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Abstract
Graph neural networks (GNNs) have achieved promising performance on semantic dependency parsing (SDP),
owing to their powerful graph representation learning ability. However, training a high-performing GNN-based
model requires a large amount of labeled data and it is prone to over-fitting in the absence of sufficient labeled
data. To address this drawback, we propose a syntax-guided graph contrastive learning framework to pre-train
GNNs with plenty of unlabeled data and fine-tune pre-trained GNNs with few-shot labeled SDP data. Through
extensive experiments conducted on the SemEval-2015 Task 18 English dataset in three formalisms (DM, PAS,
and PSD), we demonstrate that our framework achieves promising results when few-shot training samples are
available. Furthermore, benefiting from the pre-training process, our framework exhibits notable advantages in the
out-of-domain test sets.
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1. Introduction

Semantic dependency parsing (SDP) is a linguistic
task that focuses on capturing intricate bi-lexical
relationships, allowing words to have multiple de-
pendency heads, and producing a labeled directed
acyclic graph that accurately represents the mean-
ing of the sentence. SDP derives from syntactic
dependency parsing which aims to represent the
syntactic structure of a sentence through a labeled
tree. Hence, there are a lot of similarities between
syntactic and semantic dependencies. SDP has
been shown to be useful and widely applied in a
variety of downstream tasks of natural language
processing (NLP), such as sentiment analysis (Lin
et al., 2019), abstractive summarization (Jin et al.,
2020), natural language understanding (NLU) (Wu
et al., 2021), etc.

Existing SDP models can be classified as
transition-based and graph-based. Transition-
based models score all transition actions according
to the current parsing state and select the high-
est score transition action in each step. The final
semantic dependency graph (SDG) could be incre-
mentally built by a sequence of selected transition
actions (Sagae and Tsujii, 2008; Tokgöz and Eryiğit,
2015; Zhang et al., 2016; Wang et al., 2018; Ku-
rita and Søgaard, 2019; Fernández-González and
Gómez-Rodríguez, 2020). Unlike the transition-
based models, graph-based models score each
substructure of a potential SDG and utilize exact
or approximate decoding algorithms to search the
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highest-scoring SDG (Sun et al., 2017; Peng et al.,
2017; Cao et al., 2017; Dozat and Manning, 2018;
Wang et al., 2019b, 2021b; Candito, 2022). Among
them, graph neural networks (GNNs) based models
are especially successful because of their power-
ful graph representation learning ability (Li et al.,
2022a,b, 2023).

Although the benefits provided by SDP and
the remarkable performance achieved by previous
studies, training a high-performing SDP model re-
quires large amounts of labeled data. This issue
becomes more severe with the rise of GNNs be-
cause GNN-based models are more data-hungry
and susceptible to over-fitting when lacking training
data (Ju et al., 2023). To alleviate this drawback,
a semi-supervised model is presented (Jia et al.,
2020). This model leverages both labeled and un-
labeled data to learn a dependency graph parser.
Another study leverages a multitask learning frame-
work coupled with annotation projection for lan-
guages without SDP annotated data (Aminian et al.,
2020). They use annotation projection to transfer
semantic annotations from a source language to
the target language. These two attempts allevi-
ate the data-hungry issue to some extent, but their
performances are still not satisfactory.

Recently, contrastive learning, a category of self-
supervised learning (SSL), has emerged as a new
paradigm for making use of large amounts of unla-
beled data when labeled data is limited (Xie et al.,
2022). Contrastive learning aims to learn the repre-
sentation by concentrating positive pairs and push-
ing negative pairs apart. Generally, contrastive
learning with unlabeled data can be used as a pre-
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training process after which the limited labeled data
is used to fine-tune the pre-trained deep models.
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(b) Semantic Graph

Figure 1: The syntactic dependency tree and the
semantic dependency graph for the English sen-
tence He wants to teach me English.

Furthermore, there are plenty of similarities be-
tween the syntactic dependency tree and the se-
mantic dependency graph. For example, for the
English sentence He wants to teach me English,
its syntactic dependency tree and semantic depen-
dency graph are shown as Figure 1. We can see
that most of the dependency edges in the depen-
dency tree and the dependency graph are the same,
except for the dependency edge marked in blue.

