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Abstract
Much of commonsense knowledge in real world is in the form of procudures or sequences of steps to achieve
particular goals. In recent years, knowledge extraction on procedural documents has attracted considerable attention.
However, they often focus on procedural text but ignore a common multimodal scenario in the real world. Images
and text can complement each other semantically, alleviating the semantic ambiguity suffered in text-only modality.
Motivated by these, in this paper, we explore a problem of grounded multimodal procedural entity recognition
(GMPER), aiming to detect the procedural entity and the corresponding bounding box groundings in images (i.e.,
visual entities). A new dataset (Wiki-GMPER) is built and extensive experiments are conducted to evaluate the
effectiveness of our proposed model.
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1. Introduction

In our daily life, much of commonsense knowledge
is in the form of sequences of actions to achieve
particular goals (e.g., cooking recipes, crafting and
maintenance manuals), which is called Procedu-
ral Knowledge (Georgeff and Lansky, 1986; Ren
et al., 2023). For the large and growing amount
of unstructured or semi-structured procedural doc-
uments on media platforms such as WikiHow1,
EHow2 and Instructables3, it is a pressing need to
automatically extract procedural knowledge (e.g.,
entities or relations) for knowledge graph construc-
tions and downstream procedures understanding
applications (e.g., sequence ordering (Wu et al.,
2022), question answering system (Zhang et al.,
2022) and operation diagnosis (Luo et al., 2021)).
Generally, procedural documents often appear

in a multimodal manner. As shown in Figure 1,
each step in a procedural document contains an
image and the corresponding text description. Nev-
ertheless, current existing procedural entity recog-
nition (PER) methods (Jermsurawong and Habash,
2015; Leopold et al., 2018; Mysore et al., 2019;
Jiang et al., 2020; Luo et al., 2021) mainly focus
on the text-only settings, which is insufficient for
entity disambiguation (Yu et al., 2023). For exam-
ple shown in Figure 1, without the red bounding
box, it is difficult to refer to what state the procedu-
ral entity “Tomato” is in each step depending only
on text description (e.g., a whole tomato in Step

†The authors contribute equally.
‡Corresponding author

1https://www.wikihow.com/Main-Page
2https://www.ehow.com/
3https://www.instructables.com/

1, while tomato slices in Step 3). Capturing the
visual entities (e.g., the red bounding box in Figure
1) in images are beneficial for the procedural docu-
ment understanding and reasoning (Wu et al., 2022;
Zhang et al., 2022). Motivated by this, our work in
this paper considers a multimodal setting where the
multimodal procedural knowledge extraction sys-
tem not only detects the procedural entities from the
procedural text description but also links the proce-
dural entities to their corresponding bounding boxes
in images, as shown in Figure 1. The research on
this subject can be called as Grounded Multimodal
Procedural Entity Recognition (GMPER).
To tackle the GMPER task, two kinds of related

solutions, i.e., Multimodal Named Entity Recog-
nition MNER (Zhang et al., 2018) and Grounded
Multimodal Named Entity Recognition GMNER (Yu
et al., 2023) are proposed to extract entities from
social media posts. Specifically, existing MNER
methods (Moon et al., 2018; Lu et al., 2018; Yu
et al., 2020; Zhang et al., 2021a; Chen et al., 2022;
Wang et al., 2022a; Jia et al., 2022, 2023) are de-
signed to extract the textual entities with the help of
visual features from images, but fail to build the link
or correspondence between textual entities and vi-
sual entities. To solve this problem, Yu et al. 2023
propose a new task GMNER, aiming to simultane-
ously recognize the textual entities and the corre-
sponding visual regions in images.

Though recent GMNERmethods (Yu et al., 2023)
achieve remarkable performance, but still face sev-
eral main challenges when directly adapted to the
GMPER task. Firstly, different from the GMNER
task which mainly focuses on short multimodal
posts, the GMPER task is based on long multi-
modal procedural documents with multiple steps

https://www.wikihow.com/Main-Page
https://www.ehow.com/
https://www.instructables.com/
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Figure 1: A Case of Grounded Multimodal Procedural Entity Recognition for the Multimodal Procedure
document “How to Dice Tomatoes”.

