relation- sistently outperforms all baselines on differ-
ship between fragments within each modality, ent datasets. As for the sentence retrieval
ignoring the semantic relationship between re- task, our method obtains more than 1.0%/2.3%
gions and words in each instance. relative gain against the best baseline (MSG-
CNN/TERAN) in terms of R@1 on MSCOCO

« When comparing with the multi-order align- Tk and Flickr30K.

ment approaches considering both local and

global correspondence, i.e., TERAN (Messina  In general, our method obtains significant improve-
et al., 2021a), RAAN (Wang et al., 2023) and  ments in R@Q1 and R@5, indicating its strong ability
MSG-CNN (Yu et al., 2023), our HOSA also  to retrieve the most relevant images or documents.
achieves a relative improvement for image re-  This highlights the effectiveness of HOSA in lever-
trieval or sentence retrieval task. With regard  aging high-order semantic relationships between
to the image retrieval task, our method con-  the image and text modalities.
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Methods Image Retrieval Sentence Retrieval
RQ1 R@5 RQ10 | R@1 RQ5 RQI0
Global Alignment
VSE++ (Faghri et al., 2018) 39.6 701 795 | 529 805 872
DPC (Zheng et al., 2020) 39.1 592 809 |556 819 895
CLIP (Radford et al., 2021) 36.0 719 834 | 558 80.7 883
Local Alignment
SCAN (Lee et al., 2018) 486 77.7 852 | 674 903 958
VSRN (Li et al., 2019) 53.0 779 857 | 704 892 937
Multi-order Alignment
SMAN (Ji et al., 2020b) 434 737 834 | 573 853 922
AAMEL (Wei and Zhou, 2020) | 49.7 79.2 86.4 | 685 912 959
RESG (Liu et al., 2022) 572 824 89.1 | 748 940 973
CAMERA (Qu et al., 2020) 589 84.7 902 | 765 951 97.2
TERN (Messina et al., 2021b) 411 719 812 | 532 794 86.0
TERAN (Messina et al.,, 2021a) | 59.5 84.9 90.6 | 758 932 96.7
RAAN (Wang et al., 2023) 56.0 824 891 | 745 936 958
MSG-CNN (Yu et al., 2023) 572 824 89.1 | 748 940 973
HOSA 60.3 857 914 | 781 924 96.3

Table 3: Performance comparison between o

ur HOSA and the state-of-the-art baselines on Flickr30K.

Image Retrieval

Sentence Retrieval

Model RQ@Q1 RQ@5 RQ@10 | R@l R@5 RQ@10
MSCOCO 1k
TERAN (Messina et al., 2021a) | 65.0 895 964 | 77.7 959 98.6
Textreco 648 905 96.8 | 775 96.1 98.8
Image, ..., 65.8 92.0 96.7 | 780 96.5 99.0
Textrecx 66.2 926 96.7 | 795 96.7 99.3
Image, .. 67.0 927 96.9 | 79.7 97.0 99.2
Image, ... + Text, ., 67.1 924 96.8 | 80.5 96.0 99.1
MSCOCO 5k
TERAN (Messina et al., 2021a) | 426 725 829 | 556 839 916
Textreco 428 724 830 |558 835 913
Image, ... 424 722 823 | 554 832 912
Textrecs 426 728 83.0 |56.3 845 91.6
Image, ... 43.0 729 839 |569 839 914
Image, ... + Text ., 432 727 83.0 | 572 846 917
Flickr30k

TERAN (Messina et al.,, 2021a) | 59.5 84.9 90.6 | 75.8 93.2 96.7
Textreco 59.6 84.0 906 | 756 928 96.2
Image, ..., 59.8 84.8 908 | 762 926 96.5
Textrecs 60.5 852 910 | 758 93.0 964
Image, ... 60.3 857 914 | 781 924 96.3
Image, ... + Text, ., 60.0 85.0 909 |76.0 929 96.3

Table 4: Analysis of the effects of one modality’s reconstruction with another and the applied Hadamard

product (®) and t-product () operations.

4.4. Case Study

In this subsection, we conduct a qualitative analysis
to demonstrate the effectiveness of the proposed
model for capturing the high-order semantic align-
ment between modalities. We compare HOSA with
the top-performing baseline TERAN (Messina et al.,
2021a). Figure 2 shows the top retrieved sentences
given image queries on the MSCOCO 1K test set.

We can see TERAN mistakenly matched the
words such as "bike", "clock", and "tire" with the
specific regions such as "preserver" in the queried
image, as their appearances are similar, while the
retrieved sentences are semantically inconsistent
with the whole image queries. The key reason
for this is that TERAN focuses on capturing local-
to-local correspondence and ignores that a word
or a region may have different semantics in differ-
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TERAN

HOSA

Rank1: The bike has a clock as
a tire. 3

Rank2: There is a GOL plane
taking off in a partly cloudy
sky. a3

Rank1: A blue boat themed
bathroom with a life preserver
on the wall.

Rank2: Blue and white color
scheme in a small bathroom.

Rank1: This is an advanced
toilet with a sink and control
panel. A
Rank2: A cat is drinking water

Rankl1: A man getting a drink
from a water fountain that is a
toilet.

