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Abstract
Aspect-Based Sentiment Analysis (ABSA) aims to determine the sentiment polarities of specified aspect terms in
a sentence. Most previous approaches mainly use an attention mechanism or graph neural networks based on
dependency trees to explicitly model the connections between aspect terms and opinion words. However, these
methods may not effectively address cases where the sentiment of an aspect term is implicitly described, as the
corresponding opinion words may not directly appear in the sentence. To alleviate this issue, in this paper, we
propose a GCNet that explicitly leverages global semantic information to guide context encoding. Particularly, we
design a semantics encoding module that incorporates global semantic features into sequential modeling process
to enable the consideration of the overall sentiment tendency of a sentence, while the global semantic features are
also refined by adaptively focusing on different parts of the sentence. Moreover, for a comprehensive sentence
analysis, we also include a syntactic feature encoding module along with a pre-fusion module to integrate the refined
global features with the syntactic representations. Extensive experiments on three public datasets demonstrate
that our model outperforms state-of-the-art methods, indicating the robustness and effectiveness of our approach.

Keywords:Sentiment Analysis, Aspect-Based Sentiment Analysis, Graph Attention Network, Collaborative
Learning

1. Introduction
Aspect-Based Sentiment Analysis (ABSA) (Hu
and Liu, 2004) is a fine-grained task within sen-
timent analysis, aiming at determining the senti-
ment polarities of specified aspect terms in a sen-
tence. For example, in the sentence “The hotel is
great, but the price is too expensive,” the aspect
“hotel” carries a positive sentiment polarity, while
the aspect “price” conveys a negative sentiment
polarity.
The key problem of ABSA is to model the rela-
tionships between the context and aspect terms.
Existing modeling methods can be broadly classi-
fied into two categories: The first one is attention-
based methods(Ma et al., 2017, Gu et al., 2018,
Jiang et al., 2019), which selectively focus on var-
ious parts of the sentence and capture semantic
relationships between words. These methods pri-
marily center on extracting the semantic informa-
tion inherent within the sentence. The second one
is graph encoding methods based on the depen-
dency parsing results, including Graph Convolu-
tional Networks (GCN) (Kipf and Welling, 2016),
Graph Attention Networks (GAT) (Veličković et al.,
2018), and their various variants (Zhang et al.,
2019b,Tang et al., 2020,Wang et al., 2020). These
methods primarily center on extracting the syntac-
tic information implicit in the sentence’s syntac-
tic structure. There are also methods that utilize
both attention-based methods and graph methods
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Figure 1: Two examples for ABSA where the sen-
timents of aspects are implicitly described. The
words in [·] indicates the aspects for sentiment pre-
diction and the words in boxes are the key to un-
derstand the overall sentiment tendency.