Figure 2: Two Cases of Object Detection by
Grounded Language-Image Pretrained Model
(GLIP) (Li et al., 2022) with the Prompt Text “Tomato
or Persimmon”; The highest confidence score for
cting object “tomato” in left image is 0.76, while
that in the right image is 0.57.

and complex interactions between procedural en-
tities. As shown in Figure 1, the same procedu-
ral entity has multiple visual regions with different
states and meanwhile, there will be mutual occlu-
sion between visual procedural entities. Secondly,
the state of the same visual entity, such as shape,
color and forms (e.g., solid, liquid and gaseous) will
dynamically change as the procedure progresses.
Existing MNER or GMNER methods only consider
one descriptive text and the corresponding image.
It is a challenge for them to track the state changes
of visual entities between steps on multimodal pro-
cedural documents. For example shown in Figure
2, when the target object “tomato” is in a complete
state (left picture), GLIP (which is a well-known
language-image model pretrained with large-scale
multimodal data) can correctly detect the visual re-
gion with a high confidence score. However, as
the state of target object “tomato” changes (i.e.,
“tomato” is cut into slices in the right picture), GLIP
detects the visual region of “tomato” with a low
confidence score and even is prone to wrongly rec-
ognize it as another entity type (e.g., persimmon).
In our paper, we propose a sequence-aware

grounded multimodal procedural entity recognition
(SeqGMPER) method to detect both the textual

procedural entities and the corresponding visual
regions in images frommultimodal procedural docu-
ments. Specifically, to capture the state changes of
procedural entities as the procedure progresses, a
Textual or Visual Sequential Feature Fusion (TSFF
or VSFF) module is designed. The state features
of textual or visual entities in current step take into
account to that in the previous steps. Furthermore,
to conduct the evaluation on GMPER task, we con-
struct a new dataset, called Wiki-GMPER based
on the WikiHow resource (Anthonio et al., 2020), in
which we manually annotate the textural procedural
entities and the corresponding bounding boxes in
images.

To summarize, the main contributions of this pa-
per are listed as follows:

• We explore a new problem named Grounded
Multimodal Procedural Entity Recognition (GM-
PER), aiming to automatically recognize tex-
tual procedural entities and link the corre-
sponding visual regions in images from multi-
modal procedural documents.

• We design a textual and visual sequential
feature fusion method to capture the state
changes of entities as the sequence or proce-
dure progresses, which effectively assist the
detection of both textual and visual entities
from multimodal procedural documents.

• We create a new grounded multimodal proce-
dural entity recognition dataset Wiki-GMPER
based on the multimodal procedural docu-
ments. Extensive experiments are conducted
on the Wiki-GMPER dataset to evaluate the
effectiveness of our model in automatically de-
tecting procedural textual and visual entities.
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2. Related Work

One kind of important commonsense knowledge in
our daily life is the instructions or procedures which
are the form of a sequence of actions to complete
the particular goals. Current well-known knowledge
bases such as Wiki-Data (Vrandečić and Krötzsch,
2014), Wikipedia (Lehmann et al., 2015), Freebase
(Bollacker et al., 2007) and ConceptNet (Speer
et al., 2017) mainly focus on modeling descrip-
tive knowledge (i.e., the attributions or features of
things (Yang and Nyberg, 2015; Yuan et al., 2023)),
but neglect another commonsense knowledge—
Procedural Knowledge (i.e., the Knowledge of pro-
cedures or sequence of actions to achieve the spe-
cific goals). To automatically extract the procedu-
ral knowledge, existing work (Jermsurawong and
Habash, 2015; Feng et al., 2018; Mysore et al.,
2019; Qian et al., 2020; Yamakata et al., 2020; An-
thonio et al., 2020; Jiang et al., 2020; Pal et al.,
2021; Fang et al., 2022; Ren et al., 2023) are de-
signed to identify the procedural entities or their re-
lations from the textual procedure documents (e.g.,
food recipes and crafting). However, procedural
documents often generally appear in a multimodal
manner. Therefore, another kind of related works
(Pan et al., 2020; Xu et al., 2020) to construct the
step-level or entity-level workflow from the multi-
modal procedural documents. Nevertheless, they
only treat the visual features as additional clues but
fail to identify the fine-grained entity groundings in
images, which suffer from the entity ambiguity (Yu
et al., 2023).
Currently, there are two kinds of related works:

