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Abstract

Large language models have amply proven their great capabilities, both in downstream tasks and real-life settings.

However, low- and mid-resource languages do not have access to the necessary means to train such models from

scratch, and often have to rely on multilingual models despite being underrepresented in the training data. For the

particular case of the Catalan language, we prove that continued pre-training with vocabulary adaptation is a better

alternative to take the most out of already pre-trained models, even if these have not seen any Catalan data during

their pre-training phase. We curate a 26B tokens corpus and use it to further pre-train BLOOM, giving rise to the

FLOR models. We perform an extensive evaluation to assess the effectiveness of our method, obtaining consistent

gains across Catalan and Spanish tasks. The models, training data, and evaluation framework are made freely

available under permissive licenses.
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1. Introduction

Over the past few years, transformer-based lan-

guage models have dominated a wide range of

Natural Language Processing (NLP) tasks. Their

widespread use has now expanded beyond the

NLP community, increasing the number of user

interactions in all sorts of languages. However,

most of these models have been developed exclu-

sively for English, with much less efforts being de-

voted to other languages. Non-English speakers

often have to rely on multilingual models that were

trained on a mix of languages, as their more desir-

able monolingual counterparts may not exist due

to the prohibitive amount of language-specific data

and compute power required to generate them.

Despite the cross-lingual transfer capabilities of

multilingual models, adding too many languages

to the mixture can be detrimental for downstream

performance (Conneau et al., 2019). Moreover,

models that cover hundreds of languages (e.g.

XLM (Lample and Conneau, 2019), mT5 (Xue

et al., 2020) or PaLM (Chowdhery et al., 2022)) re-

quire bigger vocabulary sizes, typically five times

larger than single-language vocabularies. This re-

sults in bigger embedding layers, which in the case

of relatively small models represent a higher per-

centage of the total number of parameters and,

thus, the memory footprint of the model can be sig-

nificantly increased.

In the context of a mid-resource language like

Catalan, we study the most prominent possibili-

ties: from scratch and continued pre-training, both

with andwithout vocabulary adaptation. By chang-

ing the vocabulary, the resulting model benefits

from language-specific tokenization at the cost of

*Equal contribution.

reusing fewer embeddings from the original model.

We believe that this trade-off is worth exploring,

given that recycling model weights is arguably

preferable to randomly initializing them.

We then report performances on a set of standard

NLP tasks to test the capabilities of the models

built throughout our experiments, shedding some

light on the differences between language adapta-

tion strategies. The results show that, for our par-

ticular linguistic context, vocabulary adaptation is

the optimal strategy to efficiently recycle a publicly

available model.

Overall, the main contributions of this work are:

• FLOR-760M1 and FLOR-1.3B2, two autore-

gressive language models that achieve state-

of-the-art results in several Catalan and Span-

ish downstream tasks, when compared to

open models of similar size.

• A curated corpus with 26 billion tokens of

Catalan, Spanish and English text3.

• A novel evaluation benchmark for Catalan

and Spanish decoder-only models.

• A series of experiments that lead us to build

the FLOR models, namely: 1) comparing the

from scratch initialization strategy against lan-

guage adaptation, 2) studying the two main

language adaptation approaches, and 3) de-

termining if a monolingual (Cerebras-GPT) or

multilingual (BLOOM) model is more suitable

for language adaptation.

1huggingface.co/projecte-aina/FLOR-760M
2huggingface.co/projecte-aina/FLOR-1.3B
3huggingface.co/datasets/BSC-

LT/open_data_26B_tokens_balanced_es_ca

https://huggingface.co/projecte-aina/FLOR-760M
https://huggingface.co/projecte-aina/FLOR-1.3B
https://huggingface.co/datasets/BSC-LT/open_data_26B_tokens_balanced_es_ca/
https://huggingface.co/datasets/BSC-LT/open_data_26B_tokens_balanced_es_ca/
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All the aforementioned resources, including those

developed for experimental purposes, are openly

released under permissive licenses for commer-

cial usage and further research.

2. Related Work

The most widespread strategy to pre-train large

language models is to start from scratch with

randomly initialized weights. Examples of this

can be found across many languages, such as

Spanish (Gutiérrez-Fandiño et al., 2022), Russian

(Emelyanov et al., 2020), French (Launay et al.,

2022), Arabic (Antoun et al., 2021) or Chinese

(Zeng et al., 2021).

However, in low-resource scenarios, this tendency

to start training from scratch seems unjustified.

Continued pre-training presents itself as a viable

alternative to reuse existing models by extend-

ing their next-word-prediction training with no ar-

chitectural or tokenizer changes. The literature

offers a few examples of successfully adapting

an English model to a different language. No-

tably, Müller and Laurent (2022) demonstrated this

by tailoring GPT-J for French, while Pires et al.