based on syntactic structure, harnessing the ad-
vantages of both approaches. (Tang et al., 2020,
Li et al., 2021)
However, the aforementioned methods focus on
encoding the relationships between tokens within
the sentence but do not explicitly consider the
global features of a sentence. The global fea-
tures encompasses the overall semantic informa-
tion as well as the overall sentiment tendency of
the sentence, both of which can assist in deter-
mining the sentiment polarities of specified aspect
terms, especially when the sentiment towards an
aspect is implicitly described. Take the sentence
in Figure 1 (a) as an example, where the sentiment
of the aspect term “staff” is implicitly described,
with its ground truth label being “negative”. In this
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scenario, using either self-attention (Wang et al.,
2016) or graph methods based on syntactic struc-
ture (He et al., 2018) will be difficult to find the opin-
ion context of the aspect term, because there is
no explicit description of the aspect “staff” in the
sentence. Instead, “friendly” might confuse both
of them, resulting in a misclassification as posi-
tive. However, by considering the overall senti-
ment tendency of the sentence, the negative sen-
timent of the overall comment can be perceived,
which can guide the correct prediction of “nega-
tive” sentiment for aspect “staff”. Therefore, it is
crucial to consider the global features of a sen-
tence during context modeling.
An intuitive way to obtain global features is by ap-
plying average pooling to all tokens’ embeddings.
However, this approach is too coarse and lacks
the ability to discern tokens that significantly con-
tribute to the understanding of overall semantics
from those that do not. This could potentially re-
sult in an inaccurate portrayal of the sentiment
tendency present within the global features, thus
might interfere with predictions. Taking the sen-
tence in Figure 1 (b) as an example, the key words
to correctly understand the overall semantics of
the sentence are “anywhere else” and “3x as high”,
which should have greater weight in the process
of generating global features. Therefore, it is nec-
essary to dynamically focus on the context when
learning global features.
To this end, we propose a novel NETwork
based on Global-and-Context collaborative learn-
ing (GCNet) to fully explore the association be-
tween context modeling and global features learn-
ing. Noted that to comprehensively analysis the
sentences, the context modeling contains both
attention-based semantic representation learning
and graph-based syntactic representation learn-
ing. Specifically, for semantic representation
learning, we design a method based on Trans-
former encoder (Vaswani et al., 2017). In this
method, global features are involved in the pro-
cess of encoding semantic information, enabling
the consideration of the sentence’s overall sen-
timent. The encoder with the same structure
is also used to refine the global features, which
are initialized through the average pooling of sen-
tence’s hidden representation and refined through
multi-head attention to allocate attention across
words within the sentence. Moreover, to further
strengthen the correlation between the semantic
representation and global features, we align their
semantic space by sharing parameters during their
encoding processes. For syntactic representation
learning, we employ the Hybrid GAT (Zhang et al.,
2022b) to analyze the sentence from a syntactic
perspective. In order to enable the syntactic rep-
resentation to also perceive global features, we in-

troduce a pre-fusion module that integrates the re-
fined global features into the syntactic representa-
tion.
Our contributions can be summarized as follows:

• We propose a GCNet for ABSA task by incor-
porating global semantic features into context
modeling to enable the consideration of the
overall sentiment tendency of a sentence.

• We design a semantic encoding method
that jointly refines both global features and
sequential representations through multi-
head attention and parameters sharing to
strengthen the interaction between them.

• We conduct experiments on the Semval2014
and twitter datasets, and the experimental
results demonstrate the effectiveness of our
method.

2. Related Work
Aspect-based sentiment analysis has been widely
studied in recent years. Based on how they model
the relationship between aspect terms and con-
text, we can classify these research methods into
the following three categories:
Attention-based methods Much of the previous
research has employed attention to model the
semantic relationship between aspect terms and
context (Wang et al., 2016, Ma et al., 2017, Gu
et al., 2018), and yielding satisfactory experimen-
tal results. For instance, ATAE-LSTM (Wang et al.,
2016) utilizes an attention mechanism on the hid-
den layer representations encoded by LSTM to
capture crucial context for a given aspect. RAM
(Chen et al., 2017) employs a multi-layer attention
mechanism to capture the relationships between
distant words in a sentence. MGAN (Fan et al.,
2018) combines coarse-grained and fine-grained
attention to capture the word-level interaction be-
tween aspect and context. AOA-LSTM (Huang
et al., 2018) generates mutual attention from both
aspect to text and text to aspect.
Syntax-based methods Recently, more studies
have focused on using graph neural networkmeth-
ods based on dependency trees to learn sen-
tence syntactic representations, and some works
have shown that dependency relationships can
better model the aspect-term and opinion-context
relationship compared to attention-based meth-
ods.(Tang et al., 2020, Huang et al., 2020) In
these syntax-based methods, CDT (Sun et al.,
2019) uses a GCN that operates directly on the
dependency tree of the sentence to enhance the
sentence representation learned by Bi-LSTM. TD-
GAT (Huang and Carley, 2019) explicitly captures
aspect-related information using a graph attention
network and LSTM. T-GCN(Tian et al., 2021) uses
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Figure 2: The overview of our proposed model.