Multimodal Named Entity Recognition (MNER) and
Grounded Multimodal Named Entity Recognition
(GMNER). Specifically, MNER has recently at-
tracted considerable attention on social media, aim-
ing to recognize the named entity in text posts with
the help of visual features as additional clues. Most
of MNER methods (Moon et al., 2018; Lu et al.,
2018; Zhang et al., 2018; Arshad et al., 2019; Yu
et al., 2020; Zheng et al., 2020; Arshad et al., 2019;
Chen et al., 2021, 2022; Wu et al., 2020; Zhang
et al., 2021a; Wang et al., 2022b; Jia et al., 2023)
mainly focus on the multimodal features alignment
and fusion to recognize the textual entities. How-
ever, they only regard the visual features as signif-
icant clues for textual entity detection but neglect
the correspondence between the entity groundings
in images. To solve this problem, Yu et al. 2023 pro-
pose a grounded multimodal named entity recogni-
tion (GMNER) method to extract entity-type-region
triples from multimodal media posts. Different from
current MNER and GMNERmethods, GMPER task
focuses on the multimodal procedural documents
with multiple steps and complex interactions (e.g.,
state changes) between procedural entities as the

procedure progresses. Motivated by these, we ex-
plore a problem of grounded multimodal procedural
entity recognition (GMPER), aiming to extract the
procedural entity and the corresponding bounding
box groundings in images. In our paper, a new
datasetWiki-GMPER is built based on the WikiHow
dataset bases and we propose a Sequence-aware
GMPER method to capture the interaction among
steps. Extensive experiments are conducted to
evaluate the effectiveness of our proposed model.

3. Model

In this section, the problem definition of GMPER
task is firstly given and then we describe our pro-
posed Sequence-aware Grounded Multimodal Pro-
cedural Entity Recognition model (SeqGMPER) in
detail.

3.1. Problem Definition and Notations
Given a multimodal procedural document with
a sequence of steps D = {s1, s2, . . . , sLd

}
and a corresponding sequence of images V =
{v1, v2, . . . , vLd

}, the goal of the Grounded Mul-
timodal Procedural Entity Recognition (GMPER)
task is to extract a set of entity tuples:

Y = {(e1, r1), . . . , (et, rt)} (1)

where Ld denotes the number of steps, si denotes
the i-th step containing a sequence of words si =
{wi,1, wi,2, . . . wi,Ls

} in a procedure document; The
(ei, ri) refers to the i-th entity tuple, where ei is the
i-th procedural entity and ri is the corresponding
bounding box groundings in an image. Note that
when the procedural entity ei does not contain any
visual region in an image, the visual region ri is
set as None. Meanwhile, the visual region ri can
be defined as a 4-D vector (rx1

i , ry1

i , r
x2
i , ry2

i ) which
refers the top-left and bottom-right positions of the
grounded bounding box in the image, respectively.

3.2. Multimodal Feature Representation

3.2.1. Text & Image Representation

Inspired by the success of grounded language-
image pretrained model GLIP (Li et al., 2022)
(which pretrained with a large-scale multimodal
data) in object detection and phrase grounding
tasks, we employ the pretrained multimodal en-
coder in GLIP (Li et al., 2022) to extract features for
both the text and image in each step. Given a pro-
cedural document D, Specifically, given one step
in a procedural document D, which contains a se-
quence of words si = {wi1, wi2, . . . , wiLs

} and the
corresponding image vi as the input fo the text en-
coder and visual encoder in GLIP respectively, the
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Figure 3: The Framework of Our Proposed Model SeqGMPER

word embedding matrix Si = {wi1,wi2, . . . ,wiLs
}

and the image feature map Mi can be obtained,
where Si ∈ RLs×dt , wij ∈ Rdt , Mi ∈ Rdv×dw×dh

and dv denotes the number of the convolution ker-
nel (i.e., the number of feature maps). Then, the
mean-pooling operation for each feature mapMi is
conducted and we can finally obtain the feature rep-
resentation vi for the i-th image, where vi ∈ Rdv .

