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Abstract
Diffusion models have achieved significant success in computer vision and shown immense potential in natural
language processing applications, particularly for text generation tasks. However, generating high-quality text using
these models often necessitates thousands of iterations, leading to slow sampling rates. Existing acceleration
methods either neglect the importance of the distribution of sampling steps, resulting in compromised performance
with smaller number of iterations, or require additional training, introducing considerable computational overheads.
In this paper, we present Few-shot Temporal Pruning, a novel technique designed to accelerate diffusion models
for text generation without supplementary training while effectively leveraging limited data. Employing a Bayesian
optimization approach, our method effectively eliminates redundant sampling steps during the sampling process,
thereby enhancing the generation speed. A comprehensive evaluation of discrete and continuous diffusion models
across various tasks, including machine translation, question generation, and paraphrasing, reveals that our
approach achieves competitive performance even with minimal sampling steps after down to less than 1 minute of
optimization, yielding a significant acceleration of up to 400x in text generation tasks.

Keywords: Natural Language Generation, Machine Translation, Statistical and Machine Learning Methods

1. Introduction

Diffusion models have achieved remarkable perfor-
mance across various application domains, includ-
ing computer vision and natural science (Dhariwal
and Nichol, 2021; Huang et al., 2022). They have
also drawn considerable interests for the poten-
tial in natural language processing applications,
particularly text generation tasks (Li et al., 2022b;
Gong et al., 2022; Gao et al., 2022), where diffu-
sion models offer numerous advantages such as
generating high-quality, diverse, and controllable
text and providing resilience against common gen-
eration issues like mode collapse (Rombach et al.,
2022). Additionally, they enable manipulation and
transfer of text attributes, such as style and content,
which is of great significance for various problems
such as open-ended NLG tasks.

However, the practical application of diffusion
models in text generation has been restricted due
to their inherently slow sampling processes, which
requires numerous iterations to generate high-
quality samples. Consequently, researchers have
developed a variety of acceleration techniques for
the sampling processes of diffusion models. Most
of these methods either ignore the significance
of the distribution of sampling steps (Song et al.,
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Figure 1: The contribution of individual sampling
steps to the overall diffusion sampling process
varies significantly. In the 3-step sampling process
for the paraphasing task in the DiffuSeq model
trained with 2000 diffusion steps, fixing the initial
and final sampling steps and varying the middle
step leads to substantial changes in the BLEU
scores of the generated samples. Here every
point indicate a 3-step sampling process using
(1999,x,0) steps.

2020), causing poor performance with fewer iter-
ations, or demand extensive data processing and
extra training (Luhman and Luhman, 2021), incur-
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ring higher computational cost and complexity. As
a consequence, these methods may not be appli-
cable under tight resource and time restrictions.

Our analysis reveals that individual sampling
steps have varying contributions to the overall sam-
pling process. As illustrated in Figure 1, when
using a 3-step sampling procedure for the QQP
dataset of the paraphrasing task, if we fix the initial
and final steps and adjust the middle step, signif-
icant fluctuations in the BLEU scores of the gen-
erated samples are witnessed. This observation
highlights the potential for identifying the optimal
sampling steps, with the aim of reducing the num-
ber of sampling steps while maintaining the perfor-
mance of diffusion models.

In this paper, in order to accelerate the sam-
pling process while maintaining the model’s perfor-
mance, we aim to prune the sampling steps that
contribute minimally to the overall sampling pro-
cess. To achieve that, we propose Few-shot Tem-
poral Pruning, an innovative method designed to
effectively leverage limited data to significantly ac-
celerate diffusion models in text generation tasks.

Our approach starts with discriminating the “sig-
nificant steps” and “redundant steps” based on
their influences on the model performance during
the sampling process. Subsequently, we employ
an efficiently configured Bayesian optimizer to itera-
tively identify the significant steps by evaluating the
model performance based on various pruned sam-
pling steps in a few-shot setting. This process en-
ables us to select the significant steps and remove
the redundant ones accordingly throughout the en-
tire sampling process. As a result, our method
can attain improved performance with significantly
fewer number of sampling steps, effectively speed-
ing up the sampling process.

In addition, a distinguishing feature of Few-shot
Temporal Pruning is its ability to effectively utilize
limited data in a few-shot manner, eliminating the
requirement for additional training or extensive data
processing. Specifically, our method is capable
of significantly improving the model performance
using just 20 items in the validation set. This makes
it suitable for scenarios with limited computational
resources or data availability, such as real-time
text generation applications or tasks requiring rapid
adaptation to new data.

