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Abstract
Hyper-relational facts, which consist of a primary triple (head entity, relation, tail entity) and auxiliary attribute-value
pairs, are widely present in real-world Knowledge Graphs (KGs). Link Prediction on Hyper-relational Facts (LPHFs)
is to predict a missing element in a hyper-relational fact, which helps populate and enrich KGs. However, existing
LPHFs studies usually require an amount of high-quality data. They overlook few-shot relations, which have limited
instances, yet are common in real-world scenarios. Thus, we introduce a new task, Few-Shot Link Prediction
on Hyper-relational Facts (FSLPHFs). It aims to predict a missing entity in a hyper-relational fact with limited
support instances. To tackle FSLPHFs, we propose MetaRH, a model that learns Meta Relational information
in Hyper-relational facts. MetaRH comprises three modules: relation learning, support-specific adjustment, and
query inference. By capturing meta relational information from limited support instances, MetaRH can accurately
predict the missing entity in a query. As there is no existing dataset available for this new task, we construct three
datasets to validate the effectiveness of MetaRH. Experimental results on these datasets demonstrate that MetaRH
significantly outperforms existing representative models.
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1. Introduction

Link prediction aims to predict a missing element
in an incomplete link within KGs. It plays a cru-
cial role in enriching KGs and improving the per-
formance of downstream applications like Web
search and question answering (Dong et al., 2015;
Lukovnikov et al., 2017). Previous research pri-
marily focuses on binary facts, which are repre-
sented as triples (head entity, relation, tail en-
tity). However, real-world KGs often contain hyper-
relational facts that involve two entities and several
auxiliary attribute-value pairs (Codd, 1983). For in-
stance, more than a third of entities in the popular
KG Freebase (Bollacker et al., 2008) are involved
in hyper-relational facts (Wen et al., 2016). There-
fore, it is essential to extend link prediction beyond
binary facts.

In previous approaches to Link Prediction on
Hyper-relational Facts (LPHFs), a hyper-relational
fact is decomposed into multiple binary facts us-
ing virtual entities (Nguyen et al., 2014; Krieger
and Willms, 2015). However, this decomposi-
tion results in the loss of structure information
and increases the number of required parame-
ters, potentially leading to incorrect inferences.
To overcome these limitations, recent research
has directly modeled hyper-relational facts. Some
translation-based approaches (Wen et al., 2016;
Zhang et al., 2018) define a hyper-relational fact
through an attribute-value mapping. Meanwhile,
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tensor-based approaches (Fatemi et al., 2019; Liu
et al., 2020a) represent the truth space of hyper-
relational facts using high-order tensors. More
recently, neural network-based approaches (Luo
et al., 2023; Wang et al., 2023) have achieved sig-
nificant performance improvements by leveraging
neural networks to capture interactions between el-
ements within hyper-relational facts.

However, current LPHFs methods often over-
look the challenge of few-shot relations, even
though these relations are prevalent in real-world
KGs. For instance, in the benchmark dataset
WD50K (Rosso et al., 2020), it is observed that
32.5% of relations have less than 5 instances (see
Figure 1). Moreover, real-world KGs are often dy-
namic, constantly introducing new relations with
limited instances. While some existing studies fo-
cus on link prediction in few-shot scenarios (Chen
et al., 2019; Niu et al., 2021), they are designed for
binary facts and cannot deal with attribute-value
pairs, which are crucial for fully learning relation
representations in hyper-relational facts. There-
fore, there is an urgent need for methods that can
effectively handle such scenarios.

Thus, we introduce a new task, called Few-
Shot Link Prediction on Hyper-relational Facts
(FSLPHFs). This task is to predict a missing entity
in a hyper-relational fact associated with a relation
r, given only a small number of support instances
of r (called support set). The main challenge of
FSLPHFs lies in effectively learning the represen-
tation of r in hyper-relational facts from these lim-
ited support instances. We tackle this challenge
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Figure 1: The histogram of relation frequencies in
WD50K.

from two perspectives. Firstly, even though the
few-shot relations have limited instances, the en-
tities involved have background facts, which can
be leveraged to generate few-shot relation rep-
resentations. Secondly, taking inspiration from
the success of meta-learning methods in the field
of few-shot learning (Munkhdalai and Yu, 2017;
Finn et al., 2017), we can adjust relation repre-
sentations using loss gradients of the support in-
stances to obtain the essence knowledge of rela-
tions, which we refer to as meta relational informa-
tion.

