High-order Joint Constituency and Dependency Parsing

Yanggan Gu™, Yang Hou™, Zhefeng Wang®, Xinyu Duan®, Zhenghua Li**
*School of Computer Science and Technology, Soochow University, China
®Huawei Inc., China
yanggangu@outlook.com, yhou1@stu.suda.edu.cn
{wangzhefeng, duanxinyu}@huawei.com, zhli13@suda.edu.cn

Abstract

This work revisits the topic of jointly parsing constituency and dependency trees, i.e., to produce compatible
constituency and dependency trees simultaneously for input sentences, which is attractive considering that the two
types of trees are complementary in representing syntax. The original work of Zhou and Zhao (2019) performs
joint parsing only at the inference phase. They train two separate parsers under the multi-task learning framework
(i.e., one shared encoder and two independent decoders). They design an ad-hoc dynamic programming-based
decoding algorithm of O(n®) time complexity for finding optimal compatible tree pairs. Compared to their work, we
make progress in three aspects: (1) adopting a much more efficient decoding algorithm of O(n?) time complexity,
(2) exploring joint modeling at the training phase, instead of only at the inference phase, (3) proposing high-order
scoring components to promote constituent-dependency interaction. We conduct experiments and analysis on seven
languages, covering both rich-resource and low-resource scenarios. Results and analysis show that joint modeling
leads to a modest overall performance boost over separate modeling, but substantially improves the complete
matching ratio of whole trees, thanks to the explicit modeling of tree compatibility.

Keywords: joint modeling, constituency parsing, dependency parsing, high-order

1. Introduction S
—
As one of the most fundamental and long-standing NP VP
NLP tasks, syntactic parsing aims to reveal how
sentences are syntactically structured. Among NP ADVP
many paradigms for representing syntax, con- — |
stituency trees (c-trees) and dependency trees Logic; plays; as maximal, roles hereg

(d-trees) are the most popular and have gained
tremendous research attention in both data anno-
tation and parsing techniques. Figure 1 gives ex- (advmod)

(a) Constituency tree

ample trees. (dobj)
As is well known, c-trees and d-trees capture root
syntactic structure from different yet complemen- “S“b amod
tary perspectives (Abeillé, 2003). On the one hand, $ |_Og.¢1 plays, as max.ma|4 roles hereg

c-trees can clearly illustrate how sentences are
composed hierarchically. Constituents, especially
major phrases like NPs and VPs, are often self-))
evident and thus easily agreed upon by people. Figure 1: Constituency and dependency trees.
On the other hand, d-trees emphasize pairwise

syntactic (sometimes even semantic) relationships sjde the constituent. Please note that this work and
between words, i.e., what role (function) the modi- most previous works consider only conventional
fier word plays for the head word. Itis usually more ontinuous c-trees and projective d-trees.’

simple and fl_exible to draw dependency links than From the modeling perspective, parsing tech-
to add constituent nodes. _ niques have achieved immense progress, thanks
ture that a parsing model outputs both c-trees and pecially of the pre-trained language models (PLMs)
d-trees at the same time. Of course the two trees (Peters et al., 2018; Devlin et al., 2019). One amaz-

must be compatible with each other. Basically, ing characteristic is that constituency parsing and
compatibility means that for any constituent, only

the single head word can compose dependency 'In the sentence “A hearing is scheduled tomorrow
|inkS, either inwards or OUtwardS, with words out- on this issue”, “A hearing on this issue” composes a
typical discontinuous constituent, which also results in a
*Corresponding author. non-projective dependency tree.

(b) Dependency tree

8144

LREC-COLING 2024, pages 8144-8154
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

dependency parsing have a nearly identical model
architecture nowadays. Under the graph-based
parsing framework, besides the encoder, the scor-
ing components are the same as well if we treat a
constituent as a link between the beginning word
and the end word (Zhang et al., 2020b). The only
difference lies in the decoding algorithms for finding
optimal c- or d-trees. To some extent, such devel-
opment stimulates research on joint constituency
and dependency parsing (Zhou and Zhao, 2019).
The original work of Zhou and Zhao (2019) per-
forms joint parsing only at the inference phase.
First, they use the simplified head-driven phrase
structure grammar (HPSG) trees to encode both
¢- and d-trees simultaneously. In fact, their HPSG
trees are inherently the same as lexicalized con-
stituency trees (I-trees), in which each constituent
is annotated with its head word (Collins, 2003). Fig-
ure 2 gives an example I-tree. Then, they design an
ad-hoc decoding algorithm of O(n®) time complex-
ity for finding optimal I-trees. Under the multi-task
learning (MTL) framework, they use one shared
encoder, and two separate decoders for the two
parsing tasks respectively. Thus there is no explicit
interaction between the two types of parse trees.
In this paper, we carry forward this interesting
research topic from the following three aspects.

1. Inspired by the recent work of Lou et al. (2022)
on nested named entity recognition (NER), we
employ the Eisner-Satta algorithm (Eisner and
Satta, 1999) of O(n*) time complexity for find-
ing optimal I-trees, which runs very efficiently
on GPUs after proper batchification (Zhang
et al., 2020a). Experiments show that our
model is about 2.5x faster than that of Zhou
and Zhao (2019).

2. We propose to jointly model the two parsing
tasks at both training and inference phases.

3. We propose high-order scoring components
so that the two types of parse trees can interact
with and influence each other more tightly.

We conduct experiments on benchmark datasets in
seven languages, covering both rich-resource and
low-resource scenarios. The results and analysis
lead to several interesting findings. We release
our code at https://github.com/EganGu/high-order-
joint-parsing.