The effectiveness of Few-shot Temporal Pruning
is validated through comprehensive experiments
comparing to traditional diffusion models, where
our approach achieves comparable performance
with only 4 sampling steps instead of the 50-2000
steps required by the baselines, resulting in a signif-
icant acceleration for various text generation tasks.

Our contributions in this paper are as follows:

• We introduce Few-shot Temporal Pruning, a
novel method designed to accelerate diffu-

sion models in text generation by pruning re-
dundant sampling steps utilizing an efficient
Bayesian optimization approach in a few-shot
manner.

• We perform a thorough qualitative analysis of
the effects of redundant sampling steps on the
model performance and the optimized distri-
bution of sampling steps. Our analysis reveals
two key findings: 1) redundant steps may hin-
der the model’s capacity to make further modi-
fications to sentences, and 2) diffusion models
are subject to insufficient noise exposure dur-
ing the early sampling steps.

• Through a comprehensive experimental inves-
tigation, we demonstrate the effectiveness of
Few-shot Temporal Pruning in comparison to
traditional diffusion models, achieving a sub-
stantial speed-up for a wide range of text gen-
eration tasks.

2. Related Work

2.1. Diffusion Models

The diffusion model is derived by sampling from the
inverse of a noise-increasing process, which starts
with a simple noise xT and proceeds to generate
a series of cleaner samples by reducing the noise
at each time step t.

We define the initial data distribution x0 ∼ q(x0)
and a Markovian process that produces x1, . . . , xT

by adding Gaussian noise controlled by βt:

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

where βt = g(t), and g(·) can be seen as the noise
schedule of the diffusion model.

We can interpret q(xt | x0) as a Gaussian distri-
bution with a reparameterization trick:

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)

=
√
ᾱtx0 + ϵ

√
1− ᾱt,

(2)

where ϵ ∼ N (0, I), αt := 1− βt, ᾱt :=
∏t

s=1 αs.
The posterior distribution q(xt−1 | xt, x0) is a

Gaussian distribution with mean µ̃t(xt, x0) and vari-
ance β̃t:

q(xt−1 | xt, x0) = N (xt−1; µ̃(xt, x0), β̃tI) (3)

To sample from q(x0), we start by sampling from
q(xT ) and then sample to x0 using the inverse
steps q(xt−1 | xt). A neural network is used to
approximate q(xt−1 | xt):

pθ(xt−1 | xt) = N (xt−1; µ̃(xt, x̂0), β̃tI), (4)
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where x̂0 is the prediction of the model, which is
trained to learn the true data distribution q(x0) by
optimizing the following variational lower bound
Lvlb for pθ(x0):

Lvlb = L0 + L1 + . . .+ LT−1 + LT

L0 = − log pθ (x0 | x1)

Lt−1 = DKL (q (xt−1 | xt, x0) || pθ (xt−1 | xt))

LT = DKL (q (xT | x0) || p (xT ))

(5)

2.2. Text Generation with Diffusion
Models

Diffusion models have achieved significant suc-
cess in computer vision (Ho et al., 2020; Rombach
et al., 2022), prompting extensive investigation
into their potential application to text generation
tasks. However, applying diffusion models to text
is challenging due to the discrete nature of textual
data. Several approaches have been developed
to address this challenge to retain the advantages
of diffusion models, such as high-quality, diver-
sity and controllable text generation, while offering
fresh insights into understanding and modeling the
complex structures of natural language. Repre-
sentatives include the Multinomial Diffusion Model
(Hoogeboom et al., 2021), D3PM (Austin et al.,
2021a), Bit Diffusion (Chen et al., 2022), latent
diffusion models (Yu et al., 2022), step-wise text
generation with SUNDAE (Savinov et al., 2021),
and edit-based text generation with DiffusER (Reid
et al., 2022). Another line of research leverages
word element embeddings to allow for continuous
diffusion models to be applied to discrete text, with
approaches like Diffusion-LM (Li et al., 2022a).