Therefore, motivated by plenty of similarities be-
tween syntactic and semantic dependencies and
the success of contrast learning in few-shot learn-
ing, we propose a syntactic dependency-guided
graph contrastive learning framework for few-shot
SDP (SynGCL-SDP) in this paper. There are two
stages to perform few-shot SDP: the unsupervised
pre-training and the supervised fine-tuning. In the
pre-training stage, the plenty of unlabeled sen-
tences will be used to construct contrastive samples
and pre-train GNNs with contrastive learning. In the
fine-tuning stage, the pre-trained GNNs will be fine-
tuned with few-shot SDP training samples. We ex-
pect that by contrasting graphs with the similar and
different structures, GNNs can be more sensitive to
the structural changes. Four GNN variants, Graph
Convolutional Network (GCN)(Kipf and Welling,
2016), Graph Attention Network (GAT)(Veličković
et al., 2018), Graph Sample and Aggregate (Graph-
Sage)(Hamilton et al., 2017), and Gated Graph
Neural Network (GGNN)(Li et al., 2016) have been
explored in Syn.

Experiments are conducted on SemEval-2015
Task 18 English dataset in three representation for-
malisms (DM, PAS, and PSD). Experimental results
show that our framework outperforms the previous
supervised and semi-supervised models when few-
shot training samples are available. In addition,
benefiting from the contrastive learning on a large
amount of unlabeled data, our framework also per-
form better in the out-of-domain (OOD) test sets of

three formalisms.

Contributions The contributions of our work are
summarized as follows: (i) we propose a method
for contrastive samples construction; (ii) we pro-
pose a syntactic dependency-guided graph con-
trastive learning framework to pre-train GNNs; (iii)
we present pre-trained models of four GNN variants
which can be used in many downstream tasks. Our
code is publicly available at https://github.com/
LiBinNLP/SynGCL-SDP.

2. Related Work

2.1. Semantic Dependency Parsing
Existing SDP models can be classified as transition-
based and graph-based. Transition-based models
utilize statistical learning approaches (e.g. struc-
tured perceptron classifier, maximum entropy clas-
sifier) or deep neural networks (e.g. Tree-LSTM,
point networks) to score all transition actions ac-
cording to the current parsing state and select a
highest score transition action in each step. The
final SDG could be incrementally built by a se-
quence of selected transition actions (Sagae and
Tsujii, 2008; Tokgöz and Eryiğit, 2015; Zhang et al.,
2016; Wang et al., 2018; Kurita and Søgaard,
2019; Fernández-González and Gómez-Rodríguez,
2020). Unlike transition-based models, graph-
based models score each first-order part (inde-
pendent dependency edge between two nodes)
or higher-order part (combination of two or more
dependency edges) of a potential SDG and utilize
exact or approximate decoding algorithms to search
a highest-scoring SDG (Sun et al., 2017; Peng et al.,
2017; Cao et al., 2017; Dozat and Manning, 2018;
Wang et al., 2019b; He and Choi, 2020; Wang et al.,
2021b; Candito, 2022). Particularly, GNN-based
models have made remarkable success in SDP be-
cause of their strong graph representation learning
ability (Li et al., 2022a,b, 2023).

2.2. Few-Shot Semantic Dependency
Parsing

Although promising performances have been
achieved by previous studies, training a high-
performing model requires a large amount of la-
beled data. To alleviate this limitation, two ap-
proaches are presented. Jia et al. (2020) presented
a neural semi-supervised model which employed
a conditional random field autoencoder to model
the conditional reconstruction probability given the
input sentence with its dependency graph as the
latent variable. They leveraged both the labeled
and unlabeled data to train a dependency graph
parser. Aminian et al. (2020) employed a multitask

https://github.com/LiBinNLP/SynGCL-SDP
https://github.com/LiBinNLP/SynGCL-SDP
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learning framework coupled with annotation projec-
tion for languages without semantically annotated
data. They use annotation projection to transfer
semantic annotations from a source language to a
target language and use syntactic parsing as the
auxiliary task to enhance the SDP model of the
target language. Their work is evaluated on the
generated data instead of labeled data, therefore
we don’t compare with it.