(2023) showcased a similar success in their work

on adapting LLaMA for Portuguese.

Multilingual models trained from scratch are also

very present in the NLP landscape (Shliazhko

et al., 2023; Lin et al., 2022a; Scao et al., 2022).

They can achieve a high level of cross-lingual

transfer but tend to require much larger vocabu-

laries and can suffer from some limitations such as

the curse of multilingualism (Conneau et al., 2019)

or an unfair distribution of languages (Choudhury

and Deshpande, 2021).

In this multilingual context, Yong et al. (2023)

adapts BLOOM to 8 additional languages. The

authors compare continued pre-training with two

adapter techniques, namely MAD-X (Pfeiffer et al.,

2020) and (IA)3 (Liu et al., 2022). Their re-

sults show that adapter-based language adapta-

tion strategies are preferable for models that ex-

ceed the 3B parameters, but no conclusions are

reached for smaller sizes. Ebrahimi and Kann

(2021) conducted similar experiments with en-

coder models of smaller size and concluded that

continued pre-training is more promising than both

vocabulary extension and MAD-X.

On the other hand, Artetxe et al. (2020) show that

deep monolingual models can generalize across

languages without relying on joint training or a

shared vocabulary. In a similar direction, de Vries

and Nissim (2021) study three language adapta-

tion methods based on retraining lexical embed-

dings from amonolingual model before further pre-

training on new languages. Later research has ex-

panded upon this line, with Minixhofer et al. (2022)

introducing a method that employs semantic simi-

larity to pair embeddings from the source and tar-

get languages.

Lakew et al. (2018) proposed a simple, yet ef-

fective strategy for adapting the embedding layer

to a new tokenizer by reusing the embeddings

corresponding to the shared tokens. Ostendorff

and Rehm (2023) go one step further initializing

the non-matching tokens as the weighted average

of the shared tokens’ embeddings, using a fully-

trained smaller model as a reference. The weight

of each token is approximated using the similarity

of token embeddings in the smaller model. This

comes with the non-trivial cost of requiring a fully

trained smaller model.

In summary, existing vocabulary transfer tech-

niques aim at reusing the weights of an existing

model and adapting its tokenizer to a new lan-

guage. This not only intends to boost performance

but also provides enhanced inference speed, re-

duces the word-to-token ratio and can decrease

the total size in the case of multilingual models

(Gee et al., 2022).

3. Data

3.1. Pre-training Corpus

The mid-resource nature of the Catalan language

hinders the collection of sufficient data and moti-

vates us to add Spanish text to the pre-training

corpus, given their cultural closeness and high

linguistic similarity. In this way, we also ensure

that the resulting corpus reflects the bilingualism

present in the Catalan society. In particular, our

custom-made dataset has 42.1% of the total data

in Catalan and 41.3% in Spanish. The remaining

16.6% is English text, which is used as an anchor

between the source and target tokenizers. The

addition of a third language also intends to pre-

vent catastrophic forgetting of a language that is

already mastered by the original model. As it can

be seen in Table 3.1, the corpus contains amixture

of several data sources in an attempt to increase

domain diversity. A more detailed description of

each source can be found in Appendix A.

Overall, the training corpus contains roughly 26B

tokens. Note that the choice of corpus size is not

arbitrary at all, since it is the required amount of

tokens to train a Chinchilla-optimal 1.3B model,

according to the scaling laws proposed by Hoff-

mann et al. (2022). In order to reach this amount

of tokens with a balanced Catalan-Spanish ratio,

a slight oversampling of the Catalan data was re-

quired. However, no more than 4 epochs were

given to any of the data sources, respecting the

rule-of-thumb given by Muennighoff et al. (2023).

It is relevant to note that the checkpoints that are

used as a starting point had already seen billions of

tokens in their respective pre-trainings. For refer-

ence, Cerebras-GPT was trained on 26.3B tokens
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Dataset Lang. Epochs Tokens (M)

Wikipedia CA 3.5 1127.08

C4_ca CA 2.1 8381.54

Biomedical CA 1.4 23.33

VilaWeb CA 2.1 149.29

CaWaC CA 2.1 171.41

Racó - Notícies CA 2.1 50.89

Racó - Fòrums CA 2.1 989.81

Wikipedia ES 1.4 1371.43

C4_es ES 0.1 7805.53

Biomedical ES 0.7 449.85

Legal ES 0.7 984.37

Gutenberg ES 0.7 52.57

Wikipedia EN 1.4 4290.56

Total 25847.66

Table 1: Data sources in the training corpus with

their respective number of tokens.

of English texts from The Pile dataset (Gao et al.,

2020), and BLOOM on 341B multilingual tokens

from the ROOTS corpus (Laurençon et al., 2022).

