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Abstract
We present GlotScript, an open resource and tool for low resource writing system identification. GlotScript-R is a
resource that provides the attested writing systems for more than 7,000 languages. It is compiled by aggregating
information from existing writing system resources. GlotScript-T is a writing system identification tool that covers
all 161 Unicode 15.0 scripts. For an input text, it returns its script distribution where scripts are identified by ISO
15924 codes. We also present two use cases for GlotScript. First, we demonstrate that GlotScript can help cleaning
multilingual corpora such as mC4 and OSCAR. Second, we analyze the tokenization of a number of language models
such as GPT-4 using GlotScript and provide insights on the coverage of low resource scripts and languages by each
language model. We hope that GlotScript will become a useful resource for work on low resource languages in
the NLP community. GlotScript-R and GlotScript-T are available at https://github.com/cisnlp/GlotScript.
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1. Introduction

We are interested in automatically identifying the
writing system or script a given text is written in. We
will refer to this automatic identification of scripts
as script identification. When doing research on
and developing technology for low resource lan-
guages, script identification is useful. For example,
when compiling a corpus for a low resource lan-
guage, script identification can serve as part of
quality control: texts written in scripts not used for
the language can be excluded. Similarly, when
training the tokenizer of a language model for low
resource languages, an analysis of the learned to-
ken vocabulary allows developers to see how well
a script is represented, an indication of how well
languages written in that script are represented.

In such low resource scenarios, language identi-
fication is an alternative to script identification: lan-
guage identification can also be used for quality
control and for the analysis of language model
vocabularies. However, language identification
for low resource languages is prone to high er-
ror rates (Kargaran et al., 2023; Kreutzer et al.,
2022; Caswell et al., 2020). Many low resource
languages are poorly identified by existing tools,
due to data scarcity and high variability in orthog-
raphy, genres and domains. By contrast, script
identification can be performed with a much higher
accuracy and it is therefore a useful functionality in
the abscence of reliable language identification for
many low resource languages.

In this paper, we present GlotScript, a resource
and tool for low resource identification of writing
systems, i.e., low resource script identification.

Our contributions are as follows. (i) We compile
and organize GlotScript-R, a comprehensive re-
source for script identification, associating attested
writing systems with language varieties. We make
this resource available to the community. (ii) We
publish GlotScript-T, a tool for script identification
which covers all 161 scripts in Unicode 15.0. It
computes the script distribution for any input text.
Scripts are identified by their ISO 15924 codes.
To the best of our knowledge, no such tool is cur-
rently available. (iii) We demonstrate the benefits of
GlotScript-T and GlotScript-R for corpus cleaning,
and show that the quality of existing low resource
corpora can be improved using script identifica-
tion. (iv) We analyze the tokenization of large lan-
guage models (LLMs) – including GPT-4, Falcon
and Llama2 – using GlotScript-T. This analysis
gives valuable insights regarding LLM coverage (or
lack of coverage) of low resource languages.

2. Background and Related work

2.1. Script Identification
The Stops library (Andrews et al., 2022), part of the
NLLB project (NLLB Team et al., 2022), is capable
of detecting the script of a given text in 38 scripts
based on ISO 15924. It uses the Unicode blocks
defined for each script.

Ács (2019) gathered Unicode data block ranges
and mapped them to 18 macro Unicodes. For in-
stance, they categorized ranges like "Basic Latin",
"C1 Controls and Latin-1 Supplement", "Latin Ex-
tended Additional", "Latin Extended-A", and "Latin
Extended-B" into the Latin script. These ranges

https://github.com/cisnlp/GlotScript
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were then employed with regular expressions to
identify the script of an input text.

These methods do not cover all of the 161 scripts
that Unicode 15.0 defines. Additionally, since they
use entire blocks,1 the result may not be entirely
accurate. For example, the range from U+0000 to
U+007F is part of the "Basic Latin" block. However,
within this range, there are some common charac-
ters that do not belong to a specific script and can
be used universally, such as the left square bracket
(U+005B). Compared to blocks, using a more gran-
ular approach, in particular a per-character ap-
proach,2 can be beneficial.

Python has the built-in library unicodedata.3 It al-
lows working with the Unicode Database. The com-
mand unicodedata.name(char) can be used
to obtain the name of a character. This command
only works for single characters. However, the char-
acter’s name does not always include the name of
its script. Even if the name of the character con-
tains information about its script, there is no direct
and consistent correspondence of that information
to the codes of the ISO 15924 standard.