attention to distinguish different type of edges.
There are some works based on modifying syn-
tactic dependency trees. R-GAT (Wang et al.,
2020) constructs an aspect-oriented dependency
tree by reorganizing and pruning the traditional
dependency tree. APARN (Ma et al., 2023) re-
places the syntactic dependency tree with the Ab-
stract Meaning Representation. Some methods
also incorporate external knowledge while utiliz-
ing syntactic graphs. For instance, BiGCN (Zhang
and Qian, 2020) designs a global lexical graph to
encode corpus-level word co-occurrence informa-
tion. SenticGCN (Liang et al., 2022) leverages
SenticNet as external knowledge.
Methods combining the two above While de-
pendency tree-based graph encoding methods
have yielded satisfactory results, errors in depen-
dency parsing can impact the analysis. Tomitigate
this issue and better adapt to informal datasets,
recent research has explored the complementar-
ity of attention-based and graph encoding meth-
ods. For example, DGEDT (Tang et al., 2020)
learns both the flat representation and the graph-
based representation through a dual-transformer
network enhanced by a dependency graph. Du-
alGCN (Li et al., 2021) uses dual GCNs that uti-
lize the dependency tree adjacency matrix and at-
tention matrix respectively. HD-GCN (Zhou et al.,
2023) employs a multi-layer stacked framework to
learn different levels of syntactic and semantic in-
formation.
The aforementioned methods generally focus on
modeling internal word relationships. However,

the impact of the overall semantics is still underex-
ploited. In this paper, we will explore the connec-
tion between overall semantic features and con-
text modeling.

3. Methodology
Task Definition Given a sentence s = {x1, ..., xn}
with aspect term a = {xi, ..., xi+m} annotated,
our goal is to predict the sentiment polarity y ∈
{positive, negative, neutral} of the target aspect.
Framework Overview The architecture of our
model is depicted in Figure 2. Given an input sen-
tence, we first employ BiLSTM or BERT to encode
its word embeddings, yielding the hidden layer
representation denoted as Ho. The global fea-
tures are initialized by average pooling ofHo. Sub-
sequently, we employ a hybrid Graph Attention
Network to capture syntactic information, along-
side a Transformer-based semantic features ex-
tractor to concurrently refines both global features
and the semantic representation. These syntac-
tic and semantic representations will then mutu-
ally exchange information through an interaction
gate. Finally, the syntactic representation is en-
riched with the refined global features through a
pre-fusion module, after which the aspect tokens
from both syntactic and semantic representations
are aggregated via average pooling and then input
to the output layer for prediction.

3.1. Syntactic Information Encoding
To explore the syntactic information in dependency
parsing trees and obtain sentence syntactic rep-
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resentations, graph attention (GAT) is commonly
used. GAT encodes the graph by iteratively up-
dating the hidden state of each node i in layer
l through a weighted summation of neighboring
nodes from layer l − 1 for node i.
However, traditional GAT is unable to differentiate
between various dependencies and simply cate-
gorizes them into binary states of being connected
or not, which resulting in the omission of valu-
able syntactic information inherent in these de-
pendencies. Therefore, we employ a Hybrid GAT
(Zhang et al., 2022b) to amplify the impact of de-
pendencies in the information exchange among
nodes, aiming to fully leverage the syntactic in-
formation of sentences. Specifically, the Hybrid
GAT consists of two distinct types of GATs em-
ploying different encoding strategies, i.e. relation-
aggregation and relation-activation. In the case
of relation-aggregation, it learns relation weights
by concatenating dependencies with their corre-
sponding node states at both ends. This process
can be formulated as follows:

slkij = σ
(
glk

[
W lkH l

syn,i ∥ W lkH l
syn,j ∥ W lkrij

])
,

(1)

alkij =
exp

(
slkij

)∑Ni

j=1 exp
(
slkij

) , (2)

hl+1
aggri = ∥Kk=1σ

∑
j∈Ni

alkijW
lkH l

syn,j

 , (3)

where W lk and glk are learnable parameters, ∥
indicates the concatenation operation, σ denotes
the LeakyReLU function, K is the attention head
number, and rij is the dependency embedding be-
tween node i and j. Besides,H l