For experimental purposes, we also assembled a

2B tokens dataset made exclusively of Wikipedia

text, with a perfect balance between Catalan,

Spanish and English.

3.2. Preprocessing details

The 26B tokens of curated text were obtained

after applying a series of data-cleaning steps to

ensure compliance with quality standards. The

first step was to perform language filtering us-

ing fastText’s linear classifier (Joulin et al., 2016).

Then all corrupted Unicode characters were nor-

malized with the ftfy library (Speer, 2019). Dedu-

plication is then performed at the document level

with Onion (Pomikálek, 2011). Finally, a series of

filters were applied in order to discard poor-quality

data (e.g. very short documents or paragraphs,

sentences with undesired characters, etc). As a

final step, potential pornographic content from the

scrapped sources was filtered out by a tailor-made

RoBERTa classifier (Liu et al., 2019). The result-

ing corpus is publicly released under an open li-

cense.

3.3. Evaluation

We perform an extensive evaluation to compare

ourselves against other publicly available mod-

els of similar size. To do so, we rely on the

open-source codebase released by EleutherAI

(Gao et al., 2021), and extend their evaluation

framework with 10 additional datasets. Many

of these are recently published Catalan datasets

(Gonzalez-Aguirre et al., 2024) that have not yet

been used for evaluation, and the rest are publicly

available third-party datasets that were not present

in EleutherAI’s framework at the time of writing.

In all cases, we assess model performance with

commonly used metrics in a 5-shot setting.

The resulting benchmark is a collection of stan-

dard downstream tasks in Catalan, Spanish and

English, enabling a fair comparison across lan-

guages. In particular, it includes tasks for reading

comprehension, commonsense reasoning, ques-

tion answering, natural language inference, para-

phrase identification and machine translation. Al-

though for some discriminative tasks, such as NLI,

QA, and Paraphrase Identification, decoder mod-

els are not the most suitable option, we add these

tasks to our benchmark to better understand the

capabilities of the model. For more details about

the evaluation datasets, refer to Appendix B. We

openly release the evaluation scripts on GitHub4

for future use.

4. Methodology

This section describes the training procedure and

presents the experiments that were carried out to

prove the effectiveness of the chosen method.

First, Section 4.1 describes the base models used

for continued pre-training. In Section 4.2, we ana-

lyze the efficiency of our custom tokenizer. And, fi-

nally, in the remainder of this section, we describe

our three pre-train strategies: from scratch (Sec-

tion 4.3), continued pre-training (Section 4.4) and

vocabulary adaptation (Section 4.5).

4.1. Models

For the main experimental setup we use the

Cerebras-GPT architecture (Dey et al., 2023),

which is basically a GPT-3-like model that em-

ploys dense attention in all decoder blocks, rather

than alternating dense and sparse-banded atten-

tion like the original GPT-3 (Brown et al., 2020).

The publicly released checkpoint has been pre-

trained on 26.3B tokens of English text, which

makes it chinchilla-optimal (Hoffmann et al., 2022).

We selected this model for all language adaptation

experiments because it has never seen Catalan or

Spanish data during its pre-training phase. Thus, it

can be used as a proof-of-concept to show that the

language adaptation techniques presented in this

work can also be applied to unseen languages.

In pursuit of producing the best Catalan model

in the one billion parameter range, we apply the

best-performant language adaptation strategy to

the BLOOM-1.1B and BLOOM-1.7Bmodels (Scao

et al., 2022), as we expect this strategy can ben-

efit from their multilingual capabilities. These

decoder-only models use AliBi positional embed-

dings and layer normalization after the embedding

layer. They have been pre-trained on 341B tokens

4https://github.com/projecte-aina/flor_
language_adaptation

https://github.com/projecte-aina/flor_language_adaptation
https://github.com/projecte-aina/flor_language_adaptation
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of data in 46 natural languages and 13 program-

ming languages. This corpus is estimated to con-

tain 36.83B tokens of Spanish data and 3.75B of

Catalan.

In both cases, the tokenizers were trained with

the byte-level Byte Pair Encoding (BPE) algorithm

(Sennrich et al., 2016). Cerebras’ models reuse

the GPT-2 tokenizer, which has a vocabulary size

of 50,257, whereas BLOOMmodels have a vocab-

ulary size of 250,680 tokens, a common practice

in highly multilingual models to reduce the risk of

word over-segmentation, especially if they contain

many languages with different scripts.

4.2. Tokenization

We train a new tokenizer running byte-level BPE

on the same corpus that we later use for pre-

training (see Section 3.1). We set the vocabulary

size to 50,257 in all cases.