3.2.2. Candidate Region Representation

Following Yu et al. (2023), a widely-adopted ob-
ject detection model VinVL (Zhang et al., 2021b)
is utilized to extract the candidate semantic visual
region (i.e., the candidate bounding box ground-
ings). Then, we rank candidate visual regions
based on their detection probabilities. Specifically,
for the i-th step in a multimodal procedure docu-
ment, we identify the top-K candidate visual re-
gions Ci = {ci1, ci2, . . . , ciK}, where the region cij
can be denoted as a 4-D vector (cx1

ij , c
y1

ij , c
x2
ij , c

y2

ij )
which respectively refers to the top-left and bottom-
right positions of the candidate bounding box. Then,
the feature map of each candidate visual region can
be obtained by extracting the scaling feature area of
the corresponding original image feature map Mi.
In the same way, the mean-pooling operation is
used to obtain the final feature representation of the
candidate visual regions Ri = {ri1, ri2, . . . , riK},
where rij ∈ Rdv .

3.3. Multimodal Sequential Feature
Fusion

Since the steps of the multimodal procedural doc-
uments are interdependent and interrelated, the
entities and regions discovered in the previous step

can provide the important clues for the identification
of entities and regions in the following steps. For ex-
ample shown in Figure 1, we can observe that the
token “tomato" would be regarded as a procedural
entity with a high probability since the procedural
entity “tomato" appears in previous step. Likewise,
the identified visual region in current step would be
also beneficial for the following steps’ visual region
detection. Motivated by this observation, we design
a Multimodal Sequential Feature Fusion Module
to capture the interactions between procedural en-
tities and visual regions between steps. For the
sequence data of different modalities (i.e., textual
and visual modalities), we respectively conduct the
sequential interaction feature fusion.

Sequential Element Attention Mechanism:
For both textual sequence (i.e., word sequence
in each step) and visual sequences (i.e., candi-
date visual region sequence in each step), we
respectively adopt the sequential element attention
mechanism to capture the interaction features
among steps. For the convenience of descrip-
tion, we uniformly use X = {T1,T2, . . . ,Tn} to
represent the sequences in both textual and visual
modalities, where Ti = {ti,1, ti,2, . . . , ti,m} denotes
the sequence of element feature representation
and m denotes the length of sequence. Thus,
given the previous step Ti−1 and current step Ti,
each fused element representation tfusei,j can be
calculated as follows:

tfusei,j = [

m∑
j=0

αi−1,jti−1,j ; ti,j ] (2)

where ti−1,j denotes the feature representation of
the j-th element in previous step Ti−1. The impor-
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tant degree αi−1,j for the each sequential element
tij in step Ti can be calculated as follows:

αi−1,j =
eti−1,jti,j∑m
k=0 e

ti−1,kti,j
(3)

Textual Sequential Feature Fusion: For the tex-
tual modality, given a word sequence Wi =
{wi,1,wi,2, . . . ,wi,Ls} in each step from the mul-
timodal procedural document, the Sequential Ele-
ment Attention can transfer them into another repre-
sentation sequence W f

i = {wf
i,1,w

f
i,2, . . . ,w

f
i,Ls
}.

Thus, based on the sequential element attention
module, given Each token representation in current
step would fuse semantic features from previous
step.