These two attempts alleviate the data-hungry is-
sue to some extent, but their performances are
still not satisfactory. Recently, the unsupervised
contrastive pre-training and supervised fine-tuning
paradigm is successful in few-shot learning. There-
fore, we explore this strategy to improve few-shot
SDP.

2.3. Graph Contrastive Learning

Contrastive learning is one of the categories of
SSL which enables the training of deep models on
unlabeled data, removing the need of excessive
annotated data. Contrastive learning aims to learn
the representation by concentrating positive pairs
and pushing negative pairs apart.

Recently, the studies of contrastive learning have
made significant progress in many NLP tasks.
Wang et al. (2021a) presented a simple and ef-
fective method to automatically generate the ad-
versarial sample and negative sample to the orig-
inal sentence for pre-training a language model
to enhance NLU. Das et al. (2022) presented a
contrastive learning based framework that models
gaussian embedding and optimizes inter token dis-
tribution distance to perform few-shot named entity
recognition. Saha et al. (2022) utilized contrastive
learning models that leverage simple yet efficient
methods of graph perturbations to improve explana-
tion graph generation. They transform graph gen-
eration task into a sequence-to-sequence task by
graph linearization and then use contrastive learn-
ing to pre-train Transformer.

The above studies focus on pre-training a lan-
guage model with contrastive sequence data. Cur-
rently, there is a trend to extend contrastive learning
on graph data, namely graph contrastive learning
(Xie et al., 2022). Given training graphs, graph
contrastive learning aims to learn one or more en-
coders such that representations of similar graph
instances agree with each other, and that repre-
sentations of dissimilar graph instances disagree
with each other. Different from the sequence-to-
sequence models, we regard SDP as a sequence-
to-graph task. We use graph contrastive learning to
improve few-shot SDP through pre-training GNNs
and fine-tuning pre-trained GNNs with limited la-
beled data.

3. Method

3.1. Contrastive Samples Construction

Contrastive learning is based on the use of con-
trastive samples, which play a key role in the dis-
criminative learning process. Hence, it is essential
to construct appropriate original, positive, and neg-
ative graphs. The details are described as follows.

Original Graph Construction To obtain the orig-
inal graphs, we collect plenty of unlabeled sen-
tences from machine translation corpus and adopt
a well-trained parsing model - Stanza 1 to automat-
ically generate a syntactic dependency tree as the
original graph for each sentence. For each original
graph, the data augmentation techniques are used
to construct one positive graph and three negative
graphs in our approach.

Positive Graph Construction Given an original
graph, a positive graph will be constructed by two
strategies: (1) replacing the nodes (tokens) of the
original graph with synonymous words. To do so,
we select words from the concept with POS tags
of Adjective, Noun, Adverb, and Verb and replace
them with the synonym from Wordnet (Miller, 1995)
for which the cosine similarity of their word2vec
representations (Mikolov et al., 2013) is the high-
est. (2) replacing the nodes corresponding to the
recognized named entity in the sentence with the
named entity of the same type in the dictionary.
To do so, we collect 13 different types of named
entity dictionaries (Person, Location, Organization,
Country, Artwork, Corporation, Nationality, Cardi-
nal, Ordinal, Law, Event, Product, and Language)
and replace a named entity that appeared in the
sentence with a randomly selected entity from the
corresponding dictionary. It is observed that the
structure of the positive graph constructed with the
above two strategies has not been changed be-
cause the constraints of the dependency tree still
need to be held.

Negative Graph Construction Given an original
graph, three negative graphs will be constructed
by following strategies: (1) deleting all correct de-
pendency edges and randomly adding incorrect
dependency edges for node pairs that have no
dependency relations. (2) exchanging the head
and dependency node of each dependency edge.
(3) changing the dependency node to another ran-
domly chosen node for each dependency edge.

1https://github.com/stanfordnlp/stanza

https://github.com/stanfordnlp/stanza
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Figure 2: The overall architecture of the SynGCL-SDP. There are two stages in the SynGCL-SDP: the
unsupervised pre-training on the plenty of unlabeled data and the supervised fine-tuning on the few-shot
SDP data.

3.2. Contrastive Pre-training
We expect to pre-train GNNs with large amounts
of unlabeled data to make them more sensitive to
structural changes. To do so, contrastive learning
is employed to make the original samples closer
to the positive samples and further away from the
negative samples.