For Cerebras-GPT-1.3B, Table 2 shows that re-

placing the tokenizer greatly reduces the aver-

age number of tokens-per-word (TPW) in Cata-

lan (∼30%) and Spanish (∼33%). The increase

experienced in English is much smaller (∼16%),

an affordable cost considering that English is only

used as an anchor and is not among our target

languages.

Tokenizer ca es en
Cerebras_50k 2.19 2.13 1.41

Catalan_50k 1.53 1.43 1.64

BLOOM_250k 1.42 1.37 1.37

Catalan_250k5 1.39 1.28 1.37

Table 2: Average Tokens-Per-Word of the source

and target tokenizers in each language.

In the case of BLOOM, on the other hand, we have

a slight TPW increase both in Catalan (∼8%) and

Spanish (∼4%). This is compensated by the fact

that, as a consequence of the original BLOOM

vocabulary being roughly five times larger, we

achieve a model size reduction of approximately

29%and 27% for BLOOM-1.1B and BLOOM-1.7B,

respectively. Table 3 depicts the level of compres-

sion achieved in each case.

As a final note, it is relevant to highlight that

our new tokenizer shares 26.35% of its vocabu-

lary with the one from Cerebras-GPT-1.3B, and

66.16% with BLOOM’s. This leads us to believe

that we are facing successful adaptation, and ex-

pect that to be reflected in the final results.

4.3. From Scratch

We test the most widely used strategy by training

a GPT-like model from scratch. More specifically,

5Only shown for comparison, not actually used.

Model Vsize Total Size

BLOOM-1.1B 250k 1.07B

FLOR-vocab_adapted-750M 50k 0.76B (-29%)

BLOOM-1.7B 250k 1.72B

FLOR-vocab_adapted-1.3B 50k 1.31B (-24%)

Cerebras-GPT-1.3B 50k 1.32B

Cerebras-GPT-vocab_adapted-1.3B 50k 1.32B (±0%)

Table 3: Model sizes before and after vocabulary

adaptation.

a Cerebras-GPT model of 1.3 billion parameters is

trained on 26B tokens of data, complying with the

well-known Chinchilla scaling laws.

4.4. Continued Pre-training

Continued pre-training is the most straightforward

and widely used approach for language adapta-

tion, and numerous such examples can be found

in the literature (Pires et al., 2023; Müller and Lau-

rent, 2022; la Rosa and Fernández). It involves

extending the pre-training phase of a LM with data

in a new language while preserving the original

weights and vocabulary. However, a significant

drawback is that it requires the use of a tokenizer

that was not originally designed for the target lan-

guage.

Given the monolingual nature of Cerebras-GPT,

its tokenizer performs poorly when given Catalan

or Spanish data. The higher TPW ratio signifi-

cantly reduces the amount of text that can fit into

the model’s input sequence, which in turn slows

down training and increases inference costs. In

light of this, when training Cerebras-GPT from

scratch, the full pre-training dataset is encoded in

38B tokens, as opposed to the 26B tokens we get

from our custom tokenizer.

4.5. Vocabulary Adaptation

For this strategy, we reuse the weights of the

source model corresponding to the transformer

layers and we reinitialize the embedding layer, for

which a number of studies have explored effective

strategies. A core element in some of the most

prominent proposals aims to avoid random ini-

tialization of token embeddings (Minixhofer et al.,

2022; Ostendorff and Rehm, 2023; Gee et al.,

2022; Lakew et al., 2018). Given a source vo-

cabulary and a target vocabulary, we copy the

weights of the embeddings corresponding to all

tokens present in both vocabularies and initialize

the rest to the average of all source embeddings

weights.

In order to fully integrate the newly adapted em-

beddings into the model and avoid instabilities

during pre-training, specific training strategies are

proposed in the literature. de Vries and Nissim
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(2021) trains only the embedding weights while

freezing the rest of the model layers, while Howard

and Ruder (2018) slowly unfreezes the rest of the

layers during training. We make a preliminary ex-

periment, testing the efficiency of each of these

strategies. In this setup, we adapt the Cerebras-

GPT-1.3B and train it using the subset of Cata-

lan, Spanish, and English Wikipedias, mentioned

in Section 3.1. A full description of the strategies

follows:

Only embeddings. We further train the embed-

ding layer while freezing the transformer layers.

This is the approach used in Artetxe et al. (2020),

with the difference that they randomly initialize

the lexical embeddings; according to the authors,

freezing the Transformer layers helps to avoid

catastrophic forgetting.

Vocabulary adaptation. Following the line of Os-

tendorff and Rehm (2023), which emphasizes that

freezing most parameters limits the model’s ability

to learn about the new language, we directly train

all model weights on the Wikipedia subset.

Progressive unfreezing. An intermediate ap-

proach between the previous ones, consisting of

training the model while progressively unfreezing

the model layers.