2. Related Work

Before the deep learning era, there exist three
competitive families of constituency parsing ap-
proaches, i.e., lexicalized PCFG parsing (Collins,
1999), unlexicalized PCFG parsing (Petrov et al.,
2006), and discriminative shift-reduce parsing (Zhu
et al., 2013). Due to the importance of head word

features, all three families are more or less related
to our work, in the sense that the parser may output
d-trees as byproduct at the inference phase.

Lexicalized PCFG parsers generate a c-tree in a
head-centered, top-down manner (Collins, 1999).
The head token of each constituent is settled when
parsing is finished. Therefore, it is straightforward
to acquire unlabeled d-trees.

The unlexicalized parser of Klein and Manning
(20083) splits each constituent labels into multiple
sub-labels according to linguistic heuristics. For N-
ary production rules, they markovize out from the
head child, making it feasible to recover unlabeled
d-trees likewise.

The discriminative shift-reduce parser of Crabbé
(2015) makes heavy use of head tokens for com-
posing features, and therefore is also capable of
producing unlabeled d-trees.

Our work is also closely related to Klein and
Manning (2002), who factorize a I-tree into an un-
lexicalized c-tree and a d-tree, corresponding to
two generative models that are separately trained.
They propose an efficient yet inexact A* algorithm
for finding the optimal I-tree, instead of using the
Eisner-Satta algorithm.

In the deep learning era, besides Zhou and
Zhao (2019), there exist two works that tackle con-
stituency parsing and dependency parsing simulta-
neously.

Strzyz et al. (2019) transform both constituency
parsing and dependency parsing into sequence
labeling tasks. However, the parsing performance
lags behind state-of-the-art models by large mar-
gins. Fernandez-Gonzélez and Gémez-Rodriguez
(2022) transform constituency parsing into a depen-
dency parsing task and employ a pointer network
architecture to obtain the dependency trees.

The above two works have two key differences
from our work. First, during training, both works
employ the MTL framework, hence blocking explicit
interaction between two sub-modules. Second and
more importantly, both works do not consider the
compatibility of output c-trees and d-trees at the
inference phase.

3. Lexicalized Tree Representation

Given an input sentence x = wy ... w,, We use
{(i,7,1),0 < 4,j < n} to denote a c-tree ¢, and
{(h = m,r),0 < h,m < n} to a d-tree d. For
a c-tree, (i,7,1) denotes a constituent spanning
w; ... w; and labeled as [€ £, while for a d-tree,
(h — m,r) denotes a dependency from the head
word w;, to the modifier word w,,, and labeled as
reR.

It is a natural way to encode both a c-tree ¢ and
a d-tree d into an I-tree as the joint representation
(Collins, 2003). Figure 2 gives examples. We con-

8145

https://github.com/EganGu/high-order-joint-parsing
https://github.com/EganGu/high-order-joint-parsing

—
NP VP
—
VP* ADVP
—
VP* NP
—
NP* NP*
‘ NIID* NP*

|
Logic, playss asz maximals roles hereg
(a) A regular c-tree (head-binarized)

Slplays]

NP VP[plays]

VP*[plays]

VP* NPIrole]
—
NP* NP*[role]
—
NP* NP*

| |
maximaly roles hereg

ADVP

Logic; plays: as
(b) A lexicalized c-tree

Figure 2: Example c-trees. The head word of each
lexicalized constituent is marked by [-].

vert the original c-tree into Chomsky normal form
(CNF), as shown in Figure 2(a), which is required
by the graph-based parsing model adopted in this
work. Figure 2(b) presents the corresponding I-tree,
in which the head words are decided by the d-tree
in Figure 1(b).

Formally, we denote an I-tree as t = {(i, 4, h, 1)},
where (i, j, h,) represents a lexicalized constituent
spanning w; ... w; with a head word wy, (i < h <
j) and a label [€ £. We use NP[role]3 5 as a
simplified notation of (3,5, 5, NP).

Constituent-to-dependency conversion and the
compatibility rationale. To the best of our knowl-
edge, many dependency treebanks are automati-
cally converted from constituent treebanks, instead
of constructed from scratch. Usually, the const-
to-dep conversion process consists of two major
steps: 1) determining unlabeled dependencies us-
ing head-finding rules, and 2) determining depen-
dency labels (de Marneffe et al., 2006). In the first
step, the head-finding rules are applied on c-trees
to form I-trees, in which each constituent has only
one head word. Further, unlabeled d-trees are con-
structed according to head words. Such conversion
process determines that the resulting dependency
trees are compatible with the original constituent
trees.

Head-binarization. As shown earlier, given a c-
tree ¢ and a d-tree d, we first convert c into CNF
before constructing an I-tree t, which is required by
the CKY algorithm.

To avoid incompatibility after CNF conversion,
we adopt the head-binarization strategy (Collins,
2003), instead of left- or right-binarization. Ba-
sically, head-binarization dynamically selects left-
or right-binarization to comply with a given d-tree.
For example, the constituent VP[plays|, ; in Figure
2(b) is left-binarized, whereas NP[role], ; is right-
binarized. If both binarization choices are feasible,
we prioritize left-binarization.

Recovering constituency/dependency trees. It
is obvious that an I-tree becomes a c-tree when
discarding the head words. Meanwhile, since I-
trees are strictly binarized, we can construct the
corresponding d-trees according to the head words.

Moreover, please note that dependency relations
are not encoded in an I|-tree ¢, and are handled via
a separate labeling step (see Section 4.1), which
is now common practice in parsing models (Zhang
et al., 2020a).