Visual Sequential Feature Fusion: Similar to
the Textual Sequential Interaction Feature Fusion,
given the the Top-K visual regions embeddings
Ri = {ri1, ri2, . . . , riK} in the i-th step, the Se-
quential Element Attention is utilized to transfer
them into another visual region representation se-
quenceRf

i = {rfi,1, r
f
i,2, . . . , r

f
i,K}. Thus, based on

the sequential element attention module, the visual
region representation in current step would try to
capture the similar visual regions in the previous
step, which builds the feature interaction between
steps.

3.4. Grounded Multimodal Procedural
Entity Recognition (GMPER)

Based on Section Multimodal Sequential Feature
Fusion, we can obtain the representation of token
sequence and visual region sequence in each step.
To conduct the GMPER task, three tasks i.e., Proce-
dural Entity Recognition (PER), Binary Groundable
Classification (BGC) and Grounded Procedural En-
tity (GPE) are conducted.

3.4.1. Procedural Entity Recognition

Given the multimodal procedural document (includ-
ing the textual sequence and the visual region se-
quence), PER task aims to detect the procedural
entities from token sequence in each step by un-
derstanding the language-visual features. Specif-
ically, given the feature representation of token
sequence in each step W f

i (which obtained by
section Multimodal Sequential Feature Fusion),
we employ LSTM-CRF (Huang et al., 2015) layer
to predict the corresponding sequence of labels
yper = {y1, y2, . . . , yLs},

p(yper|wi,j) = LSTM -CRF (W f
i ) (4)

where the label yi ∈ {B-Object, I-Object, O} and
wi,j denotes the j-th token of the word sequence in

the step si. Then, the CRF loss Lentity is adopted
to optimize the model’s parameters.

3.4.2. Binary Groundable Classification

Based on the procedural entities identified in PER,
a binary classification task is employed to deter-
mine each predicted procedural entity is ground-
able or ungroundable. Specifically, considering
multi-token procedural entities, the entity embed-
dings Ef

i = {efi,1, e
f
i,2, . . . , e

f
i,Le
} are obtained by

mean-pooling the feature representations of mul-
tiple token belonging to the same entity, where
eij ∈ Rdt and Le is the number of identified proce-
dural entities. Finally, the probability of the groud-
able and ungroundable procedural entity can be
calculated as follows:

p(ybgc|ei,j) = Softmax(Wefi,j + b) (5)

where ybgc ∈ {0, 1} and W ∈ Rdt×2 and b are the
parameter fo the BGC classifer. Then, the cross-
entropy loss Lgroudable is utilized to optimize the
model’s parameters.

3.4.3. Grounded Procedural Entity

For the i-th step, we employ a crossmodal attention
module (Tsai et al., 2019) to fuse entity-level embed-
dings Ef

i and visual region embeddings Rf
i . We

then obtain the probability distribution over all the
visual regions for each procedural entity denoted
by zi, as follows:

Hi = Crossmodal-Attention(Ei,Ri) (6)
Zi = Sigmoid(WGHi +B) (7)

where Hi ∈ RLg×dc ,WG ∈ Rdc×K ,B ∈
R1×K ,Zi ∈ RLg×K and Lg denotes the number
of groundable entities. Specifically, we set a thresh-
old for the GPE task, the visual region ri,j belongs
to the entity if the predcition probability greater than
0.5. Then, the BCE loss is used to optimize the pa-
rameters of the entity grounding recovery module
as follows:

Lgrounding = BCE(Zi,Ygpe) (8)

where Ygpe ∈ RLg×K denotes the matrix of the
ground true labels.

Finally, in the training stage, the three losses (i.e.
Lentity and Lgroundable and Lgrounding) are simulta-
neously used to conduct the parameter optimiza-
tion, as follows:

L = Lentity + Lgroundable + Lgrounding (9)
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Dataset Statistics Train Test Validation
# Doc. 809 299 122
# Step 4794 1341 701

Avg Step of Doc. 5.90 5.00 5.75
# Entity 19869 5836 2738

# Groundable 11029 2854 1252
# Ungroundable 8840 2982 1486

Table 1: The statistics of our annotated dataset
Wiki-GMPER

4. Experiment

We firstly introduce the construction of the new
dataset Wiki-GMPER and then analyze the experi-
mental results in detail.