2.3. Acceleration of Diffusion Models

The computational efficiency of diffusion models
remains a limiting factor in their extensive research
and applications. Researchers have proposed vari-
ous methods to accelerate the sampling processes
of diffusion models, such as SDE Solvers (Song
and Ermon, 2019; Dockhorn et al., 2022), ODE
Solvers (Song et al., 2020; Liu et al., 2022), the
truncated diffusion process (Lyu et al., 2022), and
knowledge distillation (Luhman and Luhman, 2021;
Salimans and Ho, 2022). Recently, a sampling
strategy employing a crafted step distribution is
proposed in (Tang et al., 2023) to achieve better
sample results compared to using a uniform step
distribution.

Despite these developments, further reduction of
sampling iterations in high-performance text gener-
ation remains a challenge. Current diffusion mod-
els are often slower than traditional auto-regressive
language models when generating text, due to the
large number of sampling iterations required at run-

time, as demonstrated by DiffuSeq (Gong et al.,
2022).

3. Temporal Pruning

The idea of Temporal Pruning is motivated by
the observation that when the number of sam-
pling steps in the diffusion model is limited, the
model performance does not deteriorate signifi-
cantly when optimal steps are chosen for sampling.
This indicates that most of the sampling steps are
redundant, which can be pruned to accelerate the
sampling process without impairing the results.

We further define the redundant and significant
steps as follows:

Redundant Steps are the sampling steps at
which the generated samples do not exhibit sig-
nificant changes from the previous samples, thus
having minimal influence on the final generated out-
put. Pruning these steps enhances the efficiency
of the sampling process without compromising the
quality.

Significant Steps correspond to the points
where samples experience substantial changes
compared to the previous ones. By eliminating
these samping steps, the progressive refinement
of samples would be disrupted, and diffusion mod-
els would no longer generate high-quality outputs.

Building upon this idea, we propose the scheme
of temporal pruning via optimization algorithms.
We provide an overview of our method in Figure 2.

For the sake of simplicity, we consider the entire
frozen diffusion model as a black box. Our pri-
mary objective is to optimize its input, which is the
distribution of sampling steps. This distribution is
represented as a list of individual sampling steps,
formally defined as S = [S1, . . . , SNpruned

], where
each Si in S denotes a distinct sampling step, with
i ranging from 1 to the number of sampling steps
after pruning, Npruned.

To identify the redundant steps and significant
steps according to their influence on the model’s
performance, we employ various distributions of
sampling steps to generate the sample output
x̂0 = M(S), where M(·) represents the diffusion
model. This output is subsequently evaluated
against the ground truth, denoted by Ygt. In our
context, we utilize the BLEU score, represented as
BLEU(M(S), Ygt), to assess the model’s overall
performance. Consequently, we define our perfor-
mance function as R(·) = BLEU(M(·), Ygt).

To find the optimal distribution of sampling steps
Soptimal that maximizes the performance function
R(·) within the entire set of possible distributions,
referred to as domain D, one might consider a
brute-force approach that computes all the R(S)



7262

src: "Das war 
der 

Beschluß."

[100,90,80, …10]

Diffusion Model

Init
[S!, S", … S#!"#$%&]

Uniform Pruned Steps

pred: "That 
was the 

resolution."

Sample

GT: "That was 
the decision."

Bayesian 
Optimizer

[100,95,92, … , 0]

Optimal Pruned Steps

Temporal Pruning 
Optimization Loop

Update Evaluated 
BLEU

Frozen

Text

Sampling Steps

Feed

Figure 2: The Temporal Pruning method involves: (1) Uniformly initializing the pruned sampling steps,
(2) generating predictions using the initial sampling steps and source text in the validation set, (3)
evaluating these predictions with BLEU, (4) integrating BLEU scores and sampling steps into the Bayesian
optimization framework, (5) leveraging the prior information to estimate and update the pruned steps,
(6) iteratively refining the pruned sampling steps to improve sample quality and (7) obtaining the optimal
distribution of sampling steps.

values, where S ∈ D. However, this method be-
comes computationally inefficient for diffusion mod-
els with a large maximum number of sampling
steps (e.g. Gong et al. (2022)), while exhaustively
enumerating and evaluating all distributions of sam-
pling steps requires an exponential number of opti-
mizations, which is prohibitive in practice.

3.1. Temporal Pruning via Bayesian
Optimization

Given the high computational cost of each sam-
pling process, we adopt a Bayesian optimization
approach specifically designed for optimizing the
black-box functions. This method enables the effi-
cient identification of significant steps without the
need to iterate through the entire domain D.