Based on these considerations, we design a
model called MetaRH, which captures meta rela-
tional information from limited support instances to
predict a missing entity in a query. MetaRH con-
sists of three modules: relation learning, support-
specific adjustment, and query inference. The
relation learning module generates initial few-
shot relation representations by aggregating en-
tity background facts and encoding support in-
stances. The support-specific adjustment mod-
ule further adjusts relation representations based
on the support set to obtain meta relational infor-
mation. Finally, the query inference module pre-
dicts the missing entity in a query using the ob-
tained meta relational information. Due to the lack
of datasets designed for FSLPHFs, we construct
three datasets based on existing LPHFs bench-
mark datasets. Through sufficient experiments,
we demonstrate that MetaRH significantly outper-
forms existing models.

In summary, this paper makes the following con-
tributions:

• It propose a new task called Few-Shot
Link Prediction on Hyper-relational Facts
(FSLPHFs), which is practical in real-world
scenarios.

• To tackle FSLPHFs, we propose the MetaRH
method, which captures meta relational infor-
mation from limited support instances to pre-
dict the missing entity in a query.

• Three datasets based on existing LPHFs
benchmark datasets are constructed, pro-

viding valuable resources for evaluating
FSLPHFs and further research in this area.

• Through extensive experiments conducted
in various settings, we demonstrate that
MetaRH achieves superior results in
FSLPHFs, showcasing its effectiveness
and potential for practical applications.

2. Related Work

Our work is the first to tackle few-shot link predic-
tion on hyper-relational facts, filling a gap in the
existing literature. The closest related research ar-
eas are Link Prediction on Hyper-relational Facts
(LPHFs) and Few-Shot Link Prediction on Binary
Facts (FSLPBFs).

2.1. Related Work on LPHFs
Existing LPHFs works can be categorized into
three groups: translation-based, tensor-based,
and neural network-based.

Translation-based models embed entities and
relations into a low-dimensional space and make
predictions by translating entities through relations.
In the initial work, m-TransH (Wen et al., 2016)
represents a hyper-relational fact as a mapping
from a sequence of attributes to their correspond-
ing values and models it to obtain the truth value
of the fact. RAE (Zhang et al., 2018) enhances
m-TransH by considering entity correlations.

Tensor-based models utilize a high-order ten-
sor to represent the truth space of facts and pre-
dict new links by reconstructing the tensor. Due
to their effectiveness on binary facts, researchers
have extended them to handle hyper-relational
facts. Some examples of such extensions include
m-DistMult (Fatemi et al., 2019), HypE (Fatemi
et al., 2019), and GETD (Liu et al., 2020a), which
are generalizations of DistMult (Fatemi et al.,
2019), SimplE (Kazemi and Poole, 2018), and
TuckER (Balažević et al., 2019), respectively.

Neural network-based models utilize neural
networks to capture element interactions in hyper-
relational facts. NaLP (Guan et al., 2019) repre-
sents hyper-relational facts as attribute-value pairs
and models their correlation using a fully con-
nected neural network. HINGE (Rosso et al.,
2020) and NeuInfer (Guan et al., 2020) repre-
sent hyper-relational facts as a primary triple with
auxiliary attribute-value pairs and evaluate the va-
lidity and compatibility of these two components.
StarE (Galkin et al., 2020) proposes a graph repre-
sentation learning mechanism for hyper-relational
facts, enhancing the communication from the aux-
iliary attribute-value pairs to the primary triple.
GRAN (Wang et al., 2021) extends StarE to rep-
resent hyper-relational facts as heterogeneous
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graphs and uses edge-biased attention layers to
encode these graphs. Since StarE and GRAN
only consider global or local structures in KGs,
HAHE (Luo et al., 2023) further proposes a hier-
archical attention mechanism that includes global
and local attention. ShrinkE (Xiong et al., 2023) ex-
tend Box (Abboud et al., 2020) to capture essential
inference patterns of hyper-relational facts. The
above models generally encode facts in Euclidean
space, making it challenging to preserve the hier-
archical relationships of entities. PolygonE (Yan
et al., 2022) embeds hyper-relational facts as gyro-
polygons in hyperbolic poincaré ball and designs
a vertex-gyrocentoid optimization goal to measure
fact validity. Additionally, HyConvE (Wang et al.,
2023) exploits the powerful learning ability of con-
volutional neural networks for LPHFs.