syn is the syntactic
output of layer l(l > 0), and H0

syn = Ho.
Since relation-aggregation is intuitive and direct,
it might not comprehensively capture the intricate
interactions between nodes. Thus, to compre-
hensively explore these relationships, Hybrid GAT
also incorporates relation-activation for graph en-
coding. Particularly, it utilizes scaled dot-product
attention to dynamically distribute the influence of
diverse dependencies and their associated neigh-
boring nodes as follows:

tlkij =

(
W lk

Q H l
syn,i

) (
W lk

K H l
syn,j +W lk

Krrij
)T√

d/k
, (4)

blkij =
exp

(
tlkij

)∑Ni

j=1 exp
(
tlkij

) , (5)

hl+1
actvi

= ∥Kk=1σ

∑
j∈Ni

blkij
(
W lk

V H l
syn,j +W lk

V rrij
) ,

(6)
where W lk

Q , W lk
K , W lk

Kr, W lk
V , W lk

V r are learn-
able transformation matrices, and Ni denotes the
neighbors of node i.
The outputs of relation-aggregation and relation-
activation will be spliced together as the output of
the hybrid module as follows:

hl+1
hybridi

= hl+1
aggri ∥ hl+1

actvi
. (7)

In addition, we add a residual connection and a
layernorm layer to obtain the syntactic represen-
tation of this layer:

H̃ l+1
syn = LayerNorm

(
H l+1

hybrid +H l
syn

)
. (8)

3.2. Global Feature and Semantic
Information Encoding

Considering the robust text semantic encoding ca-
pability of the Transformer, we leverage it to de-
sign a global feature-enhanced semantic encoder.
This encoder enhances semantic features by ex-
ploring the relationships between words and the
associations between words and global features.
Specifically, we initiate the global feature G0 by
conducting average pooling of the hidden layer
representationHo of the sentence. The global fea-
tures will be incorporated as an extra token within
the attention calculation of the word sequence,
added to both the key and value, which can be
formulated as follows:

Ĥ l+1
sem = LayerNorm(H l

sem +MSA(W l
QH

l
sem,

W l
K

[
H l

sem ∥ Gl
]
,W l

V

[
H l

sem ∥ Gl
]
)),

(9)

H̃ l+1
sem = LayerNorm(Ĥ l+1

sem+FFN(Ĥ l+1
sem)), (10)

where W l
Q, W l

K and W l
K are leanable transforma-

tion matrices, MSA(·) is the multi-head self atten-
tion, and FFN(·) denotes the FeedForward Layer.
In addition, Gl is the global feature from the output
of layer l except G0, H l

sem is the semantic output
of layer l(l > 0), and H0

sem = Ho.
Simultaneously, the global feature also functions
as an additional query for conducting Multi-Head
Self-Attention calculations across all tokens within
the sentence, which enables the refinement of the
global feature itself:

Ĝl+1 = LayerNorm(Gl +MSA(W l
QG

l,

W l
K

[
H l

sem ∥ Gl
]
,W l

V

[
H l

sem ∥ Gl
]
)),

(11)
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Gl+1 = LayerNorm(Ĝl+1 + FFN(Ĝl+1)). (12)

Noted that Gl denotes the global feature derived
through averaging the output syntactic or seman-
tic representation from layer l. In experiments we
explore two scenarios: one using syntactic global
features in all layers and the other utilizing seman-
tic global features, selected through a hyperpa-
rameter. Moreover, to strengthen the correlation
between global features and semantic representa-
tions, we share parameters in the word sequence
encoding and global feature encoding processes.

3.3. Attention-based Information
Interaction

To facilitate the information exchange between
syntactic and semantic representations and
thereby elevate the model’s performance, we
adopt an attention-like strategy for interaction.
Specifically, to leverage semantic information in
updating the syntactic representation at layer l,
we first calculate the correlation coefficient matrix
R through the following procedure:

elij = (H̃ l
syn,i)

T × H̃ l
sem,j , (13)

Rl
sem2syn,ij =

exp (eij)∑n
k=1 exp (eik)

. (14)

Subsequently, we regard matrix R as a gate that
determines which components of the semantic
representation are added to the syntactic repre-
sentation:

H l
syn = H̃ l

syn +Rl
sem2syn · H̃ l

sem. (15)

The semantic representation can be updated in a
similar way using syntactic representation as fol-
lows:

H l
sem = H̃ l

sem +Rl
syn2sem · H̃ l

syn. (16)

3.4. Feature Fusion and Output
Pre-Fusion Layers Most models overlook the
global features of sentence while generating final
features. However, the global features hold the
emotional tone of the entire sentence, thereby par-
tially affecting model performance. Given that the
global features are refined alongside the semantic
representation, the semantic representation gen-
erated by the last semantic information encoding
layer already encompasses the global feature, our
focus shifts to the fusion of the global feature and
the syntactic representation. Therefore, we intro-
duce a pre-fusion layer that integrates the refined
global features into the syntactic representation.
This process can be formulated as follows:

Hsyn = LayerNorm(HL
syn+σ(Wf [H

L
syn ∥ GL

out])),
(17)

whereWf is a learnable transformation matrix and
σ(·) is ReLU function
Output Layers The ultimate syntactic representa-
tionHsyn is acquired via the pre-fusion layer, while
the final semantic representation Hsem is directly
taken as HL

sem. Subsequently, the aspect tokens
within Hsyn and Hsem are aggregated using aver-
age pooling and then combined to generate the ul-
timate feature for sentiment classification. Finally,
a probability distribution p is computed by employ-
ing a linear layer followed by a softmax layer. The
process can be expressed as follows:

Hasp
syn = avg([Hsyn,a, ..., Hsyn,a+m]), (18)

Hasp
sem = avg([Hsem,a, ..., Hsem,a+m]), (19)

p(s, a) = softmax(Wp[H
asp
syn ∥ Hasp

sem] + bp), (20)

where avg(·) denotes average pooling, Wp and bp
are learnable parameters.

3.5. Training Objective
Our training goal is to minimize the following cross-
entropy loss:

L = −
∑
D

∑
C

log p(s, a), (21)

where D is the collection of all sentence-aspect
pairs and C contains all sentiments among
{positive, negtive, neural}.

4. Experiment
4.1. Datasets
Our experiments are conducted on three public
standard ABSA datasets, including Laptop and
Restaurant from SemEval 2014 task 4 (Pontiki
et al., 2014), and Twitter built by Dong et al. (2014).
Among them, Laptop consists of reviews on laptop
computers, Restaurant contains online reviews on
restaurants, and Twitter is a collection of tweets
from Twitter. Particularly, following previous work
(Li et al., 2021, Zhou et al., 2023), we remove
the aspect terms with “conflict” labels and the sen-
tences without any aspect terms.

4.2. Experiment setup
We use LAL-Parser(Mrini et al., 2020) in all our
experiments to obtain the syntactic structure of
sentences, and following previous work (Marcheg-
giani and Titov, 2017, Li et al., 2021),we add a self-
loop for each node. We initialize the word embed-
dings using pretrained 300-dimensional Glove3
vectors (Pennington et al., 2014). Additionally,
we set the dimensionality of position embeddings
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Table 1: Experimental results compared with different models. The results with † are reported
based on open-source codes, and the remaining results are reported by previous works. The
best scores are in bold, and “-” denotes that the model is not tested on the dataset in the
original paper. Our results are averaged across five different random seeds.

Models Laptop Restaurant Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

MGAN (Fan et al., 2018) 75.39 72.47 81.25 71.94 72.54 70.81
ASGCN (Zhang et al., 2019a) 75.55 71.05 80.77 72.02 72.15 70.40
BiGCN (Zhang and Qian, 2020) 74.59 71.84 81.97 73.48 74.16 73.35
InterGCN (Liang et al., 2020) 77.86 74.32 82.23 74.01 - -
RGAT (Wang et al., 2020) 77.42 73.76 83.30 76.08 75.57 73.82

CPA-SA (Huang et al., 2022) 75.18 71.50 82.64 73.38 - -
RMN (Zeng et al., 2022) 74.50 69.79 81.16 73.17 - -