Algorithm 1 presents the complete pseudo-code
for Temporal Pruning with Bayesian Optimization.
The method utilizes an observation set O, which
stores all explored distributions of sampling steps
S along with their corresponding performance val-
ues, denoted by R(S). By incorporating this prior
information, the Bayesian optimizer is able to guide
the selection of the next distribution Snext for more
effective evaluation.

The initialization starts with the selection of the
desired number of pruned steps, represented by
Npruned. Following this, the pruned sampling steps
Sinit are uniformly initialized.

After initializing Sinit and calculating the corre-
sponding performance function R(S), we store the
pair (S, R(S)) in the observation set O, and update
the Gaussian process (GP) posterior, which mod-

Algorithm 1: Temporal Pruning via
Bayesian Optimization
Input: Frozen Diffusion Model M ,
Number of Pruned Steps Npruned,
Optimization iterations niter,
Domain D,
Ground truth Ygt

Output: Optimal Sampling Steps Soptimal

1 Uniformly initialize the list of pruned steps
Sinit

2 Compute R(Sinit) and initialize the
observation set O ← {(Sinit, R(Sinit))}

3 for i = 1 to niter do
4 Update the GP posterior given

observations O
5 Pick a subset D′ of D using 20 iterations

of Limited-memory BFGS with 5
random initial points, compute
αGP-Hedge(S) for all S in D′

6 Select the next observation point
Snext = argmaxS∈D′ αGP-Hedge(S)

7 Compute R(Snext) and update the
observation set
O = O ∪ {(Snext, R(Snext))}

8 end
9 Soptimal = argmaxS∈O R(S)

els the objective function (in our context, also the
performance function) R(·), and then incorporate it
into a Gaussian process regression framework.

To determine the next S to explore, we rely on
the Gaussian process (GP) posterior. Instead of
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performing a costly sampling process for a subset
D′ of the domain D, we compute an inexpensive
acquisition function α(·). This acquisition func-
tion is utilized to identify the most promising S
for exploration. Initially, the subset D′ is chosen
randomly. Subsequently, we employ the limited-
memory BFGS optimization algorithm (Liu and No-
cedal, 1989) to further probe the local maxima
within the subset using α(·). The optimal local
maximum is selected as the next S to explore
Snext = argmaxS∈D′ α(S).

The process of computing the next pair (S, R(S))
and updating the observation set O as well as
the GP posterior is iteratively performed to fur-
ther explore the observation set. After a predeter-
mined number of optimization iterations niter, we
obtain the optimal distribution of sampling steps
Soptimal = argmaxS∈O R(S).

In our approach, we employ three distinct acqui-
sition functions: Lower Confidence Bound (LCB),
Negative Expected Improvement (NEI), and Nega-
tive Probability of Improvement (NPI) (Brochu et al.,
2011). To adaptively choose the optimal acquisition
function from them, we utilize the portfolio-based
GP-Hedge algorithm (Brochu et al., 2011).

To further accelerate the searching process, we
employ a strategy that involves fixing the first sam-
pling step, S1, to the maximum number of diffusion
steps in the model. However, the last sampling
step, SNpruned

, is unfixed, enabling the optimizer to
find the best terminate step, preserving high-quality
results before the performance deteriorates.

3.2. Few-shot Temporal Pruning

During each iteration of the temporal pruning op-
timization process, we perform a complete sam-
pling process to calculate the performance func-
tion R(·) = BLEU(M(·), Ygt). The amount of data
used for sampling directly affects the speed and
computational cost of R.

To demonstrate the robustness of our method
in handling limited data, we introduce a few-shot
variant of temporal pruning.

The main optimization loop of this approach re-
mains consistent with the original method. How-
ever, the data used for calculating the performance
function R(·) is limited to a randomly selected sub-
set of items from the validation set. This strategy
prunes redundant sampling steps and enhances
efficiency without requiring a large amount of data.

By leveraging the few-shot samples, the opti-
mizer is still capable of identifying the significant
sampling steps that preserve the model’s overall
performance. This few-shot variant of temporal
pruning demonstrates the versatility of our method
in tackling scenarios with limited data availability
while maintaining the high quality of the results.

3.3. Computational Cost

The computation cost of each Temporal Pruning
iteration involves: (1) selecting the next S from
the observation set O comprised of (S, R(S)) pairs,
and (2) calculating R(S).