Labeling compatibility. Since the dependency
relations are not contained in I-trees, our joint rep-
resentation can only guarantee that the encoded
c- and d-trees are compatible in an unlabeled fash-
ion. Given that the dependency relations are usu-
ally derived from c-trees, it leads to an interesting
question: is it possible to make the parsed c- and
d-trees compatible at the labeled level according
to the const-to-dep conversion process? We be-
lieve the answer is no. We give our explanations
as follows.

During the two steps of the conversion process,
the label determination algorithm makes use of non-
local constituent features (i.e., multiple constituents
and their labels). Therefore, it is actually difficult
to impose such labeling compatibility into our dy-
namic programming decoding (described in Section
4.3). Moreover, some const-to-dep conversion pro-
cesses make use of not only structural constituent
labels like NP/VP, but also functional labels like
-SBJ/OBJ (Surdeanu et al., 2008; Seddah et al.,
2014). Functional labels are usually overlooked in
constituency parsing research.

4. The Joint Parsing Approach

In this section, we first describe a first-order model,
and then introduce a second-order extension.

To facilitate explanation, we give alternative nota-
tions. We use y = {(i, j, h)} to denote an unlabeled
I-tree, i.e., t without the constituent labels, I to de-
note the set of constituent labels in an I-tree ¢, and
r to denote the set of dependency relations in a
d-tree d. Then we have the following equivalent
notations.

(e, d) = (t,7) = (y,l,7)

8146

Please kindly note that we assume that c is bina-
rized and conforms to CNF, which guarantees that
a unique unlabeled dependency tree d can be in-
duced from t and y.

4.1. Two-stage Parsing and First-order
Factorization

Following Dozat and Manning (2017) and Zhang
et al. (2020b), we adopt the two-stage parsing strat-
egy, which has been proven to be able to simplify
the model architecture and improve efficiency, with-
out hurting performance.

Stage I: Lexicalized Bracketing. Given z, the
goal of the first stage is to find an optimal unlabeled
I-tree y, whose score is:

s(@woy)= Y (i,)+ > shhm) (1)

(i,5)€e h—med

where s/ denote the scores of unlabeled con-
stituents and unlabeled dependencies, respectively.
Here we adopt the first-order factorization, i.e., the
scores of constituents and dependencies being
mutually independent. We present second-order
factorization in Section 4.4.

Given all s°(i, j) and s%(h,m), the decoding al-
gorithm determines the 1-best I-tree.

y = argmax s(x, y) (2)
yeY(x)

where)Y (x) denotes the set of all legal I-trees for
€.

Stage IlI: Labeling. Given unlabeled con-
stituents/dependencies in y obtained in the first
stage, this stage independently predicts labels for
them.

[= arg max s°(i, j,) (3)
lel

= arg max s%(h, m,r) (4)
reR

4.2. Training Loss

Given a training instance («,y,l,r), the training
loss consists of two parts, corresponding to the two
stages.?

L(:E7y) l7r) = LbraCket(w7y)+LlabEI($7y) l7r) (5)

For the first stage, we adopt the max-margin loss
(Taskar et al., 2004)3, which is based on the margin

2At a training step, the cumulative loss of all instances
in a mini-batch is divided by the total number of tokens.

SWe also try using the CRF loss for the I-tree and find
it to be slightly inferior to the max-margin loss in terms of
performance and training speed.

ATTACH-LEFT: COMPLETE-LEFT:

i<h'<jh>j j+1<h<k
n — h
SN W h A\ ,
i j 4 J h j+1 k
- h
AN EaN
i j h i

Figure 3: Deduction rules for Eisner-Satta algorithm
(Eisner and Satta, 1999). We show only the left-
ward rules, omitting the symmetric rightward one
as well as initial conditions for brevity.

between the scores of the gold-standard I-tree y
and the predicted one g.

Lbracket —

N . (6)

s (0, (s(9) — 3) + Aw3)))
y#y

where A is the Hamming distance, which we set

as the number of incorrect dependencies and con-

stituents.

For the second-stage loss, following Dozat and
Manning (2017), we employ local cross-entropy
losses, i.e., the sum of classification loss for label-
ing all constituents and dependencies in the gold-
standard c-tree and d-tree.

Besides, we tried to balance the losses from
the two stages via weighted summation, which we
found has negligible influence on performance ac-
cording to our preliminary experiments.

4.3.

Zhou and Zhao (2019) propose a naive CKY-style
algorithm in O(n®) complexity to the simplified
HPSG inference, which is highly time-consuming.
For I-trees, Eisner and Satta (1999) propose a rel-
atively fast inference that reduces the complexity
to O(n*) by merging dependency arcs in advance.
In this paper, we adopt the Eisner-Satta algorithm
to jointly infer the c- and d-trees. The deduction
rules (Pereira and Warren, 1983) of the algorithm
are illustrated in Figure 3.

To further increase the speed of inference, fol-
lowing Zhang et al. (2020a), we batchify the Eisner-
Satta algorithm to fully utilize GPUs, as shown in
Algorithm 1. The basic idea is handling spans of the
same length simultaneously. The time complexity
of our algorithm is practically linear.

Inference: Batchified Eisner-Satta

4.4. Second-order Extension

In order to further bridge the c- and d-trees for
more in-depth joint modeling, we extend the score

8147

Algorithm 1 The Eisner-Satta Decoding Algorithm.