SILTN (Zhang et al., 2022a) 76.96 73.03 83.12 75.86 73.02 73.07
AGCN (Zhao et al., 2022) 75.07 70.96 80.02 71.02 73.98 72.48

CRF-GCN(Huang et al., 2023) 75.83 74.78 82.71 73.87 - -
SEGCN (Zheng et al., 2023) 77.43† 73.21† 83.26† 75.82† 76.16 74.82

GCNet (ours) 78.10 74.39 83.57 76.79 76.34 75.20
SILTN + BERT (Zhang et al., 2022a) - 76.34 - 77.04 - 75.52
C3DA + BERT (Wang et al., 2022) 80.61 77.11 86.93 81.23 76.66† 75.79†

AGCN + BERT (Zhao et al., 2022) 79.94 76.52 82.77 73.29 75.43 74.11
RMN + BERT (Zeng et al., 2022) 77.95 70.83 84.56 79.05 - -
MTL + BERT (Zhao et al., 2023) 80.56 77.00 86.88 81.16 76.59 74.67

SEGCN + BERT (Zheng et al., 2023) 80.56† 77.07† 86.96 81.34 77.17 75.26
GCNet + BERT (ours) 80.79 77.61 87.08 81.35 77.55 76.59

and part-of-speech (POS) embeddings to 30. The
word, position, and POS embeddings will then be
concatenated to form the input for our model. For
BiLSTM, we set the hidden size to 100 and set
the dropout rate to 0.1 to prevent overfitting. The
dropout rate of the syntactic information encod-
ing and global feature and semantic information
encoding modules are set to 0.1, and the layers
for Laptop, Restaurant and Twitter datasets are
set to 3, 3, 2. The weights of all models are
initialized using a uniform distribution. We use
Adam (Kingma and Ba, 2014) as the optimizer and
our model with the learning rate initialized around
0.001. For BERT, we use the bert-base-uncased4
English version, and the learning rate is set around
0.00002. Moreover, the global features for Lap-
top, Restaurant and Twitter are updated through
semantics, syntax, syntax representations of pre-
vious layer, respectively. The experiments are
conducted using an NVIDIA GeForce RTX 2080Ti
GPU.

4.3. Baseline Models
We evaluate our GCNet against state-of-the-art
baselines models, which are briefly described as
follows.
1) MGAN (Fan et al., 2018) utilizes a multi-
attention architecture to acquire aspect and con-
textual features at both coarse and fine levels.
2) ASGCN (Zhang et al., 2019a) constructs a di-
rected graph of sentences using dependency trees
and employs GCN to extract information.
3) BiGCN (Zhang and Qian, 2020) employs a bidi-

rectional interactive GCN to utilize corpus-wide
word co-occurrence data and various dependency
relations.
4) InterGCN (Liang et al., 2020) builds a diverse
graph per instance using aspect-specific and inter-
aspect-contextual dependencies.
5) RGAT (Wang et al., 2020) transforms the de-
pendency tree into an aspect-rooted tree and uses
a relational graph attention network for encoding.
6) CPA-SA (Huang et al., 2022) employs asym-
metric functions for dynamic word position weight-
ing and context encoding via GRUs.
7) RMN (Zeng et al., 2022) proposes a multitask
learning network that effectively utilizes similar or
contrasting aspects.
8) SILTN (Zhang et al., 2022a) facilitates learning
and reasoning with a differentiable first-order logic
language for aspect-term sentiment analysis.
9) C3DA (Wang et al., 2022) uses generative
large-scale pre-trained language models to gener-
ate domain-specific multi-aspect samples for data
augmentation.
10) AGCN (Zhao et al., 2022) proposes an Aggre-
gated GCN that efficiently captures long-distance
context using two aggregation functions.
11) SEGCN (Zheng et al., 2023) designed a senti-
ment knowledge fusion mechanism that helps the
model grasp sentiment information from various
opinion words in the dataset.
12) CRF-GCN(Huang et al., 2023) combines con-
ditional random fields and graph convolutional net-
works.
13) MTL(Zhao et al., 2023) proposes a multi-task
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Table 2: Results of an ablation study (%).