The time complexity in (1) primarily consists of:
1. The time complexity for updating the GP pos-

terior with observations O is O(n3), where n
is the number of training samples, capped at
niter.

2. The selection of the subset D′ from D, using
20 iterations of Limited-memory BFGS with 5
initial points, calculates αGP-Hedge(S) for all S in
D′. This process includes the optimization of
EI, LCB, and PI acquisition functions, resulting
in an overall time complexity of O(Npruned).

3. Selecting the next observation point Snext =
argmaxS∈D′ αGP-Hedge(S) is accomplished in
constant time, O(1), given the fixed number of
iterations and initial points.

The time complexity in (2) is primarily due to the
computation of R(Snext) and the update of the ob-
servation set, which approximately introduce a time
complexity of O(Lsource), with Lsource denoting the
size of the selected source text in the validation set.
This step constitutes the primary computational
overhead of temporal pruning.

4. Experimental Settings

4.1. Datasets and Tasks

We employ five benchmark datasets across various
tasks:

Machine Translation. We adopt IWSLT14 DE-
EN (Cettolo et al., 2014), WMT16 EN-RO (Bo-
jar et al., 2016) and WMT14 EN-DE (Bojar et al.,
2014) which contain 160K/7K/7K, 610K/2K/2K and
4.0M/3K/3K training/validation/testing pairs respec-
tively.

Question Generation and Paraphrasing. We
use Quasar-T for Question Generation (QG) (Dhin-
gra et al., 2017) and Quora Question Pairs (QQP)
for Paraphrasing, which contain 117K/2K/10K and
145K/2K/2.5K training/validation/testing pairs re-
spectively.

For all the machine translation tasks, we work
with the original data and do not use knowledge dis-
tillation. For the QG and Paraphasing tasks, we fol-
low (Gong et al., 2022) and use their preprocessed
data splits, and use BERT (Devlin et al., 2019)’s
WordPiece tokenization (30522 vocabulary). We
report BLEU (Papineni et al., 2002) scores for all
the tasks.
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Model Steps Shots IWSLT14 DE-EN WMT16 EN-RO WMT14 EN-DE QG QQP

Transformer-base - - 34.51§ 34.16§ 27.53§ 16.63† 27.22†

Absorbing Diffusion
Vanilla 50 - 28.95 30.88 22.98 17.49 24.34
Vanilla 4 - 27.16 27.41 18.70 17.45 24.07
Temporal Pruning 4 Full Set 28.61 31.03 22.42 17.47 24.41
Temporal Pruning 4 20 28.12 29.51 21.69 17.47 24.21

Multinomial Diffusion
Vanilla 50 - 13.12 4.50 0.32 17.45 24.06
Vanilla 4 - 24.23 27.80 17.19 17.08 21.52
Temporal Pruning 4 Full Set 26.96 29.69 21.44 17.48 23.70
Temporal Pruning 4 20 26.83 29.88 20.98 17.38 23.22

DiffuSeq
Vanilla 2000 - 17.31 24.13
Vanilla 4 - - - - 16.06 19.05
Temporal Pruning 4 Full Set 16.38 22.32
Temporal Pruning 4 10 16.38 21.90

Table 1: Comparison of BLEU scores for various diffusion models on text generation, with and without
Temporal Pruning, assessed across multiple tasks. Notably, DiffuSeq’s applied tasks (Gong et al., 2022)
overlap with the other two discrete diffusion models only in QG and QQP. The term “Shots” refers to the
number of items from the validation set of the corresponding dataset used when implementing Temporal
Pruning. The term “Vanilla” denotes uniform sampling steps taken from the original implementations. †

indicates the results from Gong et al. (2022), and § indicates the results from Zheng et al. (2023).

4.2. Baselines

Our baseline models fall into three categories: au-
toregressive, discrete diffusion, and continuous
diffusion models.

For the autoregressive models, we choose Trans-
former (Vaswani et al. (2017)) as a strong baseline.

For the discrete diffusion models, we consider
two strong baselines: Absorbing Diffusion (Austin
et al., 2021b) and Multinomial Diffusion (Hooge-
boom et al., 2021), both with vanilla uniform sam-
pling steps.

For the continuous diffusion models, we consider
DiffuSeq (Gong et al., 2022) with vanilla uniform
sampling steps. DiffuSeq uses DDIM (Song et al.
(2020)) sampling when the number of timesteps is
smaller than the original training steps (2000).