Figure 1: Evaluation loss across our three vocab-

ulary adaptation strategies.

In Figure 1, we compare the three strategies on the

basis of the validation loss during training. The re-

sults suggest that freezing the layers significantly

reduces training speed, while no training instabili-

ties appear. It is possible that, for smaller models,

altering the embedding layer implies changing a

substantial proportion of the model, which might

potentially lead to training instabilities. However,

we have not observed any such occurrences. No-

tably, the vocabulary adaptation strategy achieves

the lowest validation loss.

5. Results

Table 4 presents the evaluation results obtained

on the benchmark introduced in Section 3, catego-

rized by task type. Several state-of-the-art mod-

els of similar size are included as strong base-

lines, as well as a random baseline for refer-

ence. Cerebras-GPT-1.3B (Dey et al., 2023) and

BLOOM-1.1B (Scao et al., 2022) are added for

being the source models used in our language

adaptation strategies, as detailed in Section 4.

Additionally, we evaluate four English models,

namely GPT-Neo-1.3B (Black et al., 2022), Pythia-

1.4B (Biderman et al., 2023), OPT-1.3B (Zhang

et al., 2022), and Falcon-rw-1.3B (Penedo et al.,

2023), along with the multilingual model mGPT-

1.3B (Shliazhko et al., 2023). Proprietary models

were purposely excluded from the comparison.

The results show that the FLOR family of models,

starting with the 760M model and followed by the

1.3B model, consistently achieves the highest re-

sults in the Catalan tasks. The only exceptions

are PAWS-X, where all scores are very close to

random, and XNLI, where the BLOOM-1.1B base

model performs slightly better FLOR-760M. In the

Spanish-to-Catalan translation task, FLOR mod-

els also lag slightly behind the vocabulary-adapted

version of Cerebras-GPT. FLORmodels dominate

on most Spanish tasks, but this superiority does

not extrapolate to the English domain, where, un-

surprisingly, the English-only models consistently

outperform the others.

When comparing the results of the Cerebras-GPT

model trained from scratch with the language-

adapted models, the former outperform in all tasks

and languages except for paraphrase identifica-

tion tasks. In the case of language-adapted mod-

els, a comparison between continued pre-training

and vocabulary adaptation strategies reveals that

vocabulary-adapted models consistently outper-

form their counterparts, with the sole exceptions

being the English Belebele and PAWS-X datasets.

In addition to the evaluations on downstream

tasks, we monitor the evolution of the perplexity

metric during training to compare strategies across

our three languages of interest (see Figure 2). The

vocabulary-adapted models achieve lower per-

plexities a lot faster than their from-scratch coun-

terparts. However, according to previous work

(Yong et al., 2023), perplexity during language

adaptation training may not consistently align with

prompting performance, for which our conclusions

regarding these procedures do not hinge solely on

this metric.

6. Discussion

Choosing an effective initialization strategy.

The two language adaptation methodologies

tested in this work, i.e. continued pre-training
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Training tokens
Reading Comprehension Question Answering

Model Belebeleacc XQuADf1 CatalanQAf1 CoQCatf1

Pre-train Lang. adapt. ca es en ca es en ca ca
Random - - 25.00 25.00 25.00 - - - - -

mGPT-1.3B 440B - 26.11 24.44 26.11 0.33 0.67 0.17 0.65 0.78

GPT-Neo-1.3B 380B - 35.44 32.77 41.67 19.75 29.77 51.53 22.34 23.57

Pythia-1.4B 299.9B - 35.78 35.11 41.56 26.19 34.13 52.98 27.47 25.38

OPT-1.3B 180B - 35.22 33.56 43.78 23.53 31.85 52.95 26.58 20.18

Falcon-rw-1.3B 350B - 34.33 33.56 47.89 5.93 19.25 58.60 6.91 15.61

Cerebras-GPT-1.3B 26B - 33.44 31.89 36.67 8.56 19.98 36.00 10.87 14.12

BLOOM-1.1B 341B - 39.89 37.22 39.33 36.81 36.98 44.10 44.65 34.57

From_scratch-1.3B 26B - 33.44 31.00 29.00 8.93 8.47 4.19 13.58 18.86

Cerebras-GPT-continued_pre-training-1.3B 26B 38B 39.22 35.11 33.56 26.67 28.17 25.22 34.99 31.93

Cerebras-GPT-vocab_adapted-1.3B 26B 26B 40.33 36.22 35.33 28.52 30.38 28.27 39.99 39.50