. define: o, § € RXnxnxB
. initialize: all o =0, 877" =0
: forw=1tondo
Batchify: 0 < 4,5 <n,j=i+w,k,h

,Bi’j’: —
. end for
: return o

max (o + s%(:, h))

i<h<j

0,n—1,0

> B is #sents in a batch

> span width

]
2

3

4 L.

5. o =s%(4,5) + max (abhki 4 ghtbi: gk 4 ok t100) > add s(i, 5, :) to a/f for the 2rd-order extension

(S J

6

7

8

decomposition of y to the second-order case. We
define two types of span structure, as

* Headed spans: a span (i, j) with h being the
lexical head (parent, or root), in which i < h <
7

* Hooked spans: a span (¢,) with h being the
lexical grandparent, in which h < i or h > j.

Both headed spans and hooded spans can be de-
noted as (4, j, h), and can be distinguished by the
position of h.

As shown in Figure 3, the left part illustrates the
construction of a hooked span, whereas the right
part illustrates how to create a headed span.

We further incorporate scores of headed spans
and hooked spans into the basic first-order model.

Sy)=sly)+ Y PG (7)
(i,5,h) €Y

where s(i, j, h) € R»*nxn,

5. Model Architecture

In this section, we introduce how to compute scores
of lexicalized subtrees.

Encoding. Given a sentence x = wy, ..., wy1,
where wy and w,,, 1 denote the <bos> (begin of a
sentence) and <eos> (end of a sentence) tokens
respectively, the corresponding hidden representa-
tions e can be obtained via BERT encoder (Devlin
et al., 2019), without cascading word embedding
and LSTM layers for simplicity.

Scoring. We employ the same scoring functions
as Zhang et al. (2020a,b) to compute span scores
s¢(4,7) and arc scores s%(h,m).
Tieft/rigllt _ MLPleft/right(e—l} ® az) (8)
phead/mod _ \jy phead/mod (2 gy £7y (g
s°(i,§) = [rlt @ 1] werte (10)
s¥(h,m) = [rﬁOd ® 1}T Wdr}:ead (11)

where MLPs are applied to obtain lower k-
dimensional vectors; r'**¥/™°4 are the representa-
tion vectors of w; as a head/modifier respectively,
and analogously, /""" are the left/right bound-
ary representation of w;; e; /& are hidden repre-
sentations of w; in different contextual orientations?.
Wd/c ¢ R+ XE gre trainable parameters.

For second-order extension, we follow Yang and
Tu (2022b) to calculate scores of headed spans

and hooked spans.

r;}vord _ MLPword(e—i) @ E) (1
R = (& @ &) — [e] & &) (1
T;Edn — MLPSPdIl(h:I;dH) (1
S h) = [yt @ 1] WP [P e 1]

(15)

where WPar ¢ R(++1)x(k+1) - Plegse notice that
the computation of scores of headed spans and
hooked spans share the same parameters. Our
preliminary experiments show that the performance
changes little if we use separate parameters. This
may indicate that the model can distinguish the two
types of scores only according to the position of h.

For the second-stage labeling tasks, we follow
Zhang et al. (2020a,b) to calculate dependency and
constituency labels scores.

6. Experiments

6.1.

Datasets. We conduct experiments on the En-
glish Penn Treebank (PTB) (Mitchell P. Marcus,
Beatrice Santorini, Mary Ann Marcinkiewicz, and
Ann Taylor, 1999), the Chinese Penn Treebank 5.1
(CTB) (Martha Palmer, Fu-Dong Chiou, Nianwen
Xue, and Tsan-Kuang Lee, 2005) and the SPMRL
datasets (Seddah et al., 2014).

For PTB, we follow the standard splits, i.e., sec-
tions 02-21 for training, section 22 for development
and section 23 for testing. The d-trees are obtained

Settings

“For BERT encoder, we split each e; € e in half to
construct each (€7, £;) the same as Kitaev and Klein
(2018).

8148

Train Dev Test

Rich resource
English 39.8K(99.8) 1.7K(99.7) 2.4K(99.9)
Chinese 16.1K(99.9) 0.8K(99.8) 1.9K (99.8)
French 14.7K (99.5) 1.2K(99.6) 2.5K(99.7)
Korean 23.0K (100.0) 2.1K(100.0) 2.3K(100.0)

Low resource
Hebrew 5.0K (94.9) 0.5K (95.0) 0.7K (96.9)
Polish 6.6K (95.1) 0.8K (94.1) 0.8K(94.2)
Swedish 5.0K (92.0) 0.5K (88.6) 0.7K (94.1)

Table 1: Number of sentences and percentage of
compatible sentences (in parentheses).

with Stanford Typed Dependencies (SD) (de Marn-
effe et al., 2006) using the Stanford parser v3.3.0°.

For CTB, we use the same split as Zhang and
Clark (2008). The c-trees are converted to the
corresponding d-trees using the Penn2Malt tool®.

For SPMRL, we adhere to the default data split
and utilize the provided parallel constituency and
dependency treebanks. We specifically choose
five languages from SPMRL—French, Hebrew, Ko-
rean, Polish, and Swedish—where d-trees are well
compatible with c-trees. Based on different char-
acteristics of languages, the multilingual d-trees
are obtained from various const-to-dep conversion
processes.

Table 1 presents the data scale and compatibility
of different languages. The languages are cate-
gorized into two scenarios: rich- and low-resource.
We notice that in almost all incompatible cases, mul-
tiple words within the same constituent are headed
by words outside the constituent, leading to the
failure of building valid I-trees. To address this is-
sue, we remove all incompatible instances from the
training sets.

Evaluation metrics. For dependency parsing,
we adopt unlabeled and labeled attachment scores
(UAS/LAS) as metrics. For constituency parsing,
we adopt the standard constituent-level labeled
precision (P), recall (R), and F1-score as metrics.
Consistent with Zhou and Zhao (2019), we omit all
punctuation for dependency parsing.