4.1. Dataset Collection & Annotation
We collect the corpus from the benchmark se-
quence ordering dataset i.e. WikiHow (Anthonio
et al., 2020;Wu et al., 2022) which provides a collec-
tion of human-created how-to articles about various
topics (e.g., Crafts, Computers and Recipes). Two
topics i.e., Crafts and Recipes are selected to build
Wiki-GMPER, a dataset of multimodal procedural
documents with the procedural entity taggings and
the corresponding bounding box annotations in im-
ages, as shown in Figure 1. For the procedural
entity taggings, three well-educated annotators are
employed to make annotations by averaging the
candidate procedural corpus with the BRAT tool4.
Then, the bounding box annotation is conducted
with the graphical image annotation tool LabelImg
tool5. To ensure the quality of human-annotation,
each annotator is required to give the confidence
score for each annotated label. We weigh the con-
fidence score of each annotator for the same label
and the label with the highest score will be pre-
served.

Statistically, the final dataset contains 1230 mul-
timodal procedural documents with 6836 steps.
Each step consists of a text description and a cor-
responding image. We split the final annotated
dataset into train, test and validation sets with 7:2:1
ratio. Table 1 depicts the detailed statistics of the
annotated dataset Wiki-GMPER.

4.2. Experimental Settings

We conduct extensive experiments6 on our an-
notated dataset Wiki-GMPER. Following Yu et al.

4http://brat.nlplab.org/index.html
5https://github.com/HumanSignal/

labelImg
6The code and datasets are publicly available

at https://github.com/betterAndTogether/
SeqGMPNER

2023, the VinVL model (Zhang et al., 2021b) is
used to obtain the top-K candidate visual regions.
We utilize the grounded language-image pretrained
model (GLIP) (Li et al., 2022) to extract the features
representation of both text and images. Thus, the
dimension of word representation is set as 768. In
each optimization step during training, one multi-
modal procedural document (containing multiple
steps) is used (i.e., the hyper-parameter batch size
is set as 1). We use the AdamW optimizer for pa-
rameter tuning with the learning rate 2e-5. In our
experimental evaluation, the precision, recall and
F1 metrics are utilized to evaluate the models’ per-
formance, following Yu et al. 2023.
In our experiments, we conduct the compara-

tive experiments with two groups of related works,
including the text-only based methods (BiLSTM-
CRF-None (Yu et al., 2023), BERT-None (Ken-
ton and Toutanova, 2019), BERT-CRF-None (Yu
et al., 2023) and BARTNER-VinVL-NONE (Yan
et al., 2021)) and the multimodal based methods
(i.e., UMT-RCNN-EVG (Yu et al., 2020), UMT-VinVL-
EVG (Yu et al., 2020), UMGF-VinVL-EVG (Zhang
et al., 2021a), ITA-VinVL-EV (Wang et al., 2022a),
BARTNER-VinVL-EVG (Yu et al., 2023) and H-
Index (Yu et al., 2023)).

4.3. Result Analysis

4.3.1. Comparison with Related Models

To demonstrate the effectiveness of our proposed
model, we conduct the comparative experiments
with current related works on our annotated dataset
Wiki-GMPER, as shown in Table 2. As we can
observe, our proposed model obtains the better
performance respectively on Precision, Recall and
F1 scores and achieves the state-of-the-art per-
formance. Specifically, comparing with existing
text-only NER methods (e.g., BiLSTM-CRF (Huang
et al., 2015), BERT-None (Kenton and Toutanova,
2019) and BARTNER (Yan et al., 2021)), our pro-
posed model (i.e., SeqGMPER) obtains the higher
F1 score with a large margin. Comparing the exper-
imental results between existing text-only methods
and our proposed model SeqGMPER-None, we
analyze that our proposed model can effectively
perform alignment and fusion of text and visual
modality data. The comparative experimental re-
sults can demonstrate that the visual features from
images significantly improve the performance of
procedural entity recognition.