2.2. Language Resources
Many existing resources that compile informa-
tion about the world’s languages, such as Ethno-
logue (Eberhard et al., 2023),4 Glottolog (Ham-
marström et al., 2023) and WALS (World Atlas
of Language Structures) (Dryer and Haspelmath,
2013) do not contain information about writing sys-
tems.

Our work is most closely related to the work of
van Esch et al. (2022). Apart from the fact that
van Esch et al. (2022) do not provide script iden-
tification software for use cases such as corpus
cleaning, our approach differs in methodology. van
Esch et al. (2022) also aim to establish an ex-
tensive metadata repository including writing sys-
tems and speaker details. They cover more than
2,800 languages. But their methodology heavily fo-
cuses on analyzing online texts from sources such
as Wikipedia, JW.org, Crúbadán (Scannell, 2007)
and PanLex (Kamholz et al., 2014). They then
extend their analysis to projects like Unilex,5 Cor-
pusCrawler (Brawer, 2017), Bible.is and the LTI
corpus for LangID (Brown, 2014). Relying on texts
to determine the correct script for a language may
not be a robust method, as texts collected online
can be noisy or may lack accurate labels. We fur-
ther discuss van Esch et al. (2022)’s work and its
limitations in §3.3, including its tendency to include

1https://unicode.org/Public/15.0.0/ucd/Blocks.txt
2https://unicode.org/Public/15.0.0/ucd/Scripts.txt
3https://docs.python.org/3/library/unicodedata.html
4The free access version.
5https://github.com/unicode-org/unilex

the Latin script for languages for which romaniza-
tion is not widely used.

2.3. Applications

Corpus cleaning. One of the uses of script iden-
tification is corpus cleaning. ImaniGooghari et al.
(2023) detect the script for each sentence and treat
each language-script as a separate entity. They ex-
clude all corpora for which the language-scripts are
found to be incorrect or noisy; for example, when
there is a mismatch between language and script,
the corpus is removed.

Kreutzer et al. (2022) reported in their manual au-
dit on multilingual datasets that languages written
in scripts other than their correct ones, or text mixed
with non-linguistic material, are good indicators of
a corpus being of low quality.

Analysis of pre-trained models. Ács (2019)
studies the mBERT (Devlin et al., 2019) tokenizer
vocabulary. They compile unicode ranges into 18
categories and use these ranges with regex to de-
tect the script of vocabulary tokens. Similar to Ács
(2019), van Esch et al. (2022) analyzes the vocab-
ulary coverage of three models: mBERT (Devlin
et al., 2019), XLM-R (Conneau et al., 2020) and
mT5 (Xue et al., 2021). Our analysis covers a wider
range of languages models and benefits from the
alternative methodology we adopt for GlotScript.

Fonts and keyboards. One application of study-
ing writing systems is the development of Unicode
fonts, such as SIL Fonts,6 or keyboards for devices
such as Keyman.7

OCR post-correction. Studying writing systems
also finds practical use in improving OCR (optical
character recognition) systems for rare languages.
Take, for instance, the case where a Cyrillic char-
acter is erroneously replaced with a visually sim-
ilar Latin letter. This highlights the importance of
integrating post-correction methods into OCR sys-
tems (Rijhwani et al., 2020). A simple method to
detect such errors would involve script identification
performed on any part of the text to determine the
percentage of characters in that part belonging to
the same script.

3. GlotScript-R

We now describe GlotScript-R, a resource provid-
ing writing system metadata for more than 7,000
language varieties. We identify languages based
on ISO 639.8

6https://software.sil.org/fonts/
7https://keyman.com/
8https://iso639-3.sil.org/
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3.1. Source Selection
We conducted an exhaustive search to identify po-
tential sources of information about writing sys-
tems that we could use for our goals in creating
GlotScript. We focused on sources known for col-
laborative contributions or recognized for their re-
liability across a wide range of languages. We
summarize the result of this search as follows.