Models. We conduct experiments with our joint
parsing model: Jointlo and Joint20, which
both perform lexicalized modeling but with the
first/second-order scores separately. To facilitate
a comprehensive comparison, we introduce two
kinds of baseline models, using the same network
architectures as joint models:

» Separate parsing models (SEP). We train
two separate constituency and dependency

Shttps://nip.stanford.edu/software/lex-parser.shtml
Shttps://cl.lingfil.uu.se/~nivre/research/Penn2Malt.html

parsers. Following joint models, we also apply
max-margin loss for each task, setting their
Hamming distance to the total number of mis-
matched constituents and dependency arcs,
respectively. At the inference phase, we use
the CKY algorithm for constituency parsing
and the Eisner algorithm for dependency pars-

ing.

e Multi-task learning model (MTL). Similar
to Zhou and Zhao (2019), we use the MTL
framework at the training phase. The loss of
MTL is the sum of losses for SEP. We use
the head-binarization since preliminary experi-
ments show that is superior to left- and right-
binarization. Meanwhile, we apply the Eisner-
Satta algorithm to perform joint parsing at the
inference phase and ensure the compatibility
of parsing results.

Hyper-parameters. We employ bert-large-cased
for English, bert-base-chinese for Chinese, and
bert-base-multilingual-cased for SPMRL. We
mainly adopt the same hyper-parameters of parsers
from Zhang et al. (2020a,b). For the second-order
model, we set the dimensions of ;™ /r;7*" to 500.
We report results averaged over 3 runs with differ-
ent random seeds for all experiments.

6.2. Main Results

Table 2 presents the results of our model study on
multilingual test sets. On average, compared to
SEP, all joint models (including MTL, Joint1o, and
Joint20) showed a substantial improvement (>0.2)
for dependency parsing; and only MTL showed little
impact on constituency parsing, where Joint1/20
instead slightly decreased the performance. In par-
ticular, Polish is a counterexample, with a trend just
the opposite of the others.

Between the joint models, we can see that
Joint1o performs close to MTL in dependency pars-
ing but lower in constituency parsing. Meanwhile,
Joint2o incorporating higher-order features outper-
formed both Joint1o and MTL in dependency pars-
ing. Even though Joint2o is higher than the first-
order counterpart on constituency parsing, it is still
lower than MTL.

The above findings bring three insights: 1) joint
parsing at the inference phase can indeed help
dependency parsing and has little impact on con-
stituency parsing; 2) further joint modeling at the
training phase does not improve performance in
first-order cases, 3) high-order modeling leads to
tiny but steady improvements on both constituency
and dependency parsing.

8149

English Chinese French Hebrew Korean Polish Swedish Average

LAS F1 LAS F1 LAS F1 LAS LAS F1 LAS F1 LAS F1 LAS FH1
SEP 95.55 95.92 90.55 90.79 89.31 87.51 85.12 93.15 89.67 89.44 91.20 96.21 87.94 89.70 89.91 91.82
MTL 95.59 95.97 90.86 90.83 89.42 87.58 85.77 93.09 89.93 89.46 90.83 96.33 88.11 89.73 90.07 91.86

Joint1io 95.62 95.76 90.88 90.77 89.50 87.25 85.63 92.93 89.83 89.18 90.80 96.29 88.32 89.52 90.08 91.67
Joint2o 95.64 95.80 90.96 90.76 89.52 87.48 85.83 92.96 89.83 89.21 91.15 96.37 88.38 89.69 90.19 91.75

Table 2: Results on multilingual test sets (including the PTB, CTB and SPMRL).

Dependency Constituency

UAS LAS P R F1
M&H21T 96.66 95.01 - - -
Y&T221 97.24 95.73 96.19 95.83 96.01
HPSG 97.00 95.43 95.98 95.70 95.84
F&G22 96.97 95.46 — — 95.23
MTL 97.14 95.59 96.14 95.80 95.97
Joint2o0 97.17 95.64 95.95 95.65 95.80

Table 3: Comparison with previous results on
PTB-test. HPSG: Zhou and Zhao (2019). M&H21:
Mohammadshahi and Henderson (2021). F&G22:
Fernandez-Gonzalez and Godmez-Rodriguez
(2022). Y&T22: Yang and Tu (2022a,b). T indi-
cates using only the constituency or dependency
treebank.

Dependency Constituency

UAS LAS P R F1
Zhang+20T 91.71 90.38 91.00 90.40 90.70
MTL 92.11 90.86 90.75 90.91 90.83
Joint2o0 92.21 90.96 90.73 90.76 90.76

w/ gold POS tags

Zhang+20T 92.43 92.04 93.00 9298 93.00
M&H21T 92.98 91.18 - - -
Y&T22" 93.33 92.30 - - -
MTL 93.16 92.78 93.13 93.23 93.18
Joint20 93.36 92.97 93.13 93.25 93.19

Table 4: Comparison with previous results on CTB-
test. Zhang+20: Zhang et al. (2020a,b). M&H21:
Mohammadshahi and Henderson (2021). Y&T22:
Yang and Tu (2022a). ' indicates using only the
constituency or dependency treebank.

6.3. Comparison with Previous Works

Table 3, 4 and 5 compare our MTL and Joint2o with
the existing state-of-the-art of both the separate
and joint parsing on test sets. The performance
gap between our parsers and recent state-of-the-
art parsers is negligibly small.