Specifically, “vanilla” here refers to the uniform
step distribution that corresponds with the original
training steps of each model, as inherited from their
initial implementations. For example, we use S =
[1999, 1333, 666, 0] for DiffuSeq’s 4-step sampling
process with 2000 training steps.

4.3. Benchmarking Temporal Pruning

We conduct a thorough assessment of Temporal
Pruning, examining the running time required by
Temporal Pruning and inference speedup of mod-
els with Temporal Pruning.

Running Time of Temporal Pruning. We as-
sess the computational cost of Temporal Pruning

by timing its two components (Section 3.3) and
varying the data volume, referred to as “shots”, for
sampling across Temporal Pruning variants.

Inference Speedup. In our experiments, base-
line models use their maximum training steps
(2000 for DiffuSeq, 50 for Absorbing and Multi-
nomial Diffusion) for sampling, while models with
Temporal Pruning use 4 steps (Npruned = 4), facili-
tating a direct analysis of the sampling speed.

4.4. Implementation Details

For the discrete diffusion (Multinomial Diffusion and
Absorbing Diffusion) baselines, we follow the sam-
pling methods in Zheng et al. (2023). For continu-
ous diffusion models, we adopt the implementation
provided in Gong et al. (2022).

To constrain the search space and minimize un-
necessary computation, we set the maximum sam-
pling steps to 50 and 2000, which are the training
steps for discrete and continuous diffusion models,
respectively. For all Temporal Pruning variants, we
set niter to 50. Few-shot tasks with discrete diffu-
sion models use 20 randomly selected items in the
subset, while continuous diffusion models use 10.
In contrast, full-set Temporal Pruning employs the
entire validation sets for the corresponding tasks.

When analyzing the the running time of Temporal
Pruning and inference speedups, we follow the
testing conditions from Zheng et al. (2023), using
a batch size of 32 on an NVIDIA RTX3090.
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Model Shots Total Inference Bayesian

DiffuSeq

QQP Full 19.22 min 19.22 min 0.04 s
20 0.63 min 0.63 min 0.04 s

QG Full 18.94 min 18.94 min 0.04 s
20 0.66 min 0.66 min 0.04 s

Absorbing

IWSLT14 DE-EN
Full 69.17 min 69.17 min 0.04 s
20 0.76 min 0.76 min 0.04 s

WMT16 EN-RO
Full 22.50 min 22.50 min 0.04 s
20 0.84 min 0.84 min 0.04 s

WMT14 EN-DE
Full 33.33 min 33.33 min 0.04 s
20 0.84 min 0.84 min 0.05 s

QG Full 50.00 min 50.00 min 0.04 s
20 0.78 min 0.78 min 0.05 s

QQP Full 45.83 min 45.83 min 0.04 s
20 0.82 min 0.82 min 0.05 s

Multinomial

IWSLT14 DE-EN
Full 80.00 min 80.00 min 0.04 s
20 0.92 min 0.92 min 0.04 s

WMT16 EN-RO
Full 36.67 min 36.67 min 0.04 s
20 0.96 min 0.96 min 0.04 s

WMT14 EN-DE
Full 51.67 min 51.67 min 0.04 s
20 0.93 min 0.93 min 0.04 s

QG Full 65.83 min 65.83 min 0.04 s
20 0.90 min 0.90 min 0.04 s

QQP Full 54.17 min 54.17 min 0.04 s
20 0.93 min 0.93 min 0.04 s

Table 2: The running time of Temporal Pruning.
“Shots” aligns with the term in Table 1. “Total” rep-
resents the overall runtime, while “Inference” and
“Bayesian” denote the cumulative times for com-
ponents (2) and (1) of the computation cost, as
discussed in Section 3.3, respectively.

Model TP Baseline Speedup

DiffuSeq
QQP 91.54 sps 0.226 sps 405x
QG 92.14 sps 0.218 sps 423x

Absorbing
IWSLT14 DE-EN 182.91 sps 18.50 sps 9.88x
WMT16 EN-RO 114.98 sps 11.32 sps 10.15x
WMT14 EN-DE 115.12 sps 10.95 sps 10.51x
QG 73.40 sps 6.70 sps 10.95x
QQP 92.47 sps 9.20 sps 10.05x

Multinomial
IWSLT14 DE-EN 134.27 sps 14.51 sps 9.25x
WMT16 EN-RO 68.86 sps 6.42 sps 10.72x
WMT14 EN-DE 64.01 sps 5.92 sps 10.81x
QG 52.17 sps 4.27 sps 12.21x
QQP 80.86 sps 6.36 sps 12.71x

Table 3: Inference speed (sentence/second, de-
noted as “sps”) for models using Temporal Pruning
(with 4 steps) as compared to the baselines (with
maximum sampling steps of 2000 for DiffuSeq, and
50 steps for Absorbing Diffusion and Multinomial
Diffusion).