(i) LREC_2800 metadata. van Esch et al. (2022)
compiled a database containing information on the
writing systems of more than 2,800 languages un-
der the CC BY 4.0 license, permitting modification
and redistribution.9

(ii) Wikipedia metadata. Wikipedia hosts pages
for each language’s ISO 639 code and some of
these pages include details about the language’s
writing system. It also contains information about
writing systems that have not yet been incorporated
into Unicode. However, not all pages contain meta-
data for writing systems. This dataset is available
under the CC BY-SA 4.0 license, permitting modifi-
cation and redistribution.10

(iii) ScriptSource metadata. Developed by SIL,
ScriptSource is a dynamic collaborative website
serving as a reference for writing systems. It gives
information on which languages use which script.
This dataset is available under the CC BY-SA 3.0 li-
cense, permitting modification and redistribution.11

(iv) LangTag metadata. The WSTech team of
SIL offers writing system metadata for language
varieties (format: JSON). This dataset is available
under the MIT License, permitting modification and
redistribution.12

(v) Other sources. We came across additional
sources during our search, but they have limited
coverage of languages. For example, the IANA
language subtag registry provides script metadata
for 134 languages.13 Other sources are consulted
by sources (i) – (iv), for example, Omniglot14 in
LREC_2800 and Unicode CLDR15 in LangTag.

Note that none of these sources cover all lan-
guages, and there is a potential for some languages
to have incorrect scripts listed (see §3.3). To ad-
dress this, we incorporate all four sources (i) – (iv)
in GlotScript-R; this allows us to give preference to
script identification decisions that several sources
agree upon. We gathered the Wikipedia and Script-
Source data – which are not accessible in tabular
format – by crawling.

9https://github.com/google-research/url-nlp
10https://en.wikipedia.org/wiki/ISO_639:{ISO639}
11https://scriptsource.org/scr/{ISO15924}
12https://github.com/silnrsi/langtags
13https://iana.org/assignments/language-subtag-

registry
14https://www.omniglot.com/writing/langalph.htm
15https://github.com/unicode-org/cldr-json

3.2. Preprocessing
There is a total of 8030 unique three-letter ISO
639 codes that at least one of the sources covers.
The most used version of the ISO 639 code set
in the NLP community is ISO 639-3; however, not
all three-letter codes are part of this subset. For
instance, ber (Berber languages) is part of code
sets 639-2 and 639-5, but not part of 639-3. To
handle this, we include all three-letter ISO codes,
not just those from ISO 639-3.

The number of three-letter ISO 639 codes cov-
ered is 2836 for LREC_2800, 1726 for Wikipedia,
7875 for ScriptSource and 7901 for LangTag.

3.3. Agreement
We assess agreement between two metadata
sources using Jaccard similarity:

J(A,B) =
|A ∩B|
|A ∪B|

where A and B are sets of scripts given for an
ISO code by the two sources in question. Since
the Wikipedia data is of a smaller size and does
not represent writing systems in a uniform format
(e.g., ISO 15924), we use Wikipedia as a secondary
source of information when merging information,
especially in cases where there is no agreement.

Pair |L| CA PA NA
(LangTag, LREC_2800) 2814 2385 404 25
(ScriptSource, LREC_2800) 2811 2372 414 25
(LangTag, ScriptSource) 7858 7567 287 4

Table 1: Agreement counts for each pair of sources.
CA: complete agreement (J = 1.0), PA: partial
agreement (0 < J < 1), NA: no agreement (J = 0),
|L|: number of common ISO 639 codes.

We present the results for each pair in LangTag,
ScriptSource and LREC_2800 in Table 1. LangTag
and ScriptSource completely agree (J = 1.0) for
96% of ISO codes. This is not surprising, given
that both sources are from SIL. However, some
disagreements still exist. Additionally, it appears
that LangTag aligns more closely with LREC_2800,
as it shares a greater number of ISO 639 codes,
fewer partial agreements (0 < J < 1) and no dis-
agreements (J = 0).

To understand the discrepancies between dif-
ferent metadata sources, we conducted a manual
analysis, and observed the following trends.16

(i) Rare or historic scripts. ScriptSource and
LangTag metadata tend to include rare and historic

16We analyse discrepancies for languages which
Wikipedia data knowledge is available. Our approach
involves relying on information sourced from Wikipedia
and other web-based resources for each language.
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scripts. For instance, in the case of Turkish (tur),
alongside the primary Latin script, these sources
also list Arabic, Greek and Cyrillic. In contrast,
LREC_2800 exclusively lists Latin, the current offi-
cial script.

(ii) Romanized versions. LREC_2800 often
introduces a Latin version for a language, even
if it is rarely used. For instance, there is a Latin
entry for fas (Farsi) in LREC_2800, despite it not
being the official script and not widely used, even
in social networks. Scriptsource and langtag only
report Arabic.17

(iv) Partial information. There are instances
where each source only partially supports certain
scripts. For example, ScriptSource and LangTag
mention that aat (Arvanitika Albanian) uses the
Greek script while LREC_2800 reports the use of
the Latin script. However, resolving this conflict is
difficult because there is no proper definition. There
is disagreement among Arvanitika speakers about
using the Greek versus the Latin script. Addition-
ally, this language is classified as an endangered
language. The writing history for this language is
outlined in Sasse (1991).