Contextualized Representation Learning For
a sentence with n words, we concatenate word
and feature embeddings, and feed them into a Bi-
directional Long Short-Term Memory (BiLSTM) to
obtain the contextualized representation of each
word, as Eq. 1 and Eq. 2:

xi = e
(word)
i ⊕ e

(tag)
i ⊕ e

(lemma)
i ⊕ e

(char)
i (1)

ci = BiLSTM(xi) (2)

where e
(word)
i denotes the word embedding of word

wi, e(tag)i , e
(lemma)
i , and e

(char)
i denote POS (part-

of-speech) tag embedding, lemma embedding and
character embedding that is generated by Char-
LSTM (Kim et al., 2016), xi is the concatenation (⊕)
of the word and feature embeddings of word wi, ci
is the contextualized representation of wi. Stacking
ci for i = 0, 1, . . . , n forms the node feature matrix
C.

Graph Representation Learning GNNs encode
node embeddings in a similar incremental manner:
one GNN layer encodes information about immedi-
ate neighbors and K layers encode K-order neigh-
borhoods (i.e., information about nodes at most K
hops away). K-layer GNNs are utilized to learn
the graph representation (i.e. node embedding) for
each node. GNNs take in the node feature matrix C
and the adjacency matrix A and output the embed-
ding matrix of the final layer as node embeddings
H.

The node embedding matrix H is computed in a
similar incremental manner, as Eq. 3:

H(k) = GNNLayer(k−1)(H(k−1), A) (3)

where H(k) is the node embedding matrix of kth
layer, H(0) = C, GNNLayer(k) denotes the kth

GNN layer, adjacency matrix A is extracted from
the corresponding syntactic dependency tree.

Contrastive Embedding The final node repre-
sentation zi is the concatenation of the contextual-
ized representation ci and graph representation hi,
as Eq. 4:

zi = ci ⊕ hi (4)

The paired original sample, positive sample, and
negative samples will be processed as Eq. 1 – Eq.
4, to obtain the paired original embedding, positive
embedding, and negative embeddings.
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Pre-training Objective InfoNCE contrastive loss
function (Oord et al., 2018) is used as the pre-
training objective, as Eq. 5:

Lpt = − log
exp(sim(z, z+))/τ∑

z−∈Z− exp(sim(z, z−))/τ
(5)

where z denotes the original embedding, z+ de-
notes the positive embedding, z− denotes the neg-
ative embedding, Z− denotes the collection of all
negative embeddings, τ is the temperature and
sim(., .) is the cosine similarity function that mea-
sures the similarity of contrastive embeddings. The
Adaptive Moment Estimation (Adam) (Kingma and
Ba, 2015) method is used to optimize the con-
trastive pre-training loss Lpt, and the exponential
decay strategy is used for annealing the learning
rate.

3.3. Fine-tuning
In the fine-tuning stage, the contrastive pre-trained
GNNs are then used as the initialization of the
GNNs in a supervised schema. A sentence s with
n words will be processed as Eq. 1 – Eq. 4 to get
the final node representation zi for each word wi.

Then the four feed-forward neural networks
(FNN) are used to get different representations in
four aspects, as Eq. 6 – Eq. 9:

h
(edge−head)
i = FNN(edge−head)(zi) (6)

h
(label−head)
i = FNN(label−head)(zi) (7)

h
(edge−dep)
i = FNN(edge−dep)(zi) (8)

h
(label−dep)
i = FNN(label−dep)(zi) (9)

Two biaffine classifiers are used to predict edges
and labels, as Equation 10 and 11 :

s
(edge)
i,j = Biaff (edge)(h

(edge−dep)
i , h

(edge−head)
j )

(10)

s
(label)
i,j = Biaff (label)(h

(label−dep)
i , h

(label−head)
j )

(11)
where s

(edge)
i,j and s

(label)
i,j are scores of the edge

and label between the word wi and wj .
s
(edge)
i,j is a scalar and s

(label)
i,j is a vector. There

is a dependency edge between the word wi and
wj where s

(edge)
i,j is positive, as Eq. 12; the most

probable label will be assigned to the edge, as Eq.
13.