On CTB, we re-run the code released by Zhang
et al. (2020a,b), which provides the two strong
TreeCRF parsers for ¢- and d-trees, to reproduce

their results. We also note that reporting the re-
sults of using gold Part-Of-Speech (POS) tags
for CTB is a more prevalent practice (Zhou and
Zhao, 2019; Mohammadshahi and Henderson,
2021; Fernandez-Gonzalez and Gémez-Rodriguez,
2022; Yang and Tu, 2022b). Therefore, for com-
prehensive comparisons, we also conduct exper-
iments with gold POS tags, by adding POS tag
embeddings element-wisely to the hidden repre-
sentations from the encoder.

6.4. Versus the Pipeline Method

As discussed in Section 3, we recognize that our
model may result in labeling incompatibility. To
verify whether labeling incompatibility affects pars-
ing performance, we conduct experiments on the
PTB/CTB using the pipeline method, first apply-
ing constituent parsing and then obtaining d-trees
via const-to-dep conversion. Please note that the
conversion processes utilized for PTB/CTB do not
require function tags and thus we can directly apply
them to the parsed c-trees.

Table 6 shows that the performances of the
pipeline method are inferior to that of Joint2o, es-
pecially on the CTB. We believe this is probably
because such a conversion process suffers from
error propagation, although compatibility is guaran-
teed.

Notably, when evaluated on the relatively high-
performing PTB, the pipeline method exhibits a
smaller performance drop on LAS (0.27) compared
to UAS (0.67). This suggests that enforcing the
labeling compatibility may lead to a better label
prediction and therefore become a promising ex-
tension. While it seems impossible to extend strict
labeling compatibility in our model, we can try to
achieve approximate compatibility. By simplifying
the label determination rules to be similar to those
for finding head words, we can count such rules
in the training set and adopt them to constrain the
label prediction. We leave such extension of com-
patibility as future work.

6.5. Speed Comparison

Table 7 compares different parsing models in terms
of parsing speed, including HPSG from Zhou and

8150

French Hebrew Korean Polish Swedish Average
LAS F1 LAS F1 LAS F1 LAS F1 LAS F1 LAS F1
Kitaev et al. (2019)f - 8742 — 9299 — 8880 — 9636 — 888 — 90.89
Nguyen et al. (2020)f - 86.69 — 9367 — 8871 — 9614 — 8910 — 90.86
Yang and Tu (2023)F — 87.89 — - - 8931 — 9618 — - - —
Strzyz et al. (2019) 83.85 81.33 74.94 91.83 85.93 83.39 85.86 93.36 79.77 86.53 82.07 87.29
Li et al. (2022) 88.53 87.27 85.21 93.17 90.73 89.53 91.37 96.55 87.69 89.52 87.60 90.56
MTL 89.42 87.58 85.77 93.09 89.93 89.46 90.83 96.33 88.11 89.73 88.81 91.24
Joint2o 89.52 87.48 85.83 92.96 89.83 89.21 91.15 96.37 88.38 89.69 88.94 91.14

Table 5: Comparison with previous results on SPMRL-test. T indicates using only the constituency or
dependency treebank. Note that we only compare with the results of the HPSG parser in Li et al. (2022).

PTB CTB LCMcon LCMdep LCMcon+dep
UAS LAS UAS LAS PTB
Pipeline 96.50 95.37 92.72 92.14 SEP 55.25+0.6 54.66+0.5 43.270.6
Joint20 97.17 9564 93.36 92.97 MITL 5545106 55.74104 46.7440.6
Joint1o 55.0240.4 55.84410.4 46.8810.5
Joint2o 55.37+0.5 55.95.0 5 46.97 0.5
Table 6: Comparison with pipeline method on =0 = =
PTB/CTB-test. CTB
SEP 29.3710.4 41.5340.4 26.03+0.5
MTL 29.3910.3 43.0840.4 27.9940.3
Model Sents/sec Joint1o 29.16+0.4 4314403 28.2510.4
HPSG 122.01 Joint2o 29.1140.3 43.36.0.4 28.3310.5
MTL w/ CKY+Eisner 299.31 .
MTL w/ Eisner-Satta 311.80 Table 8: Complete matching on PTB/CTB-test.
Joint20 w/ Eisner-Satta2o 305.79

Table 7: Speed comparison on PTB-test.

Zhao (2019) with O(n®) parsing algorithm in Cython
implementation, MTL with batchified CKY and Eis-
ner from Zhang et al. (2020b,a), and MTL/Joint20
with our batchified Eisner-Satta and its 2nd-order
extension respectively. Our models are run on a ma-
chine with Intel Xeon Gold 6248R CPU and NVIDIA
A100 40GB GPU. We set the batch size to 100 sen-
tences and report the average time over ten runs.

We can observe that models with batchified algo-
rithms are roughly 2.5x faster than HPSG19. Also,
the speeds of “CKY+Eisner" and “Eisner-Satta(20)"
have similar speeds, probably because their time
complexity after batchifying are all O(n) on GPUs.

6.6. Analysis

In the previous experiments, we only used attach-
ment scores and F1 scores to evaluate the perfor-
mance of parsing, which assess the accuracy of
dependencies and constituents respectively. How-
ever, upon analyzing the results in Table 2, we ob-
serve that the differences between the models are
relatively small, especially for constituency pars-
ing. For more detailed analyses, we evaluate the
parsing results from other perspectives.

Complete match of syntactic trees. To facil-
itate a more evident comparison between differ-
ent models, following Zhang et al. (2019), we
adopt a more challenging metric known as the
sentence-level labeled complete match (LCM).
Specifically, we evaluated the LCM of the predicted
c-trees, d-trees, and their combination, denoted as
LCMon/LCMyep/LCM op+-dep respectively. Please
note that an instance where the LCM_4;,+4¢p iS true
only if both the LCM,,,, and LCMy,,, are true.