5. Results

5.1. Efficient High-Quality Text
Generation with Temporal Pruning

Table 1 showcases the efficacy of Temporal Prun-
ing across multiple tasks and metrics. Our ap-
proach substantially boosts diffusion models’ per-
formance at lower iterations using limited data
while preserving text quality.

Temporal Pruning consistently improves diffu-
sion models on machine translation tasks. For
instance, Absorbing Diffusion achieves a 28.61
BLEU on IWSLT14 DE-EN with Temporal Pruning
(4 steps, full validation set), surpassing the 27.16
BLEU with vanilla sampling (4 steps). Similar im-
provements are observed for Multinomial Diffusion
and DiffuSeq. Unsurprisingly, the performance of
Transformer is superior to the diffusion models due
to the autoregressive nature.

In the QG and QQP tasks, Temporal Pruning
also consistently enhances the performance of
diffusion models with fewer iterations, as demon-
strated in Table 1.

Notably, Few-shot Temporal Pruning, using only
0.27%− 1% of the validation set, achieves 95%−
100% of the BLEU score compared to using the full
validation set. In the WMT16 EN-RO task, multi-
nomial diffusion with 20-shot Temporal Pruning
outperforms full-set Temporal Pruning, highlighting
Temporal Pruning’s effectiveness with limited data
and its potential in resource-constrained scenarios.

5.2. Running Time of Temporal Pruning

Table 2 shows the remarkable computational effi-
ciency of Temporal Pruning, often taking less than
a minute in few-shot scenarios, indicating that the
component (2) (referenced in Section 3.3) predomi-
nantly contributes to the overall computational cost.
The variation of running time in the full-set scenar-
ios across tasks can be attributed to the different
validation set sizes, ranging from 2K to 7K entries,
directly impacting the inference time. Temporal
Pruning’s robustness in few-shot settings allows for
a reduction in the validation set size, speeding up
its optimization to under a minute.

5.3. Inference Speedup

Table 3 shows the significant impact of Temporal
Pruning in boosting the inference speed of various
diffusion models. For DiffuSeq, the speedup sur-
passes 400x, accelerating the generation speed
from 0.226 to a peak of 92.14 sentences/s. In
both Absorbing Diffusion and Multinomial Diffusion,
Temporal Pruning yields approximately a tenfold
speedup, lifting the generation speed from a max-
imum of 18.50 to a peak of 182.91 sentences/s.
These substantial improvements highlight the ef-
fectiveness of Temporal Pruning in accelerating the
inference speed, thus facilitating more efficient text
generation processes.

In summary, the proposed Temporal Pruning
method significantly enhances the efficiency of text
generation across various tasks. Its low computa-
tional cost, impressive speedup in inference, and
robust performance under data constraints make
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Figure 3: Performance degradation on the WMT16
test set using the vanilla multinomial diffusion
model.

it a promising and efficient solution for high-quality
text generation.

6. Analysis

6.1. Overcoming Sampling Degradation
via Temporal Pruning

We start our analysis of Temporal Pruning with
Multinomial Diffusion by examining the effect of
redundant sampling steps on the model perfor-
mance.

As per Zheng et al. (2023), Multinomial Diffu-
sion, after several iterations, shows a tendency of
pθ(xt−1 | xt) ≈ xt, which essentially replicates the
previous state, leading to a degradation in sam-
pling performance. As such, it becomes crucial to
attain superior results using minimal steps before
the model begins to degrade. The degradation im-
pact is shown in Figure 3, where applying vanilla
multinomial diffusion to the WMT16 test set causes
a significant BLEU score drop from 27.80 (4 iter-
ations) to 4.50 (50 iterations), emphasizing the
negative impact of redundant sampling steps.