ŷ
(edge)
i,j = {s(edge)i,j > 0} (12)

ŷ
(label)
i,j = argmax s

(label)
i,j (13)

Fine-tuning Objective We define the loss func-
tion of the edge prediction module (as Eq. 14) and
the label prediction module (as Eq. 15):

L(edge)(θ1) = CE(ŷ
(edge)
i,j , y

(edge)
i,j ) (14)

L(label)(θ2) = CE(ŷ
(label)
i,j , y

(label)
i,j ) (15)

where θ1, θ2 are the parameters of two modules,
CE(., .) is cross entropy loss function.

We can train the system by summing the losses
of two modules, and back propagating error to the
parser. Then the Adam (Kingma and Ba, 2015)
method is used to optimize the summed fine-tuning
loss function Lft, and the exponential decay strat-
egy is used for annealing the learning rate:

Lft = αL(edge) + (1− α)L(label) (16)

where α ∈ (0, 1) is a tunable interpolation constant.

4. Experiment

4.1. Settings
Dataset The experiments are conducted on the
SemEval-2015 Task 18 (Oepen et al., 2015) En-
glish dataset in three representation formalisms:
DELPH-IN MRS (DM) (Flickinger et al., 2012),
Predicate-Argument Structure (PAS) (Miyao and
Tsujii, 2004), and Prague Semantic Dependencies
(PSD) (Hajic et al., 2012). 33,964 sentences from
Sections 00-19 of the Wall Street Journal corpus
as the training set, 1,692 sentences from Section
20 as development set, 1,410 sentences from Sec-
tion 21 as in-domain (ID) test set, and 1,849 sen-
tences sampled from the Brown Corpus as the out-
of-domain (OOD) test set.

Unlabeled Data for Contrastive Pre-training In
the contrastive pre-training stage, the unlabeled
raw sentences are downloaded from the WMT14
machine translation monolingual training data2.
Considering that the scale of GNN’s parameters
is not large, we randomly select 50,000 raw sen-
tences for constructing the contrastive samples.

Few-Shot Data Sampling To evaluate the pro-
posed model on the few-shot labeled SDP data, we
randomly sample the few-shot training data from
the training set with five different sampling rates
(i.e., percentage of labeled data): 1%, 10%, 30%,
50%, and 100%. The sampling procedure is car-
ried out three times to get the experimental results
as accurate and fair as possible.

2http://statmt.org/wmt14/training-monolingual-
news-crawl/news.2010.en.shuffled.gz

http://statmt.org/wmt14/training-monolingual-news-crawl/news.2010.en.shuffled.gz
http://statmt.org/wmt14/training-monolingual-news-crawl/news.2010.en.shuffled.gz
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Percentage of Labeled Data
Form Models 1% 10% 30% 50% 100%

UF1 LF1 UF1 LF1 UF1 LF1 UF1 LF1 UF1 LF1

DM

ID

Biaffine (2018) 77.11 75.07 87.19 86.95 91.79 91.02 92.94 92.36 94.33 93.73
Semi-SDP (2020) 77.90 75.49 87.82 86.60 92.50 91.67 93.74 93.04 95.06 93.93
DynGL-SDP (2022b) 77.27 75.05 88.05 86.97 92.97 92.21 94.00 93.22 95.25 94.85
SynGCL-SDP (GGNN) 81.45† 78.77† 90.82† 89.59† 93.23† 92.34† 94.16† 93.40† 95.04 94.42

OOD

Biaffine (2018) 70.97 67.31 81.15 79.04 86.88 85.60 88.34 87.75 90.43 89.16
Semi-SDP (2020) 72.62 69.61 82.68 80.77 87.70 86.30 89.36 88.14 91.04 90.08
DynGL-SDP (2022b) 72.78 69.91 82.92 82.65 87.17 86.74 89.12 87.81 91.64 90.73
SynGCL-SDP (GGNN) 76.53† 73.13† 86.03† 84.12† 88.97† 87.55† 90.12† 88.88† 91.33 90.25

PAS

ID

Biaffine (2018) 82.39 80.87 90.52 89.96 93.40 92.74 94.11 93.39 94.65 94.01
Semi-SDP (2020) 83.14 81.61 91.43 90.55 94.11 93.32 94.71 94.06 95.52 94.91
DynGL-SDP (2022b) 81.69 80.26 90.63 89.81 94.11 93.37 94.79 94.14 95.76 95.12
SynGCL-SDP (GGNN) 86.01† 84.23† 92.84† 91.95† 94.40† 93.71† 95.02† 94.31† 95.66 95.04