Models Laptop Restaurant Twitter

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

GCNet 80.79 77.61 87.08 81.35 77.55 76.59
w/o Global Feature 79.97 76.19 86.38 80.49 76.28 74.99

w/o Prefusion Module 80.41 76.66 86.34 80.29 76.45 75.18
w/o Hybrid GAT 80.19 76.66 86.17 80.24 76.75 75.76

replace Hybrid GAT with common GAT 79.54 75.90 86.59 80.75 76.40 75.41

framework that predicts sentiment polarity and ex-
tracts aspect terms and uses multi-head attention
to connect the tasks.
We use accuracy and macro-F1 score as perfor-
mance metrics. Accuracy measures the propor-
tion of correctly predicted samples in the test set,
while the macro-F1 score is calculated as the un-
weighted mean of the metrics for each label.

4.4. Experimental Results and Analysis
The experimental results are shown in Table 1,
from which we can observe that our model per-
forms almost the best on three datasets containing
both formal and informal sentences. This may be
because our model can comprehensively analyze
sentences by integrating global semantic infor-
mation into modeling context compared to meth-
ods that focus on modeling relationships between
internal words. Compared to syntax-free mod-
els such as MGAN and CPA-SA, our GCNet can
fully exploit the rich implicit associations between
words embedded in the sentence’s syntactic struc-
ture through Hybrid GAT, thereby mitigating the
noise introduced by modeling solely through se-
mantic relationships. Moreover, our model out-
performs networks that utilize syntactic structures,
such as RGAT, RMN, and AGCN, indicating our
superiority: On the one hand, using multi-head at-
tention to extract sentence semantic representa-
tions can mitigate the negative impact of syntac-
tic parsing errors in cases of incomplete or infor-
mal sentences; on the other hand, explicitly utiliz-
ing global semantic information helps better deter-
mine the sentiment polarity of aspect terms that
are implicitly described by considering the overall
sentiment tendency of the sentence.

4.5. Ablation Study
To further explore the roles of different compo-
nents in GCNet, we conduct ablation experiments.
The experimental results are shown in Table 2.
Overall, utilizing global semantic features in text
modeling and using Hybrid GAT to extract syntac-
tic information contributes to the model’s capabil-
ity, resulting in an enhancement in sentiment clas-
sification performance. GCNet outperforms the
model that does not explicitly learn and use global

semantic features, indicating that the collaborative
learning of global semantic features and context
modeling can provide amore comprehensive anal-
ysis of sentences, thus enhancing the model’s ro-
bustness. In addition, the model without the pre-
fusion module cannot perform as well as GCNet,
which indicates that enabling syntactic features to
perceive global features is necessary. It is within
our expectation that either removing the syntac-
tic encoding process (i.e., Hybrid GAT) or replac-
ing Hybrid GAT with a common GAT leads to per-
formance degradation. It can be concluded that
using both dependency tree-based syntactic infor-
mation and attention-based semantic information
complements can result in a better understand-
ing of sentences. Moreover, unlike the common
GAT, which does not distinguish between differ-
ent dependency relations during computation, Hy-
brid GAT emphasizes the role of different depen-
dency relations when modeling syntactically adja-
cent words adjacent, thus avoiding the loss of syn-
tactic information implicit in the edges of the de-
pendency tree.

4.6. Case Study
Table 3 presents a few sample cases analyzed
using different state-of-the-art models. We select
DualGCN (Li et al., 2021) that extracts both syn-
tactic information and semantic information (i.e.,
features obtained using attention) and SEGCN
(Zheng et al., 2023) that enhances GCN with
global sentiment knowledge from the dataset.
In S1, there are no adjectives describing the
aspect term “usb ports” or explicit sentiment-
conveying verbs like “love” or “hate”. In such case,
the sentiment knowledge from the dataset can not
assist in the analysis since there are no sentiment
words. Additionally, trying to find the opinion con-
text for the aspect term through either semantic
relevance or syntactic structure is challenging. In
S2, although there are words like “pretty good” with
clear sentiment tendency, these adjectives do not
directly describe the aspect term “sandwiches” but
rather the intermediary term “soy mayonnaise”. In
such case, GCNs fail to correctly model the re-
lationship between “sandwiches” and the opinion
words. Therefore, in these two samples, both Du-
alGCN and SEGCN incorrectly classify the senti-
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Table 3: Case studies comparing our GCNet model with the state-of-the-art baselines.
Example DualGCN SEGCN GCNet (ours)