For LCM.,,, and LCM,,,, their trends are quite
similar to the model study in Table 2. For
LCM_on+dep, We can clearly see that all the joint
models have a significant improvement compared
to SEP (>3 on PTB), suggesting that joint parsing
c- and d-trees can lead to stronger compatibility.

Among joint parsing models, Joint1o has a slight
improvement in LCM,.,,,+4¢, cOmpared to MTL, and
there is a further gain on Joint2o. This trend on both
PTB and CTB indicates that joint parsing further at
the training phase and the second-order extension
both help the compatibility.

Fine-grained analysis. Yang and Tu (2022b)
shows that different tree modelings may influence
the performance on different lengths of sequence,
span, and dependency. To investigate this, we fol-
low Yang and Tu (2022b) and plot LAS/F1-score

8151

0.930 N N
N SEP 0.902{ - .
0925 NG -
/2 N MTL 0.901 N ey
0920 // \ —— Joint2o0 R 0900 -
g 0915 / \\ g 0.899
o 7/ N © 0.898
@ 09104 // RN @
) / I 0897 SEP \
09054 ¢ \
0.896 - MTL \
0900 0s0s{ —— Joint20 \\C
110 1120 2130 3140 >10 110 1120 21730 3140 >10
Sequence length Constituent width
0.93 A SEP 0.04 ‘\\ SEP
0o 7 N MTL 092 \ """"" MTL
—+— Joint2o0 | £ 0s0 —+— Joint2o
= = T
X 001 N 2 o088 RN
0 NN 15 S
j RN & 0.86 S Y
N - \
0.90 Ny
™ B o8
N
0.80 Ny 0.82 \
0.80

1-10 1120 21-30 31-40 >40 1 2

3 4 5 6
Sequence length Dependency length

(©) (d)

Figure 4: Fine-grained analysis on CTB-test.

as functions of the sequence lengths, constituent
widths, and dependency lengths on CTB-test’. The
width of a constituent from w; to w; is equal to
d:=li—j|

Figure 4(a) and 4(b) show the F1 scores for differ-
ent sequence lengths and constituent widths. No-
tably, MTL and SEP perform similarly on sentences
of different lengths, while Joint2o0 is slightly weaker
on short sentences (<20). For constituent widths,
MTL and Joint2o both have a small increase com-
pared to SEP on short and medium constituents
(<30), however, Joint20 is lower than the other two
on long constituents (>30).

From Figure 4(c) and 4(d), we can see that
MTL and Joint2o0 both have a steady improvement
over SEP on almost all sentence lengths and de-
pendency lengths. Meanwhile, Joint2o performs
slightly better than MTL on longer sentences (>20).

7. Conclusions

This paper revisits the topic of joint c-tree and d-
tree parsing. Compared with previous works, we
further explore joint parsing at the training phase,
thanks to the improved efficiency from the Eisner-
Satta (Eisner and Satta, 1999) decoding algorithm.
We also design second-order scoring components
for promoting interaction between constituents and
dependencies.

Our experiments encompass benchmark
datasets in seven languages, yielding the following
key findings.

"We also conduct the same experiment on PTB-test
and find a similar trend. However, all these models per-
form well on PTB and the margins between them are
relatively small, resulting in fewer distinctions.

1. The Eisner-Satta algorithm leads to about 2.5 x
speed-up, compared with the decoding algo-
rithm proposed by Zhou and Zhao (2019).

2. Compared with separate modeling, joint pars-
ing only at the inference phase, i.e., the MTL
approach of Zhou and Zhao (2019), leads to
modest performance boost on d-tree parsing,
and has little impact on c-tree parsing perfor-
mance.

3. Joint modeling at both training and inference
phases does not further improve performance,
compared with joint modeling only at the infer-
ence phase.

4. High-order joint modeling leads to modest per-
formance improvement on both d-tree and
c-tree parsing, compared with the first-order
counterpart.

5. Detailed analysis shows that joint parsing sig-
nificantly improves the complete matching ratio
for the combination of c- and d-trees.

Acknowledgements

We thank all the anonymous reviewers for their valu-
able comments. We also thank Yu Zhang for his
well-designed package Supar®, from which we bor-
row the batchified version of the first-order Eisner-
Satta algorithms in our work. This work was sup-
ported by National Natural Science Foundation of
China (Grant No. 62176173 and 62336006), and a
Project Funded by the Priority Academic Program
Development (PAPD) of Jiangsu Higher Education
Institutions.

Bibliographical References

Anne Abeillé. 2003. Introduction. Treebanks: Build-
ing and Using Parsed Corpora (editor: Anne
Abeillé). Kluwer Academic Publishers.

Michael Collins. 1999. Head-driven statistical mod-
els for natural language parsing. PhD thesis,
University of Pennsylvania.

Michael Collins. 2003. Head-driven statistical mod-
els for natural language parsing. CL.

Benoit Crabbé. 2015. Multilingual discriminative
lexicalized phrase structure parsing. In Proceed-
ings of EMNLP.

8https://github.com/yzhangcs/parser/tree/main

8152

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating
typed dependency parses from phrase structure
parses. In Proceedings of the Fifth International
Conference on Language Resources and Evalu-
ation (LREC’06).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of NAACL-HLT.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency
parsing. In Proceedings of ICLR.

Jason Eisner and Giorgio Satta. 1999. Efficient
parsing for bilexical context-free grammars and
head automaton grammars. In Proceedings of
ACL.

Daniel Fernandez-Gonzalez and Carlos Gémez-
Rodriguez. 2022. Multitask pointer network
for multi-representational parsing. Knowledge-
Based Systems.