OOD

Biaffine (2018) 76.48 74.40 85.52 84.33 89.69 88.81 91.02 89.97 91.69 90.88
Semi-SDP (2020) 77.09 75.00 86.31 85.01 90.40 89.30 91.63 90.52 92.65 91.73
DynGL-SDP (2022b) 75.90 73.79 85.30 84.05 90.35 84.21 91.52 90.46 92.23 91.31
SynGCL-SDP (GGNN) 79.80† 77.15† 87.57† 86.11† 90.69† 89.42† 91.91† 90.87† 92.59 91.55

PSD

ID

Biaffine (2018) 75.92 67.25 86.69 78.23 91.37 83.58 91.92 84.13 92.58 84.41
Semi-SDP (2020) 76.47 67.72 87.10 78.87 91.43 83.62 92.46 84.56 93.78 86.63
DynGL-SDP (2022b) 77.45 67.51 88.75 79.08 91.79 83.48 92.15 84.93 93.73 86.60
SynGCL-SDP (GGNN) 82.09† 70.55† 89.70† 79.94† 91.42† 83.66† 92.57† 84.31 93.53 86.09

OOD

Biaffine (2018) 76.94 68.64 85.51 78.08 89.25 81.86 90.53 83.65 88.69 81.44
Semi-SDP (2020) 77.05 68.83 85.89 78.20 89.32 81.88 90.70 83.66 91.87 85.24
DynGL-SDP (2022b) 78.39 69.23 85.74 77.26 89.71 81.97 90.22 83.58 91.54 84.98
SynGCL-SDP (GGNN) 81.96† 70.45† 88.74† 79.31† 90.35† 82.03† 91.08† 83.47 91.82 84.39

Table 1: Experimental results with varying percentages of labeled data on SemEval-2015 Task 18 English
dataset in three formalisms. The result on each few-shot training set is averaged over 3 runs. To make a
fair comparison, the results of the three compared approaches are reproduced on the sampled few-shot
data. ID denotes the in-domain test set, and OOD denotes the out-of-domain test set. The bold number
indicates the highest score in the corresponding settings. † means that the score outperforms compared
approaches with a significance level of 0.05 by means of the paired student’s t-test.

Evaluation Metrics Unlabeled F1 score (UF1)
and Labeled F1 score (LF1) are used as the met-
rics to evaluate the performance of compared ap-
proaches and our model on the ID and OOD test
sets for each formalism. The reported score of
each model in each formalism is averaged over
three runs (each time with a new randomly sam-
pled few-shot training set).

4.2. Compared Approaches
We compare the proposed model SynGCL-SDP
(the GNN module of SynGCL-SDP is implemented
with GGNN) with previous approaches: (1) Biaffine
(Dozat and Manning, 2018) is a simple but accurate
supervised model. (2) Semi-SDP (Jia et al., 2020)
is a semi-supervised model which aims to improve
performance with both the labeled and unlabeled
data. (3) DynGL-SDP (Li et al., 2022b) is a dynamic
graph learning-based model, which also achieves
the start-of-the-art (SOTA) performance. Three

types of features (tag, char, lemma) are used in our
model and compared approaches.

4.3. Hyperparameters
The hyperparameter configuration for our final sys-
tem is given in Table 2. 100-dimensional pretrained
GloVe(Pennington et al., 2014) embeddings are
used for English. Only words or lemmas that oc-
curred 7 times or more will be included in the word
and lemma embedding matrix.