FLOR-760M 341B 26B 41.00 37.89 37.00 41.10 41.11 40.20 51.01 41.34

FLOR-1.3B 341B 26B 43.44 39.11 40.44 43.52 44.31 44.11 54.25 48.15

Training tokens
Natural Language Inference Paraphrase Identification

Model XNLIacc TE-caacc PAWS-Xacc Parafrasejaacc

Pre-train Lang. adapt. ca es en ca ca es en ca
Random - - 33.33 33.33 33.33 33.33 50.00 50.00 50.00 50.00

mGPT-1.3B 440B - 40.06 43.81 45.67 37.03 51.00 52.30 56.15 51.32

GPT-Neo-1.3B 380B - 41.44 45.57 49.92 35.38 54.65 53.40 54.60 51.70

Pythia-1.4B 299.9B - 42.46 45.61 51.00 37.46 54.15 52.50 57.70 55.23

OPT-1.3B 180B - 40.08 44.53 52.48 36.14 54.10 52.55 55.90 53.23

Falcon-rw-1.3B 350B - 34.53 35.85 45.73 34.96 54.25 54.05 53.65 50.60

Cerebras-GPT-1.3B 26B - 36.83 38.88 47.25 35.62 52.40 52.20 55.95 52.05

BLOOM-1.1B 341B - 47.19 46.39 49.44 41.38 55.05 54.05 54.75 55.65

From_scratch-1.3B 26B - 43.77 42.24 38.40 38.78 51.45 51.35 53.55 54.15

Cerebras-GPT-continued_pre-training-1.3B 26B 38B 45.55 44.01 41.48 40.53 53.50 51.40 50.35 53.95

Cerebras-GPT-vocab_adapted-1.3B 26B 26B 46.21 45.61 43.35 42.65 49.95 50.85 51.25 56.30

FLOR-760M 341B 26B 46.93 46.03 46.11 42.14 52.35 52.50 54.85 56.55

FLOR-1.3B 341B 26B 49.20 48.82 47.45 42.89 53.20 52.85 53.00 57.43

Training tokens
Commonsense Reasoning Translation

Model XStoryClozeacc COPAacc FLoResbleu

Pre-train Lang. adapt. es en ca en ca→es es→ca ca→en en→ca es→en en→es
Random - - 50.00 50.00 50.00 50.00 - - - - - -

mGPT-1.3B 440B - 55.33 60.09 52.20 63.40 3.25 2.96 9.25 3.79 17.75 15.34

GPT-Neo-1.3B 380B - 51.42 66.58 53.40 74.80 3.27 3.80 17.77 5.49 17.70 12.04

Pythia-1.4B 299.9B - 54.14 68.37 52.20 78.60 9.68 5.74 24.03 11.10 21.50 15.04

OPT-1.3B 180B - 53.94 69.95 52.60 76.20 3.14 3.52 15.39 2.00 16.33 6.53

Falcon-rw-1.3B 350B - 51.09 71.34 52.40 79.60 3.03 3.59 8.89 3.01 14.17 6.50

Cerebras-GPT-1.3B 26B - 49.11 60.62 51.40 66.80 2.42 1.81 2.69 0.82 3.36 1.77

BLOOM-1.1B 341B - 57.91 62.48 62.80 66.40 21.62 15.28 31.16 21.28 20.92 16.84

From_scratch-1.3B 26B - 55.20 53.54 61.40 59.60 2.72 2.22 1.36 1.14 1.51 1.08

Cerebras-GPT-continued_pre-training-1.3B 26B 38B 56.45 57.38 61.60 60.80 9.19 14.88 18.23 12.14 13.10 7.71

Cerebras-GPT-vocab_adapted-1.3B 26B 26B 58.64 59.10 66.40 61.60 16.31 19.63 26.65 24.10 17.16 15.09

FLOR-760M 341B 26B 61.42 61.42 65.40 64.20 22.62 15.77 32.26 26.04 20.91 18.08

FLOR-1.3B 341B 26B 64.06 61.81 68.00 67.80 22.16 18.58 33.95 29.31 23.09 20.30

Table 4: Evaluation results on Catalan, Spanish and English downstream tasks in a 5-shot setting. The

upper part of each table contains the baseline models, including the random one whenever possible.

The bottom part of each table displays the in-house models. The underline indicates the training tokens

from our pre-training corpus explained in Section 3. The Cerebras-GPT-continued_pretraining-1.3B*

corresponds to the checkpoint trained on the same number of tokens as the other strategies but on

fewer data, as it has a different tokenizer.

and vocabulary adaptation, involve reusing trans-

former layer weights from a pre-trained model.

Both demonstrated superior performance com-

pared to our model trained from scratch, which has

a random initialization. This is yet another exam-

ple in which random initialization of weights proves

not to be the most efficient strategy.

The importance of language-specific tokeniza-

tion.