Nikita Kitaev, Steven Cao, and Dan Klein. 2019.
Multilingual constituency parsing with self-
attention and pre-training. In Proceedings of
ACL.

Nikita Kitaev and Dan Klein. 2018. Constituency
parsing with a self-attentive encoder. In Proceed-
ings of ACL.

Dan Klein and Christopher Manning. 2002. Fast
exact inference with a factored model for nat-
ural language parsing. In Advances in Neural
Information Processing Systems.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of
ACL.

Zuchao Li, Junru Zhou, Hai Zhao, and Kevin
Parnow. 2022. Hpsg-inspired joint neural con-
stituent and dependency parsing in o(n?) time
complexity. IEEE/ACM Transactions on Audio,
Speech, and Language Processing.

Chao Lou, Songlin Yang, and Kewei Tu. 2022.
Nested named entity recognition as latent lex-
icalized constituency parsing. In Proceedings of
ACL.

Alireza Mohammadshahi and James Henderson.
2021. Recursive non-autoregressive graph-to-
graph transformer for dependency parsing with
iterative refinement. TACL.

Thanh-Tung Nguyen, Xuan-Phi Nguyen, Shafiq
Joty, and Xiaoli Li. 2020. Efficient constituency
parsing by pointing. In Proceedings of ACL.

Fernando C. N. Pereira and David H. D. Warren.
1983. Parsing as deduction. In Proceedings of
ACL.

Matthew E. Peters, Mark Neumann, Mohit lyyer,
Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. 2018. Deep contextual-
ized word representations. In Proceedings of
NAACL.

Slav Petrov, Leon Barrett, Romain Thibaux, and
Dan Klein. 2006. Learning accurate, compact,
and interpretable tree annotation. In Proceedings
of ACL.

Djamé Seddah, Sandra Kiibler, and Reut Tsar-
faty. 2014. Introducing the SPMRL 2014 shared
task on parsing morphologically-rich languages.
In Proceedings of the First Joint Workshop on
Statistical Parsing of Morphologically Rich Lan-
guages and Syntactic Analysis of Non-Canonical
Languages.

Michalina Strzyz, David Vilares, and Carlos Gémez-
Rodriguez. 2019. Sequence labeling parsing by
learning across representations. In Proceedings
of ACL.

Mihai Surdeanu, Richard Johansson, Adam Mey-
ers, Lluis Marquez, and Joakim Nivre. 2008. The
CoNLL 2008 shared task on joint parsing of syn-
tactic and semantic dependencies. In CoNLL
2008: Proceedings of the Twelfth Conference
on Computational Natural Language Learning,
pages 159-177, Manchester, England. Coling
2008 Organizing Committee.

Ben Taskar, Dan Klein, Mike Collins, Daphne Koller,
and Christopher Manning. 2004. Max-margin
parsing. In Proceedings of EMNLP.

Songlin Yang and Kewei Tu. 2022a. Bottom-up
constituency parsing and nested named entity
recognition with pointer networks. In Proceedings
of ACL.

Songlin Yang and Kewei Tu. 2022b. Headed-span-
based projective dependency parsing. In Pro-
ceedings of ACL.

Songlin Yang and Kewei Tu. 2023. Don't parse,
choose spans! continuous and discontinuous
constituency parsing via autoregressive span se-
lection. In Proceedings of ACL.

Yu Zhang, Zhenghua Li, and Zhang Min. 2020a.
Efficient second-order TreeCRF for neural de-
pendency parsing. In Proceedings of ACL.

Yu Zhang, Houquan Zhou, and Zhenghua Li. 2020b.
Fast and accurate neural CRF constituency pars-
ing. In Proceedings of IJCAI.

8153

https://aclanthology.org/W08-2121
https://aclanthology.org/W08-2121
https://aclanthology.org/W08-2121

Yue Zhang and Stephen Clark. 2008. A tale of
two parsers: Investigating and combining graph-
based and transition-based dependency parsing.
In Proceedings of EMNLP.

Zhisong Zhang, Xuezhe Ma, and Eduard Hovy.
2019. An empirical investigation of structured
output modeling for graph-based neural depen-
dency parsing. In Proceedings of ACL.

Junru Zhou and Hai Zhao. 2019. Head-Driven
Phrase Structure Grammar parsing on Penn
Treebank. In Proceedings of ACL.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min
Zhang, and Jingbo Zhu. 2013. Fast and accurate
shift-reduce constituent parsing. In Proceedings
of ACL.

Language Resource References

Martha Palmer, Fu-Dong Chiou, Nianwen Xue, and
Tsan-Kuang Lee. 2005. The Penn Chinese Tree-
bank. TIDES, GALE Projects. Philadelphia: Lin-
guistic Data Consortium, 5.1, ISLRN 426-628-
131-806-1.

Mitchell P. Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz, and Ann Taylor. 1999. The Penn
Treebank. TIDES, GALE Projects. Philadelphia:
Linguistic Data Consortium, 3.0, ISLRN 141-282-
691-413-2.

8154

https://www.islrn.org/resources/426-628-131-806-1
https://www.islrn.org/resources/426-628-131-806-1
https://www.islrn.org/resources/141-282-691-413-2
https://www.islrn.org/resources/141-282-691-413-2

	Introduction
	Related Work
	Lexicalized Tree Representation
	The Joint Parsing Approach
	Two-stage Parsing and First-order Factorization
	Training Loss
	Inference: Batchified Eisner-Satta
	Second-order Extension

	Model Architecture
	Experiments
	Settings
	Main Results
	Comparison with Previous Works
	Versus the Pipeline Method
	Speed Comparison
	Analysis

	Conclusions