Moreover, existing MNER and GMNER methods
(i.e., UMT-RCNN-EVG, UMT-VinVL-EVG (Yu et al.,
2020), UMGF-VinVL-EVG (Zhang et al., 2021a),
ITA-VinVL-EVG (Wang et al., 2022a), BARTNER-
VinVL-EVG, H-Index (Yu et al., 2023)) are adapted
into GMPER tasks. Compared with them, our pro-
posed model achieves better performances respec-

http://brat.nlplab.org/index.html
https://github.com/HumanSignal/labelImg
https://github.com/HumanSignal/labelImg
https://github.com/betterAndTogether/SeqGMPNER
https://github.com/betterAndTogether/SeqGMPNER
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Model Pre. Rec. F1

Text Only

BiLSTM-CRF-None 16.45 14.08 15.17
BERT-None (Kenton and Toutanova, 2019) 19.96 20.53 20.24

BERT-CRF-None 19.86 21.82 20.79
BARTNER-None (Yan et al., 2021) 20.30 22.92 21.53

Text+Image

UMT-RCNN-EVG (Yu et al., 2020) 32.47 33.91 33.18
UMT-VinVL-EVG (Yu et al., 2020) 38.14 39.82 38.96

UMGF-VinVL-EVG (Zhang et al., 2021a) 37.70 39.89 38.76
ITA-VinVL-EVG (Wang et al., 2022a) 38.85 40.76 39.78

BARTNER-VinVL-EVG (Yu et al., 2023) 34.08 39.76 36.70
H-Index (Yu et al., 2023) 41.45 43.37 42.38
SeqGMPER-None (Ours) 40.20 40.86 40.53

SeqGMPER (Ours) 44.86 43.74 44.28

Table 2: The Comparative Experimental Results with Current Related Methods. The model “{X}-None”
denotes the region predictions default as None (i.e., Ungroundable).

Methods Pre. Rec. F1
SeqGMPNER 44.86 43.74 44.28

SeqGMPNER w/o TSFF 44.30 41.06 42.62
SeqGMPNER w/o VSFF 43.82 40.98 42.35

Table 3: Ablation Experiments of Our Model

Tasks Pre. Rec. F1
PER 78.77 83.26 80.96
BGC 69.71 81.97 75.35
GPE 64.00 59.49 61.66

Table 4: The average experimental results on
three subtasks: Procedural Entity Recognition
(PER), Binary Groundable Classification (BGC)
and Grounded Procedural Entity (GPE).

tively on Precision, Recall and F1 scores, as shown
in Table 2. We analyze that existing MNER or
GMNER methods can only recognize the proce-
dural entity and identify bounding box groundings
for each step individually (i.e., including a text de-
scription and a corresponding image). Thus, they
cannot capture the state changes of visual entities
as the procedure progress, which impacts the de-
tection of bounding box groundings. Instead, our
proposed model with the sequential feature fusion
module can build the connections between steps
respectively for textual and visual feature represen-
tation. The comparative experimental results in
Table 2 can demonstrate the effectiveness of our
proposed model in capturing state changes in both
textual and visual entities between steps.

4.3.2. Ablation Experiments

To further evaluate the effectiveness of each mod-
ule in our proposed model, the ablation experi-
ments are conducted. Specifically, we conduct the

Figure 4: The impact of the value ofK (Num. of the
VinVL regions) on GMPER task for H-Index and
our proposed model SeqGMPER.

ablation experiments for the textual sequential fea-
ture fusion (TSFF) and visual sequential feature
fusion (VSFF), as shown in Table 3. The perfor-
mance of our proposed model drops significantly
without the TSFF or the VSFF module, which can
evaluate the effectiveness of our proposed TSFF
and VSFF modules. Specifically, according to our
observation, the procedural entities mentioned in
current step would often appear in the later steps in
a procedural document (e.g., the procedural entity
“tomato” in Figure 1). Thus, the contextual steps
would provide important clues for the procedural en-
tity recognition in current step. The ablation experi-
mental results can demonstrate that our proposed
TSFF module can effectively capture the interaction
among steps, which is beneficial to the procedural
entity detection. In the same way, the state of visual
entity would change as the procedure progresses.
The ablation experimental results can evaluate that
VSFF can effectively capture the state changes of
visual entity to detect the bounding box groundings.
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Figure 5: Prediction comparison on amultimodal procedural document “How toMake Strawberry Butterflies”
between H-Index and our proposed model SeqGMPER. The symbols X and ÃŮ denote correct and
incorrect predictions.