4.4. Main Results
Experimental results on English dataset in three
formalisms are shown as Table 1. From the main
results, we can see that our proposed model per-
forms better than the compared models on most
few-shot data groups, especially with the 1% la-
beled data (only 339 labeled sentences are used).
This highly suggests that our model is superior in
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Layer Hyperparameter Value

Word Embed English 125

Feature Embed POS/Char/Lemma 100

LSTM
layers 3

hidden size 300
dropout 0.33

GNN

layers 3
hidden 600
dropout 0.25

GAT heads 3

MLP
edge-head/dep hidden 600
label-head/dep hidden 600

dropout 0.25

Pre-training

epochs 100
optimizer Adam

learning rate 1e−3

Adam (β1, β2) (0.0, 0.95)
decay rate 0.75

Loss τ 0.1

Fine-tunning

epochs 150
optimizer Adam

learning rate 1e−3

Adam (β1, β2) (0.0, 0.95)
decay rate 0.75

Loss α 0.1

Table 2: Final hyperparameter configuration.

few-shot SDP. Particularly, benefiting from the pre-
training stage on plenty of the unlabeled sentences,
our model shows more advantages on the OOD
test sets, which suggests the good generalization
of our model.

As the percentage of the labeled data increases,
the performances of all models goes up, but the
advantage of our model decreases. The reason is
that the compared neural models can also perform
well when the plenty of the labeled data is avail-
able. Particularly, when using all the training data,
our model performs worse than DynGL-SDP which
is a dynamic graph learning-based model. The
reason for this result is because the SynGCL-SDP
learns the graph representation based on the static
graph (i.e., syntactic dependency tree) which is con-
structed by an existing parser (stanza), the noise
in the static graph will be accumulated and prop-
agated to the later stages. Combining the graph
contrastive learning and the dynamic graph learn-
ing may be helpful.

Furthermore, the UF1 and LF1 of all models
on the PSD representation formalism have a big
gap because the number of dependency labels
of PSD formalism is much larger than the other

two representation formalisms (DM and PAS), mak-
ing the dependency labels harder to be predicted.
We think that using the heterogeneous GNNs like
HGCN(Yang et al., 2021) and HAN(Wang et al.,
2019a) to model the dependency labels of the con-
trastive graphs might alleviate this problem. We
will explore it in our future study.

4.5. Effect of Pre-training and Features
Our model significantly improves the performance
of few-shot SDP by pre-training GNNs with plenty of
unlabeled data and fine-tuning on few-shot labeled
samples when the three types of feature embed-
dings (as Eq.1) are used. We also notice that the
previous studies (Li et al., 2022a,b) have shown that
GNNs are helpful for improving the performance of
SDP without pre-training.

To investigate the effect of pre-training stage and
the effect of each type of feature embedding, we
conduct a controlled experiment on the SemEval-
2015 Task 18 English dataset in DM formalism with
the combination of three types of features, in which
the one loads the pre-trained GNNs for initialization
(SynGCL-SDP) and another not (SynGCL-SDP×).
The result is shown as Table 3. We can see that the
performance of the model that uses the pre-trained
GNNs for initialization outperforms the model that
doesn’t use the pre-trained GNNs in all few-shot
sampling groups and all combinations of the three
types of features. Moreover, with the increase of
the labeled SDP data, the advantage of SynGCL-
SDP gradually decreases.

4.6. Effect of Different GNN Variants
In the experiment, the GNN module of SynGCL-
SDP is implemented with GGNN. Besides the
GGNN, there are several GNN variants have been
presented and commonly used. To fully explore
the capabilities of our model, we compare the ef-
fect of different GNNs by replacing GNN module of
SynGCL-SDP with the corresponding GNN variant.

Table 4 shows the performances of SynGCL-SDP
using four GNN variants (GCN, GAT, GraphSage,
and GGNN) on the English dataset in DM formal-
ism. Compared to the previous supervised studies,
SynGCL-SDP using four GNN variants perform bet-
ter with few-shot labeled SDP data, especially using
GAT, GGNN, and GraphSage.

4.7. Convergence Behavior
Figure 3 compares the convergence curves of our
model (SynGCL-SDP) and the GNN-based SOTA
model (DynGL-SDP) when using 1% training data.
We plot one data point corresponding to the LF1
every 2 epochs for clarity. From the compared
curves, we can clearly see that the performance
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Percentage of Labeled Data

Feature Models 1% 10% 30% 50% 100%

UF1 LF1 UF1 LF1 UF1 LF1 UF1 LF1 UF1 LF1

tag
ID SynGCL-SDP♭ 80.41 77.23 89.44 88.02 92.20 91.21 93.09 92.12 94.20 93.42

SynGCL-SDP 80.88 77.98 90.12 88.56 92.49 91.49 93.32 92.15 94.31 93.45

OOD SynGCL-SDP♭ 74.63 71.13 84.47 82.19 87.78 86.15 88.59 87.32 90.17 88.80
SynGCL-SDP 76.26 72.87 84.73 82.63 88.11 86.38 88.72 87.51 90.41 89.08

tag+char
ID SynGCL-SDP♭ 80.87 78.30 89.73 88.45 92.50 91.63 93.25 92.41 94.30 93.59