Rank2: A young man drinking

out of a toilet.

3 from a water fountain in the v
shape of a toilet.

out windows.

cars and a bench.

Rank1: Two husky dogs ride in
a car with their heads hanging

Rank2: City street with parked | Rank2: A couple of cars parked

Rank1: two cars parked on the

sidewalk on the street.
R v

~ | inabusy street sidewalk. v

Figure 2: Demonstration of sentence retrieval results ontained by HOSA and TERAN on MSCOCO 1K.
For easier reference, we have highlighted some objects and attributes in blue within the textual sentences,

while verbs are indicated in red.

ent global contexts, i.e., the local-global (region-
sentence and image-word) interactions.

In contrast, HOSA is capable of accurately retriev-
ing relevant results in response to image queries,
because it has the ability to determine the compli-
cated inter-modal correlation, not only encompass-
ing local-to-local and global-to-global correspon-
dence but also capturing local-global interaction.
This attests to the value of modality reconstruction
assisted by t-product in determining high-order se-
mantic correlations for cross-modal alignment.

We perform a series of ablation experiments on
the two benchmark datasets to evaluate the contri-
bution of the key components of HOSA.

Specifically, we emphasize on exploring two as-
pects. First, we analyze the ways of modality re-
construction, including image reconstruction with
textual information, text reconstruction with visual
information, and a unified approach. Second, we
compare the applied tensor operations of the recon-
struction process, including the Hadamard product
(element-wise multiplication) and the t-product. We
use the following notations to indicate specific set-
tings.

* Image,.., and Image,..., denote reconstruct-
ing images with textual information using the
Hadamard product (®) and the t-product (x),
respectively.

* Textreco and Text.... denote reconstruct-
ing texts with visual information using the
Hadamard product and the t-product, respec-
tively.

* Image;.., +Text,.., denotes unifying image re-
construction and text reconstruction into one
framework with t-product, i.e., |V — T * H||% +
T —Vx*H|%.

From the comparison results shown in Table 4, we
can have the following observations:

* When employing the t-product rather than us-
ing the Hadamard product, all modal recon-
struction strategies yield better performance.
The improvements are significant and consis-
tentin RQ1 and RQ@5. The results demonstrate
that using the t-product based on the circular
convolution operation is beneficial to explore
the high-order semantic relationship.

» From the perspective of modal reconstruction,
reconstructing the item based on the queries
can achieve better performance. Specifically,
if it is to retrieve images given text queries, the
image reconstruction strategy obtains better
results. If returning textual descriptions given
image queries, the text reconstruction strategy
plays a more important role. Besides, the uni-
fied approach (Image, .., + Text,..,) achieves
better performance than the text reconstruc-
tion strategy Text,..., while slightly worse than
the image reconstruction strategy Image; ...,
in most cases. So our study suggests that
image reconstruction is a better choice. The
reason may be that text features are better at
describing relevant topics, which is conducive
to identifying more accurate semantic relation-
ships between modalities.
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» Compared with TERAN, the image recon-
struction strategy with either the t-product or
the Hadamard product achieves better perfor-
mance, verifying that such an alignment strat-
egy indeed benefits from capturing semantic
relevance.

5. Conclusion

In this paper, we present a novel High-Order Se-
mantic Alignment (HOSA) model for unsupervised
fine-grained image-text retrieval. Our main idea
is to construct one modal using another modal’s
information with the linear combination of circula-
tion in a common latent space. It can simultane-
ously capture local correspondences, global cor-
respondences, and local-global correspondences
across different modalities, thereby identifying com-
prehensive semantic alignment for subsequent re-
trieval tasks. Both qualitative and quantitative ex-
periments conducted on two standard datasets
demonstrate the superiority of the proposed HOSA
compared with the state-of-the-art methods. Abla-
tion studies further validate the theoretical effective-
ness of our model. Future works include integrating
attention-aware learning with HOSA to identify dis-
criminative inter-modal semantic relationships from
multiple perspectives.
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a crucial role in understanding the computational
efficiency of the tensor-product (t-product) opera-
tion used in our High-Order Semantic Alignment
(HOSA) model.

Theorem 9.1. For a tensor A € R™"1*"2X"3_ jtg
block-circulant matrix can be block-diagonalized by

(Fr, ® Ly, )bcire(A)(F, ! ® I,,,) = A = bdiag(A),
9
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where ® denotes the Kronecker product, F,,, is the
ng x ng Discrete Fourier Transform (DFT) matrix,
I,, and 1,,, denote n; x n; @d ng X ngo identity

matrices, respectively. bdiag(.A) is denoted as the
following form:

Z(l)

—(2)
biag(A) - AT . (10)

71(“3)

According to the relation between the circular
convolution and the Discrete Fourier Transform, we
note that 7 x H < bdiag(T )bvec(H). Thus the opti-
mization solution of our model (Eq.(1)) can be ob-
tained by solving d independent optimization prob-
lems. For the i-th (i = 1,2,...,d) subproblem, we
have

argmin [V =T 7Y F (1)
H K

After solving each frontal slice of 7, we could get
the solution of }ivia inverse Frourier transformation,
i.e., H=1ifft(H,][],3).
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