4.3.3. Analysis of Sub-Tasks in GMPER

We also conduct the experiment to evaluate
the performance of the three sub-tasks in our
proposed model: Procedural Entity Recognition
(PER), Binary Groundable Classification (BGC)
and Grounded Procedural Entity (GPE). In train-
ing stage, all subtasks (i.e., PER, BGC and GPE)
will be conducted to optimize the models’ param-
eters. In order to independently evaluate our pro-
posed model in BGC task, the ground-true labels
of PER task are given to evaluate the performance
in testing stage. In the same way, both the ground-
true labels of PER and BGC tasks are given to
predict the bounding box groundings in GPE task.
As shown in Table 4, our proposed model can ef-
fectively recognize the textual procedural entities
based on the multimodal semantic understanding.
From the experimental results on BGC and GPE
tasks, we can analyze that our proposed model
can learn the multimodal language-image features
and effectively detect the groundable procedural
entities in images. To some extent, it can evaluate
that our proposed model can effectively capture the
interactions between steps.

4.3.4. Impact Analysis for Hyper-Parameter K

As shown in Figure 4, we also conduct the com-
parative experiments for our proposed model with
different number of candidate VinVL regions. Com-
pared with H-Index (Yu et al., 2023), our proposed
model SeqGMPER obtains the better performance
in all K-value settings. According to our observa-
tion, both our proposed model and H-Index obtain
the lowest F1 score in GMPER task when the hyper-
parameter K is set as 5. We analyze that most steps
in procedural documents contain more than 5 visual
entities in our annotated dataset. As the value of
K increases, the performance of both H-Index and
our proposed model improves significantly. They

both achieve the highest F1 scores when the hyper-
parameter K is set between 8 and 12, which can
indicate that most of steps in our annotated dataset
have around 8-12 visual regions. When the hyper-
parameter K is set higher than 12, the performance
gradually decreases.

4.3.5. Case Study

To intuitively explain the effectiveness of our pro-
posed model, we conduct the case studies on GM-
PER task for H-Index (Yu et al., 2023) and our
proposed model SeqGMPER. As shown in Figure
5, we can observe that both SeqGMPER and H-
Index can correctly recognize the procedural entity
“strawberry” in step 1. However, as the shape of
“strawberry” changes in the following steps (i.e.,
step 2, 3 and 4), H-Index gradually fails to local-
ize its bounding boxes. We analyze that existing
works cannot effectively capture the interaction (e.g,
the state changes of procedural entities) between
steps. Instead, our proposed model SeqGMPER
can correctly recognize both the procedural entities
and their corresponding bounding boxes in images.
The experimental results in this case study demon-
strate that SeqGMPER can effectively capture the
state changes of visual entities as the procedure
progresses and achieve the better performance
than H-Index.

5. Conclusion

In our paper, we explore a problem of automat-
ically recognizing procedural entities in text de-
scriptions and linking their corresponding bounding
box groundings in images for multimodal procedu-
ral documents, named grounded procedural entity
recognition (GMPER). Existing procedural knowl-
edge extractionmethods often focus on recognizing
procedural entities or relations in text-only modal,
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but neglect a common multi-modal scenario. Exist-
ing related works i.e., MNER and GMNER cannot
effectively capture the interaction between steps
and suffer from the bounding box grounding predic-
tion errors. To solve these problems, we propose
a sequence-aware GMPER method to capture the
state changes of procedural entity as the procedure
progresses. Extensive experiments are conducted
on our constructed dataset to evaluate the effec-
tiveness of our proposed model.
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