(v) Errors. There are instances where it is clear
that a language is highly unlikely to be written in a
particular script. One of these cases is var (Huarijio)
in LREC_2800, which is indicated to be written in
Devanagari. In our judgement, this is an error since
var is a Uto-Aztecan language spoken in northwest-
ern Mexico and Devanagari is only used for South
Asia languages.

3.4. Compilation
We now explain the process of compiling
GlotScript-R by combining different metadata
sources. As will be apparent from our discussion,
creating a reliable writing system resource is not
straightforward.

Two of our main desiderata are usefulness for
NLP and accuracy.

As far as usefulness for NLP is concerned, if we
accepted all scripts that any of the sources lists
for a language, then we would include errors and
scripts that in practical NLP contexts are very un-
likely to be relevant. The most important instance
of this is that some sources give Latin as a valid
script in many cases where its use is extremely
rare. Including Latin for such languages would be
harmful for use cases such as corpus quality con-
trol. For example, a non-Farsi subcorpus written in

17Ultimately, the meaning of “widely used” depends on
the intended application. If data entered on smartphones
is the primary interest of a company, then Latin may
actually be not infrequent because text messages may be
entered in the Latin script, for example, by Farsi speakers
in countries where the Latin script dominates.

Latin cannot be excluded using script identification
if we accept Latin as a standard script for Farsi.

On the other hand, the desideratum of accuracy
demands that we do not simply adopt a criterion
of perfect agreement of the four sources. Such a
heuristic would exclude important language meta-
data that might be useful to the NLP community.

To allow users of GlotScript-T to trade off use-
fulness against accuracy, we define two metadata
categories: CORE and AUXILIARY. The CORE
metadata give the primary scripts based on consen-
sus among the metadata sources. The AUXILIARY
metadata give secondary scripts, those that are
only specified as admissible by a single source.

Given the 96% complete agreement between
LangTag and ScriptSource, we prioritize resolving
disagreements between these two sources using
information from Wikipedia and LREC_2800. We
merge LangTag and ScriptSource as one consoli-
dated group named SIL, which is the aggregation
of LangTag and ScriptSource if they match or if the
discrepancies can be resolved based on additional
resources. Only those discrepancies that cannot
be resolved this way are collected in SIL2-aux.

As a result of this consolidation, we have now
three metadata sources: SIL, LREC_2800 and
Wikipedia. Given a language l identified by an ISO
639 code, we categorize a script for l as CORE if
this is supported by at least two of the three sources
(e.g., the CORE metadata specify Kpel as one of
the admissible scripts for kpe (Kpelle) since SIL
and Wikipedia agree on it even though LREC_2800
does not) or if only one of three sources provides
information about admissible scripts for l.

(i) In cases of partial information, such as for
aat (Arvanitika Albanian), where both LREC_2800
and Wikipedia agree on Latin, and both Wikipedia
and SIL agree on Greek, we include both Latin and
Greek in CORE.

(ii) If only one metadata source reports a script
and not the others, the script is placed in the
auxiliary category specific to that source. Wiki-
aux, LREC2800-aux, and SIL-aux are used for
Wikipedia, LREC_2800, and SIL, respectively.
SIL2-aux is exclusively used for discrepancies be-
tween ScriptSource and LangTag.

4. GlotScript-T

We now describe GlotScript-T, an open-source
Python tool that identifies the writing systems of
input text. It supports the 161 scripts in Unicode
15.0, identified as ISO 15924 codes. GlotScript-T is
the first tool to provide labels based on ISO 15924
with this level of coverage. Figure 1 gives an exam-
ple of how to use GlotScript-T.
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from GlotScript import sp 

sp('This is written in English') 

('Latn', 1.0, {'details': {'Latn': 1.0}}) 

sp('This is written in English (uu J&51)") 

('Latn', 

0.7586206896551724, 

{'details': {'Arab': 0.2413793103448276, 'Latn': 

0.7586206896551724}}) 

sp(' XEBRAPXEN or Sa") 

('Hani', 

0.5833333333333334, 

{'details': {'Hani' 

'Latn’ 

'Sinh’ 

0.5833333333333334, 
0.16666666666666666, 
0.25}})

Figure 1: How to use GlotScript-T: three examples.
GlotScript-T returns a tuple consisting of the main
script, the percentage of characters in the main
script and detailed information on the distribution
of scripts.