SynGCL-SDP 81.27 78.59 90.31 88.97 92.78 91.83 93.54 92.54 94.50 93.66

OOD SynGCL-SDP♭ 74.51 71.50 84.46 82.56 87.99 86.42 89.07 87.70 90.50 89.31
SynGCL-SDP 77.16 73.88 84.49 82.63 88.16 86.64 89.53 88.11 90.51 89.35

tag+char+lemma
ID SynGCL-SDP♭ 80.83 77.70 90.55 89.38 93.17 92.32 94.06 93.34 94.98 94.40

SynGCL-SDP 81.45 78.77 90.82 89.59 93.23 92.34 94.16 93.40 95.04 94.42

OOD SynGCL-SDP♭ 75.82 72.51 85.64 83.77 88.70 87.31 90.02 88.81 91.24 90.19
SynGCL-SDP 76.53 73.13 86.03 84.12 88.97 87.55 90.12 88.88 91.33 90.25

Table 3: The UF1 and LF1 of English dataset in DM formalism for two models in which the one loads the
pre-trained GNNs for initialization (SynGCL-SDP) and another not (SynGCL-SDP♭). The GNN modules
of them are implemented with GGNN. Two models are augmented with the combinations of three types
of features (tag, char, lemma denote part-of-speech tag embedding, character embedding and lemma
embedding respectively).

Percentage of Labeled Data

Models 1% 10% 30% 50% 100%

UF1 LF1 UF1 LF1 UF1 LF1 UF1 LF1 UF1 LF1

ID

SynGCL-SDP(GCN) 80.78 77.98 90.19 88.87 92.92 91.94 93.99 93.17 94.93 94.23
SynGCL-SDP(GAT) 80.58 77.84 90.24 88.97 93.23 92.37 94.06 93.31 94.87 94.26
SynGCL-SDP(GGNN) 81.45 78.77 90.82 89.59 93.23 92.34 94.16 93.40 95.04 94.42
SynGCL-SDP(GraphSage) 81.35 78.64 90.76 89.57 93.17 92.31 94.18 93.45 95.24 94.62

OOD

SynGCL-SDP(GCN) 75.60 72.02 85.51 83.52 88.62 87.15 89.84 88.54 91.24 90.15
SynGCL-SDP(GAT) 77.46 74.06 85.72 83.82 89.02 87.57 89.96 88.70 91.31 90.17
SynGCL-SDP(GGNN) 76.53 73.13 86.03 84.12 88.97 87.55 90.12 88.88 91.33 90.25
SynGCL-SDP(GraphSage) 76.39 72.97 85.82 83.98 88.58 87.12 90.09 88.87 91.35 90.31

Table 4: The UF1 and LF1 of SynGCL-SDP on the English dataset in DM formalism with three types of
features, in which the GNN module is implemented with four pre-trained GNN variants. Each score is
averaged over 3 runs.
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Figure 3: Convergence curves (LF1 vs. training epochs) of SynGCL-SDP and DynGL-SDP on dev data in
three formalisms (DM, PAS, and PSD) when using 1% training data.

of DynGL-SDP is quite unstable during the training
process when there are very few labeled samples

available, meaning that it is susceptible to over-
fitting. On the contrary, the performance of our
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model improves steadily until it converges as the
number of training epochs increases, indicating that
our model is still stable and not prone to over-fitting
when few labeled data is available.

5. Conclusion

In this paper, we propose a syntax-guided graph
contrastive learning framework for few-shot SDP.
The proposed framework pre-trains GNNs with
plenty of unlabeled data and fine-tunes the pre-
trained GNNs with few-shot labeled SDP data.
The pretrained GNNs can also take advantage of
large amounts of unlabeled data to adapt to out-of-
domain. Extensive evaluations on SemEval-2015
Task 18 English dataset in three formalisms show
that our model performs better when limited data
is available.
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