Redundant steps negatively impact the model
performance in two ways: initially, they may hin-
der sentences from reaching an optimal state, and
after degradation, they consume computational re-
sources without improving the output quality. This
is observed in Table 4’s upper half, where the trans-
lated sentence remains unchanged from step 0 to
50, suggesting excessive diffusion steps can hin-
der further sentence transformations.

By employing Temporal Pruning to eliminate re-
dundant steps, the model can refine sentences and
enhance the generation quality before its degrada-
tion. This is evident in the lower section of Table 4.
Notably, despite the subsequent degradation, the
overall output remains largely unaltered, confirming

Source: ich danke ihnen für ihre aufmerksamkeit.
Reference: thank you for your attention.

# Iter. Decodes

Vanilla Multinomial Diffusion, 50 steps

0 ◦ books mindestens bridge ght dahin
10 ◦ books mindestens bridge ght dahin
20 ◦ books mindestens bridge ght dahin
30 ◦ books mindestens bridge ght dahin
40 ◦ books mindestens bridge ght dahin
50 ◦ books mindestens bridge ght dahin

Multinomial Diffusion with Temporal Pruning, 4 steps

0 ◦ jähr## dadurch sprü## vege## ined depres## de## frag##
1 ◦ jähr## dadurch very much for your attention .
2 ◦ thank you very much for your attention .
3 ◦ thank you very much for your attention .
4 ◦ thank you very much for your attention .

Table 4: A comparison of samples generated from
multinomial diffusion w/ and w/o Temporal Pruning
on IWSLT dataset. Words are in lower case, and
## denotes the sub-word tokenization artifacts.

Optimization Process
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Figure 4: The distribution of sampling steps
throughout the optimization process, with each
color indicating an individual timestep Si belonging
to the pruned set S = [S1, S2, S3, S4, S5]. The col-
ored lines from top to bottom correspond to S1, S2,
S3, S4, and S5, respectively.

the efficacy of pruning redundant steps in maintain-
ing the output quality.

Our results demonstrate that redundant steps
can undermine the performance of diffusion mod-
els. These redundant steps may consume compu-
tational resources without improving the samples,
blocking them from further transformation. Aggres-
sive temporal pruning is therefore necessary for
efficiently generating high-quality samples.

6.2. Insufficient Noising at Early Steps

In this study, we perform a qualitative analysis of
the optimized sampling step distribution using ab-
sorbing diffusion on the WMT14 EN-DE dataset.
we utilize Temporal Pruning with Npruned = 5 to op-
timize the distribution of sampling steps S, and ob-
serve its changes throughout the optimization pro-
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cess. The results of this analysis are illustrated in
Figure 4. Initially, a uniform sampling is employed
to determine the sampling steps. However, as the
optimization process proceeds, we can observe
a notable shift in the distribution of the optimized
sampling steps, with a tendency to concentrate
at higher steps. This finding suggests that higher
steps are of greater importance, as the model is
exposed to a substantial amount of noise during
these stages, leading to more comprehensive train-
ing (Gao et al., 2022).

7. Conclusion

We present Few-shot Temporal Pruning, a robust,
effective and training-free approach to accelerate
diffusion models for text generation. Extensive ex-
periments on machine translation, question genera-
tion and paraphrasing tasks demonstrate that Few-
shot Temporal Pruning achieves comparable per-
formance with significantly fewer sampling steps,
resulting in a substantial speed-up for various text
generation tasks. Additionally, we perform a thor-
ough qualitative analysis of the effects of redun-
dant sampling steps on model performance and
the optimized distribution of sampling steps. Our
findings reveal that redundant steps may impede
the model’s ability to make further modifications
to sentences and diffusion models are subject to
insufficient noise exposure during early sampling
steps.

8. Limitations

Although Temporal Pruning can enhance the con-
vergence rate during the sampling process, it does
not significantly improve the extreme performance
of the model. By modifying the distribution of sam-
pling steps, we can generally expect faster con-
vergence, but the gains in peak performance are
limited when compared to retraining methods (e.g.,
reparameterization).

As a result, when the goal is to achieve better
performance than what the original model offers,
it is often necessary to further adjust the model
structure in accordance with the text data’s charac-
teristics and retrain the model to obtain improved
results. Additionally, in this paper, we do not con-
sider the issues such as the method’s applicability
to languages with more complex morphology, scal-
ability to longer texts, or the requirements of sub-
stantial computational resources. These factors
should be considered in future research to ensure
a comprehensive understanding of the method’s
limitations and potential improvements.
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