We compare both language adaptation strategies:

with and without vocabulary adaptation. As ex-

plained in Section 4.4, the FLOPs needed to see
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Figure 2: Evaluation perplexity comparison of our

vocabulary adaptation and from scratch models

across the three main languages.

the same amount of data can increase due to

not having a language-specific tokenizer. This

is probably behind the fact that the vocabulary-

adapted model outperforms the continued pre-

trained model trained using the same FLOPs in

most tasks and languages. What’s more inter-

esting, the vocabulary-adapted model also outper-

forms the continued pre-trained model trained with

the full dataset. We find it surprising that English

tasks also benefit from vocabulary adaptation to

the Catalan tokenizer. Considering that both mod-

els originate from the same checkpoint and have

been exposed to identical data, the sole remaining

distinction lies in the tokenizer, with one tokenizer

adapted to the language and the other not. Con-

sequently, we add yet another piece of evidence

(Artetxe et al., 2020) indicating that the impact of

tokenization on downstream task performances is

significant.

Leveraging a multilingual model for language

adaptation. Vocabulary adapted models built

from BLOOM outperformed those built from

Cerebras-CPT model. This is expected mainly

because of the larger pre-training corpus seen

by BLOOM, which already includes Catalan and

Spanish data and related languages (several other

Romance languages). An additional factor that

may be favoring FLOR models is a higher token

overlap between the source and target tokenizers

in comparison to Cerebras-CPT, which enables

more lexical embeddings to be reused. Moreover,

it must be taken into account that this vocabu-

lary adaptation, departing from such large multi-

lingual tokenizer, results in a substantial reduction

in target lexical embeddings, which translates into

a significant model distillation. Specifically, when

adapting the 1.3B BLOOM model to our vocabu-

lary, it downscaled to a 760M-parameter model,

while the 1.7B BLOOMmodel was reduced to 1.3B

parameters.

On preserving English in language adapted

models. The downstream tasks results in Table

4, show that language-adapted models tend to de-

crease their performance on English tasks com-

pared to their source model, most likely due to

the Catalan and Spanish-specific training during

language adaptation. Although keeping some En-

glish data in training may help to mitigate the per-

formance drop, it remains uncertain without further

experiments. For the Cerebras-based models, the

negative impact of vocabulary adaptation on per-

formance varies between tasks, with some show-

ing small declines (e.g., XStoryCloze and Bele-

bele) and others significant drops (e.g., XQuAD

and XNLI). The reasons for these differences are

unclear. Similarly, the FLOR-760M models, ex-

cept for PAWS-X, perform worse in English than

the BLOOM-1.1B models. On the other hand,

unexpectedly, when vocabulary adaptation and

continued pre-training are compared on the same

data, the latter tends to perform worse in English.

In translation tasks, which can be considered an

exception due to the bilingual nature of the task,

the adaptation of the Cerebras-GPT-based mod-

els allows a radical improvement in results, es-

sentially transforming them from incompetence to

satisfactory results. In the case of BLOOM mod-

els, which possess baseline translation capabili-

ties, vocabulary adaptation further enhances their

performance.

The paraphrase identification tasks on the

evaluation benchmark repetitively fall to ran-

dom. The difficulty of this task was demonstrated

by the fact that, in general, even the best mod-

els often struggled to beat the random baseline.

This is particularly true for the multilingual PAWS-

X. We also acknowledge that, ideally, paraphras-

ing should be evaluated in its generative form.

However, it is well-recognized that automatically

assessing generative tasks, including summariza-

tion, presents considerable challenges and re-

quires further research (Scao et al., 2022).

7. Conclusions

In this work, we pursue the best strategy to de-

velop a 1.3B generative language model in Cata-

lan using a 26B token Catalan, Spanish, and En-

glish corpus, released under an open license. We

use this data to train a model from scratch and

compare it to adapting an existing pre-trained gen-

erative LM to our target language. The results

demonstrate the superiority of the latter option,

proving a significant improvement over a random

initialization of weights.

Within language adaptation, we then compare

two main methodologies: continued pre-training,
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where the target-language corpus is used to fur-

ther train the source model with its original weights

and tokenizer, and vocabulary adaptation, where

the transformer layer weights are kept but the em-

beddings reinitialized to fit a new tokenizer cre-

ated for the target language. Vocabulary adap-

tation proves to be the most effective technique

in terms of performance gains and training ef-

ficiency, provided a more language-specific tok-

enization of the target data. Finally, we compare

vocabulary adaptation using two source model ar-

chitectures, Cerebras-GPT and BLOOM, monolin-

gual and multilingual, respectively, and conclude

the superiority of the latter, which leads to our best

models: FLOR-760M and FLOR-1.3B. We believe

that these experiments and findings, focused on

Catalan, can be useful to other languages in or-

der to guide themore efficient development of their

own models.