4.1. Development

We first sorted unicode ranges into different
script categories, based on the Unicode Character
Database.18 We then matched these ranges with
ISO 15924 code names from Wikipedia.19

For an input text, GlotScript-T identifies the uni-
code range of each character, maps it to an ISO
15924 code and then calculates the percentage
of each script. GlotScript-T returns the main script
(the one that most characters belong to) and de-
tailed information on the distribution of scripts.

4.1.1. Special Codes

GlotScript-T also uses three special codes that are
not proper scripts.

(i) Zzzz. This code is used for unknown Unicode
ranges. We also add the replacement character
(U+FFFD ■? ) as Zzzz.

(ii) Zinh. This code is assigned to a character
who inherits its script from the previous charac-
ter. For example, the zero width joiner character
(U+200D) is used for joining characters. It does
not belong to any script, but rather inherits its script
code from the immediately preceding character.

(iii) Zyyy. This is the ISO 15924 code for unde-
termined script. This script code covers characters
like punctuation, symbols, mathematical notation
and musical notation that are used across many
different scripts.

18https://unicode.org/Public/15.0.0/ucd/Scripts.txt
19https://en.wikipedia.org/wiki/ISO_15924

4.1.2. Efficiency

We randomly generate a test set of 1 million sen-
tences, each with a length of 100, using characters
from different Unicode ranges. The walltime of pro-
cessing this test set with GlotScript-T on a single
core of an Intel Xeon E7-8857 3GHz CPU is 80.790
seconds, i.e., about 8×10−5 seconds per sentence.

5. Experimental Setup

We present experiments for two tasks to
demonstrate the usefulness of GlotScript-T
and GlotScript-R.

(i) Corpus quality assessment. We investigate
multilingual datasets by determining if a text as-
signed by the corpus metadata to a particular lan-
guage is written in a script that is admissible for
that language. If this is not the case for a particular
text, it hints at mislabeling and suggests that the
text most likely belongs to another language or is
noise. This part of our experiments highlights the
benefits of a script identification tool for creating
high-quality corpora for low resource languages.

(ii) Multilingual models. We quantify the pres-
ence of each script within the vocabulary of several
multilingual language models, focusing on large
multilingual language models. We evaluate the
level of representation of each script, which sheds
light on the quality of representations of languages
using that script.

5.1. Corpus Quality Assessment
GlotScript-R lists for each language l, identified by
an ISO 639 code, the scripts that are commonly
used for l. Recall that, as shown in Figure 1, the
function sp(s) provided by GlotScript-T computes
the percentage of each script in the input and iden-
tifies the main script.

Let s be an input sentence from a corpus that is
assigned the ISO 639 code l by the corpus meta-
data. The predicted main script for s – i.e., sp(s) –
is either one of the admissible scripts (according
to GlotScript-R) for l. We call this a match. Or it
is not one of the admissible scripts. We call this a
mismatch. In case we find a mismatch for s, we
evaluate this as an error. We refer to this heuristic
as the script mismatch rule. We determine for
each sentence of the corpus whether it is a match
or a mismatch and then report the proportion of
errors.

5.1.1. Evaluation Corpora

We select two corpora that have been recognized
in multiple past studies for their multilinguality and
the inclusion of lower resource languages.
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(i) Multilingual C4 (mC4) (Xue et al., 2021) is a
document-level dataset used for training the mT5
language model. It uses CLD3 (Botha et al., 2017;
Salcianu et al., 2018) language identification (LID).
CLD3 supports 107 languages. Accordingly, mC4
contains monolingual texts in 107 languages.

(ii) OSCAR 22.01 (Ortiz Suárez et al., 2019;
Abadji et al., 2021) is a set of monolingual corpora
for 151 languages. It is deduplicated and uses Fast-
text (Joulin et al., 2017) FT17620 LID on a line by
line level.

Both corpora are sourced from CommonCrawl.
Kreutzer et al. (2022) performed a manual audit on
100 sentences (or less) per language for these two
corpora.

5.1.2. Setup

We load both datasets using the Hugging Face
API.21 Each row in the dataset is split by \n (which
we consider to be the sentence delimiter) and dedu-
plicated.