Laptop S1. this laptop has only 2 [usb ports]neg , and they are
both on the same side.

neu5 neu5 neg3

Restaurant

S2. most of the [sandwiches]pos are made with soy mayonaise
which is actually pretty good.

neu5 neu5 pos3

S3. this place has the strangest [menu]neg and the restaurants
tries too hard to make fancy [food]neg .

pos5, neg3 pos5, pos5 neg3, neg3

S4. great [food]pos but the [service]neg was dreadful ! pos3,neg3 pos3,neg3 pos3,neg3

Twitter S5. tryna get a wawa not a [lady gaga]neg . neu5 neu5 neg3

Figure 3: Two examples visualizing the relevance scores for aspect terms and the attention distribution
of global features in the Global Feature and Semantic Information Encoding module. “G” in colored box
represents global feature.

ment polarity of the aspect term as neutral. Yet,
GCNet, by extracting global semantic information
from sentences, can utilize the overall sentiment
tendency contained within it to assist in determin-
ing the sentiment polarity of aspect terms. For ex-
ample, in the first sample, with word “only”, the
sentence expresses a negative sentiment, and the
second sample conveys a positive sentiment.
S3 reflects that GCNet can capture the nega-
tive sentiment towards the restaurant and recog-
nize that “too hard” implies dissatisfaction with the
“food” rather than satisfaction. S4 indicates that
the model can also correctly classify samples with
aspect terms that have relative sentiment polari-
ties like other models, demonstrating our model’s
robustness. S5 shows that it can also handle infor-
mal sentences without strict grammatical structure
for sentiment classification.

4.7. Visualization
Figure 3 illustrates the aspect relevance score and
the global feature attention score in the Global
Feature and Semantic Information Encoding mod-
ule. In Sample 1, the aspect term “sandwiches”
is indirectly described. In such case, semantic
analysis is more effective compared to syntactic
analysis. For aspect “sandwiches”, “actually pretty

good” indeed receives more attention. In addi-
tion, the global features for this sentence assign a
higher weight to “actually pretty good”, indicating
that global features can capture the overall posi-
tive sentiment in this sentence. By involving global
features in the process of MSA, the global features
can enhance the positive sentiment for the aspect
term “sandwiches”, contributing to the correct clas-
sification.
Sample 2 exists a sentiment reversal, and it can
be observed that the semantic analysis wrongly
focuses on “Great” for the aspect term “service”.
Meanwhile, even though the global features have
a large weight on “Great”, it also pay attention to
“service was dreadful,” neutralizing the strong pos-
itive sentiment of “Great”. Including these global
features in the attention calculation for the aspect
term can mitigate errors, and with the help of syn-
tactic analysis by using Hybrid GAT, GCNet can
correctly classify the sentiment polarity of “service”
as negative.

5. Conclusion
In this paper, we propose a GCNet that incorpo-
rates global semantic features into the modeling
process between aspect terms and opinion con-
text, leveraging the overall sentiment tendency of
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sentences to assist in the analysis for ABSA tasks.
GCNet contains a semantics encoding module
that collaboratively learns sequential representa-
tion and refines global features. Moreover, we
employ a hybrid GAT to leverage syntactic knowl-
edge for a more comprehensive sentence anal-
ysis, a pre-fusion module that integrates the re-
fined global feature with the syntactic representa-
tion is also introduced. Extensive experiments on
three detasets have demonstrated the effective-
ness of our model. In the future, we will explore
ways to enhance global features to make them
more aspect-oriented for ABSA tasks and to pro-
videmore precise guidance for the sentiment anal-
ysis process.
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