For all our experiments, we developed an evalua-

tion benchmark that focuses on Catalan, but also

includes Spanish and English tasks. We cover dif-

ferent evaluation capabilities and leave it to future

work to include more generative tasks with sensi-

tive evaluation metrics. Furthermore, our efforts

should prioritize the unresolved issues that have

emerged from our discussions, namely the impact

of including a small fraction of English data among

the target training corpora and the explanation of

why vocabulary adaptation improves over contin-

ued pre-training even in the source language.
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A. Data Sources

List of data sources from the training corpus:

• Wikipedia: English, Spanish and Catalan ar-

ticles covering a wide range of topics. Lists,

tables, hyperlinks and boilerplate were re-

moved.

• mC46: Catalan and Spanish portions of

the multilingual Common Crawl’s web crawl

corpus (Raffel et al., 2020).

• Biomedical data: Spanish biomedical cor-

pus crawled in 2020. The sources were med-

ical journals, pharmaceutical companies, re-

search centers and health-related websites,

among others (Carrino et al., 2021).

• Legal data: Spanish texts from the legisla-

tive, advocacy and administrative domains,

mostly scraped from digital resources. It in-

cludes documents such as patents, crimi-

nal proceedings or the Spanish Consitution

(Gutiérrez-Fandiño et al., 2021).

• Gutenberg7: Spanish books with no copy-

right retrieved from the Gutenberg Project’s

digital library.

• VilaWeb8: News articles from a Catalan-

language daily news outlet.

• CaWaC9: A 780M token web corpus of Cata-

lan text built from the .cat top-level-domain in

late 2013. (Ljubesic and Toral, 2014).

• Racó Català10: Posts from the News and

Forum sections of a Catalan web portal.

B. Evaluation Datasets

List of datasets from the evaluation benchmark:

• Belebele (Bandarkar et al., 2023) is a read-

ing comprehension dataset covering 122 lan-

guage variants, including Spanish and Cata-

lan. Each document consists of a passage of

text from the FLORES-200 dataset, together

with a question and four options for multiple-

choice answers.

• XNLI (Conneau et al., 2018) is one of the

biggest Natural Language Inference (NLI)

corpus that spans across 15 languages. Re-

cently, a professional Catalan translation was

added to the corpus (Gonzalez-Aguirre et al.,

2024).

6https://huggingface.co/datasets/mc4
7https://gutenberg.org
8https://www.vilaweb.cat
9https://huggingface.co/datasets/cawac

10https://www.racocatala.cat

• COPA (Roemmele et al., 2011) is a dataset

designed to assess commonsense causal

reasoning. Each document consists of a

premise and two alternatives, and the goal

is to determine which of them has a more

plausible causal relationship with the premise.

COPA has been professionally translated into

Catalan to be incorporated into our evaluation

benchmark (Gonzalez-Aguirre et al., 2024).

• XStoryCloze (Lin et al., 2022b) is the profes-

sional translation of the English StoryCloze

dataset into 10 languages, including Spanish,

and is used to assess commonsense reason-

ing with a particular focus on story compre-

hension. It consists of selecting the correct

ending from among two options for a four-

sentence story.

• XQuAD (Artetxe et al., 2020) is a multilingual

extractive question answering dataset with

parallel coverage in 11 languages, including

Spanish. The benchmark has latterly been

extended to Catalan via professional transla-

tion.

• CoQCat (Gonzalez-Aguirre et al., 2024) is a

dataset for Conversational Question Answer-

ing in Catalan, just recently released. The

task consists in answering a series of ques-

tions interconnected in a conversation about

a text passage.

• CatalanQA (Gonzalez-Aguirre et al., 2024) is

an extractive question answering dataset built

in Catalan using text passages from news arti-

cles and the CatalanWikipedia, each of which

is associated with between 1 and 5 questions.

• PAWS-X (Yang et al., 2019) is a multilingual

paraphrase identification dataset, consisting

of sentence pairs categorized as paraphrases

or non-paraphrases. It is available in six lan-

guages, including Spanish, and has recently

been made available in Catalan through pro-

fessional translation (Gonzalez-Aguirre et al.,

2024).

• Parafraseja (Gonzalez-Aguirre et al., 2024)

is a paraphrase identification dataset built in

Catalan from sources originally written in that

language.

• FLoRes (Team et al., 2022) is a machine

translation dataset consisting of parallel sen-

tences in multiple pairs of English and low-

resource languages. For our evaluation, we

used the Flores200 version of the dataset and

restricted our focus to the six language combi-

nations between English, Spanish and Cata-

lan.

https://huggingface.co/datasets/mc4
https://gutenberg.org
https://www.vilaweb.cat
https://huggingface.co/datasets/cawac
https://www.racocatala.cat
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