For both corpora, we randomly select 1000
sentences per language. We exclude languages
for which there are fewer than 1000 sentences
available, resulting in a coverage of 118 lan-
guages from OSCAR 22.01. For example, for
dsb (Lower Sorbian), diq (Dimli/Zaza) and eml
(Emiliano-Romagnolo), there is only one sentence
each available in OSCAR 22.01, so we exclude
these languages. We map the language identi-
fiers provided by the corpus metadata to three-letter
ISO 639 codes.

We apply GlotScript-T to the 1000-sentence sub-
sets per language and obtain the main script for
each sentence. We apply the script mismatch rule
to identify the sentence as correct or incorrect. How-
ever, if the corpus metadata specify the script in
addition to the language (e.g., bg-Latn), then we
only consider the script given as a candidate script
for that sentence by the metadata (e.g., we only
consider Latn for bg-Latn).

5.2. Multilingual Models
We analyze the representation of common writing
systems in state-of-the-art pretrained models. Most
of these models are claimed to be highly multilin-
gual. We approach this analysis employing the
following two methods.

(i) Following (van Esch et al., 2022; Ács, 2019),
we examine the writing systems present in the vo-
cabulary of each model’s tokenizer.

(ii) We tokenize the multi-parallel corpora of
UDHR22 using each model’s tokenizer. For each

20https://fasttext.cc/docs/en/language-
identification.html

21https://huggingface.co/datasets
22http://unicode.org/udhr/d/

writing system, we then measure the number of
tokens generated and the percentage of unknown
tokens (UNK) generated. Similar experiments are
also conducted by Ahia et al. (2023) and Petrov
et al. (2024) on FLORES-200 (Goyal et al., 2021;
NLLB Team et al., 2022). UDHR dataset supports a
greater variety of languages and scripts compared
to FLORES-200.

5.2.1. Model Selection

We select ten state-of-the-art models for their mul-
tilingual capabilities or for their frequent use: GPT-
4 (OpenAI, 2023), Falcon (Penedo et al., 2023),
Llama 2 (Touvron et al., 2023), BLOOM (Scao et al.,
2022), Glot500 (ImaniGooghari et al., 2023), XLM-
R (Conneau et al., 2020), mBERT and BERT (De-
vlin et al., 2019), mT5 (Xue et al., 2021) and
NLLB (NLLB Team et al., 2022).

5.2.2. UDHR

UDHR consists of more than 500 translations of
the Universal Declaration of Human Rights, each
containing 30 short articles. We remove all the
translations that are incomplete (fewer than 89 sen-
tences) or noisy (e.g., lines consisting of the single
English word ‘missing’). We ensure that all 30 arti-
cles are available in a translation and that it has a
valid ISO 639-3 code (not undetermined). In cases
where multiple versions are available for a pair of
ISO 639-3 and ISO 15924, we make a random se-
lection. This procedure selects a subset of UDHR
that covers 396 different language-scripts.

6. Results and Analysis

6.1. Corpus Quality Assessment
Table 2 reports the five top and bottom languages
(in terms of inferred accuracy of their metadata)
for each corpus, along with correct and incorrect
scripts. Scripts highlighted in green are deemed
correct based on GlotScript-R CORE. yellow repre-
sents the scripts that were returned for AUXILIARY.
Note that quite a few languages have Latin as an
AUXILIARY script, based on the LREC_2800 meta-
data. The ACC column displays the accuracy of
the correct script based only on CORE.

For the 118 selected languages in OSCAR, we
obtain an average script accuracy of 0.947. For
the 107 languages in mC4, the average score is
0.917. These averages are high, indicating a favor-
able quality overall. However, when examining the
bottom five languages with the lowest correct script
scores, the average drops to 0.823 for OSCAR and
0.566 for mC4.

Based on our audit of common errors in the OS-
CAR corpus, we can confirm that incorrect Latin
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Corpus Code:
ISO 639-3 Scripts ACC↑ ACC70↑ ACC50↑

H
ig

he
st

AC
C

m
C

4
st:sot (S Sotho) Latn:1000 1.000 1.000 1.000
fil:fil (Filipino) Latn:998, Cyrl:1, Hani:1 0.998 0.999 1.000
ro:ron (Romanian) Latn:996, Zyyy:4, Cyrl :1 0.995 0.997 1.000
id:ind (Indonesian) Latn:995, Zyyy:3, Hani:1, Hebr:1 0.995 1.000 1.000
sw:swa (Swahili) Latn:995, Zyyy:5 0.995 1.000 1.000

Lo
we

st
AC

C ne:nep (Nepali) Deva:609, Hani:219, Latn:88, Hang:44, Thai:12, Laoo:8, Zyyy:8, Orya:7, Other:5 0.609 0.730 0.797
mn:mon (Mongolian) Cyrl :502, Hebr:348, Latn:135, Zyyy:14, Hani:1 0.502 0.557 0.570
cy:cym (Welsh) Grek:603, Latn:367, Zyyy:11, Hebr:9, Cyrl:5, Zzzz:4, Arab:1 0.367 0.338 0.295
sd:snd (Sindhi) Latn:654, Arab:329, Zyyy:12, Zzzz:2, Cyrl:1, Hang:1, Telu:1 0.329 0.271 0.222
mr:mar (Marathi) Hani:454, Thai:252, Latn:119, Deva:116, Zyyy:34, Guru:10, Beng:4, Khmr:3, Other: 8 0.116 0.136 0.141

H
ig

he
st

AC
C

O
SC

AR

id:ind (Indonesian) Latn:998, Zyyy:2 0.998 1.000 1.000
war:war (Waray) Latn:997, Zyyy:3 0.997 0.997 0.996
als:gsw (Swiss G) Latn:996, Zyyy:3, Cyrl:1 0.996 0.996 1.000
vo:vol (Volapük) Latn:994, Arab:4, Cyrl:1 0.994 1.000 1.000
nds:nds (Low G) Latn:994, Zyyy:2, Cyrl:2, Hang:1, Thaa:1 0.994 1.000 1.000

Lo
we

st
AC

C am:amh (Amharic) Ethi :822, Latn:164, Zyyy:12, Hani:1, Arab:1 0.822 0.883 0.940
gu:guj (Gujarati) Gujr :802, Latn:180, Zyyy:12, Deva:6 0.802 0.863 0.883
si:sin (Sinhala) Sinh:801, Latn:188, Zyyy:11 0.801 0.905 0.948
th:tha (Thai) Thai :800, Latn:181, Zyyy:18, Hani:1 0.800 0.883 0.917
te:tel (Telugu) Telu:799, Latn:188, Zyyy:9, Deva:3, Cyrl:1 0.799 0.880 0.908

Table 2: Script accuracy for mC4 (top) and OSCAR (bottom) corpora. We display the five best-performing
and worst-performing languages. Green indicates correct scripts based on GlotScript-R CORE. Yellow in-
dicates correct scripts based on GlotScript-R AUXILIARY. ACC: accuracy, i.e., the proportion of sentences
for which the script identified by GlotScript-T is one of the admissible scripts (according to GlotScript-R) of
the language provided by corpus metadata for the sentence. ACC70/ACC50: accuracy for the 70%/50%
longest sentences. To save space, we write "Other" for multiple scripts with a small number of sentences.
The best scores are bolded for each row. S Sotho = Southern Sotho. Swiss/Low G = Swiss/Low German.

sentences are either written in English or are related
to website content, such as website functionalities
(comment and search sections), URLs and dates.
This confirms that including more scripts, especially
all the romanized versions, in the writing metadata
even when their use is not solidly attested would
hamper our ability to identify incorrect sentences
in low resource corpora. This is why we decided
that when merging different datasets, if a script is
not approved by the majority of sources, it will be
kept in AUXILIARY (see §3.4). We also noticed that
most sentences with script mismatches are short.
We therefore run another set of experiments, this
time using a length-based filter that keeps either
70% (ACC70 column) or 50% (ACC50 column) of
the longest sentences.

For the bottom languages of OSCAR in Table 2,
it is clear that length filtering proves to be effective.
Notably, for amh (Amharic), the accuracy improves
0.118 when retaining only the 50% longest sen-
tences. However, this is not the case for the bottom
languages of mC4, particularly for cym (Welsh) and
snd (Sindhi) where the accuracy worsens. Addition-
ally, the correct scripts for these two languages are
not the most frequent in their respective corpora.
This suggests that the mistakes are not merely
short incorrect sentences, but rather lengthy para-
graphs in the wrong language. In the case of Welsh,
upon closer inspection, it becomes apparent that
the incorrectly identified Greek scripts are actually
written in ell (Modern Greek). We also observed
suspicious patterns in the Latin portion of this data
but it also contained many correctly written sen-

tences in cym (Welsh). For snd (Sindhi), the data
contains numerous extensive paraphrases in En-
glish, and we also suspect a mix of ara (Arabic)
and fas (Farsi) in the Arabic script part.

The infrequent instances of incorrect writing sys-
tems in OSCAR may indicate the effectiveness of
line-level LID filtering. These results hint at the
need for further research on LID. Additionally, we
recommend that in newly published LID and cor-
pora, along with the language code, a script code
should be assigned to each sentence as part of the
metadata. Adopting this recommendation would
significantly facilitate error prevention.

6.2. Multilingual Models

6.2.1. Tokenizer Vocabulary

We use GlotScript-T to analyze the token vocab-
ulary of the ten language models and determine
each token’s script. Figure 2 reports the percent-
age distribution of each script for each tokenizer’s
vocabulary. Our findings are as follows.

(i) The Cyrillic representation in the BLOOM tok-
enizer is relatively scarce compared to other mod-
els.

(ii) The BERT tokenizer supports not only Latin
scripts but also recognizes Hani, Arabic, Cyrillic
and some tokens in an additional 12 scripts.

(iii) Glot500 encompasses the highest number
of scripts, totaling 88, followed by mT5, which sup-
ports 66. However, a significant portion of these
scripts in both models has limited presence.
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Figure 2: The percentage of each script in the vocabulary of model tokenizers. Scripts with a presence of
more than 1% in each tokenizer are text-labeled in the figure.

(iv) Llama2’s second most prominent script is
Cyrillic.

(v) Falcon’s second most prominent script is
Hani.

(vi) The GPT-4 tokenizer vocabulary includes
representations for 18 scripts, albeit not very com-
prehensively compared to its coverage of Latin.

(vii) In all tokenizer models combined, a total of
92 scripts has some presence.

6.2.2. UDHR Tokenization

Parsing the UDHR translations with the specific to-
kenizer associated with each model, we generate
a plot illustrating the token count required by each
model to tokenize the UDHR translation. Since not
all model tokenizers operate at the byte level, this
may result in the generation of unknown (UNK) to-
kens. We only consider tokenizer-translation pairs
where fewer than 5% unknown tokens are pro-

duced. Figure 3 displays the token count used
by each tokenizer (left) and the percentage of un-
known tokens (right). Rather than coloring the plot
data based on language labels, we choose to use
script categories for color representation.

GPT-4, in addition to being trained on English,
was also trained on some other languages. For in-
stance, it is capable of translating between English
and sin (Sinhala). In tasks such as text genera-
tion, the number of generated tokens is particularly
important. For example, for the English UDHR
translation, the GPT-4 tokenizer produces 1983 to-
kens. However, for the Sinhala UDHR translation,
it generates 20,071 tokens, nearly 10 times more.
As the pricing of OpenAI APIs is also based on the
number of tokens, this demonstrates that genera-
tion of Sinhala is very expensive using GPT-4 in
comparison with English.
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Figure 3: Analysis of the multilinguality of the tokenization of ten language models. This analysis was
performed on 396 UDHR translations. Left: the number of tokens into which the UDHR translation is
tokenized. We omit a pair of tokenizer and translation with more than 5% unknown tokens. Right: the
percentage of unknown tokens generated for a pair of tokenizer and translation.

7. Conclusion

We publish GlotScript-R, an extensive resource
covering writing systems for over 7,000 lan-
guages, including thousands of typically overlooked
“lowest-resource” languages. We open-source
GlotScript-T, a script identification tool that sup-
ports all 161 scripts in Unicode 15.0. It reports
the script distribution within a given text, using ISO
15924 labels. This work is the first to create a
highly efficient tool for script identification and out-
put labels based on ISO 15924 with this level of
coverage.

We apply GlotScript-R and GlotScript-T to the
task of corpus quality assessment. Our findings
indicate that these two components work together
effectively to improve the quality of existing low re-
source corpora. Furthermore, we investigate the
tokenizers of large language models like GPT-4.
This analysis enables us to assess how well a script
is represented, serving as an indicator of the repre-
sentation quality of languages written in that script.

In future work, we aim to expand GlotScript-R
by offering a better categorization of writing sys-
tems such as "live", "rare", "historic", "romanization
present", "romanization in use". We also would like
to include more metadata.

Based on the lessons we learned from conduct-
ing this study, we recommend that creators of lan-
guage identification tools and text corpora provide,
along with the language code, a script code for
each sentence as part of the metadata. Adopt-
ing this recommendation could be of great benefit
for error prevention and better quality of language
resources.

8. Limitations

We acknowledge that some of the input metadata
may contain errors; we rely on consensus to de-
crease this risk. However, there is a potential risk of
excluding a writing system for a language or includ-
ing a noisy one during the collection and processing
of NLP corpora.
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