2.2. Related Work on FSLPBFs
Existing FSLPBFs works can be categorized into
two groups: metric learning-based and meta
learning-based.

Metric learning-based models match queries
to support instances and make predictions based
on the match values. GMatching (Xiong et al.,
2018) enhances entity representations and learns
a matching processor for prediction. FSRL (Zhang
et al., 2020) extends GMatching by integrating in-
formation from multiple instances rather than rely-
ing on just one. FAAN (Sheng et al., 2020) further
introduces an adaptive attention mechanism that
selectively focuses on entity properties.

Meta learning-based models calculate the gra-
dient on support instances and quickly optimize
parameters. MetaR (Chen et al., 2019) trans-
fers relation information from support instances
to queries using relation gradients. MetaP (Jiang
et al., 2021) utilizes more efficient convolutional fil-
ters and proposes a validity balance mechanism
of negative samples. GANA (Niu et al., 2021) com-
bines MAML (Finn et al., 2017) and TransH (Wang
et al., 2014) to predict few-shot complex relations.

Existing LPHFs models overlook few-shot rela-
tions, while FSLPBFs models focus on binary facts
and cannot handle hyper-relational facts.

3. Problem Formulation

In this section, we provide the definitions of
hyper-relational facts, link prediction on hyper-
relational facts, and few-shot link prediction on
hyper-relational facts in turn.
Definition 1 Hyper-relational facts are com-
posed of a primary triple (h, r, t) and several
auxiliary attribute-value pairs {(ai, vi)}mi=1 (Rosso
et al., 2020). Here, r, ai, ..., am ∈ R and
h, t, v1, ..., vm ∈ E, with m denoting the number of

auxiliary attribute-value pairs, E representing the
set of entities and values, and R denoting the set
of relations and attributes.

For instance, the hyper-relational fact, Einstein
studied for a Doctorate’s Degree of Physics at Uni-
versity of Zurich from 1901 to 1905, can be repre-
sented as:

((Einstein, studied for, Doctorate’s Degree),{
(major, Physics),
(university, the University of Zurich),
(begin-time, 1901), (end-time, 1905)}).

Definition 2 Link Prediction on Hyper-
relational Facts (LPHFs) aims to predict
one missing element in a hyper-relational
fact (Wen et al., 2016), such as predicting
the tail entity of the incomplete hyper-relational
fact ((h, r, ?), {(ai, vi)}mi=1).

Definition 3 Few-Shot Link Prediction on
Hyper-relational Facts (FSLPHFs) aims to
predict a missing entity1 in a query in the
query set Qr = {((hq, r, ?), {(aqi , vqi)}mi=1)} of
a few-shot relation r, with k support instances
Sr = {((hj

s, r, t
j
s), {(ajsi , v

j
si)}

m
i=1)}kj=1 (referred

to as the support set) given, called k-shot link
prediction on hyper-relational facts.

The training process of FSLPHFs is based on a
set of tasks, wherein each task is associated with a
few-shot relation and has its support set and query
set. Besides, each task has an entity candidate
set, which contains candidate entities that satisfy
possible entity types, following (Xiong et al., 2018).
The testing process is performed on a set of new
tasks, wherein each task is associated with a few-
shot relation that has not appeared in the training
process and has its support set and query sets.

Finally, we assume that the method has access
to background data B, which contains background
facts about entities in Sr, following (Xiong et al.,
2018). The background facts of an entity e is a set
of facts with e as the head entity. To utilize B fully,
inverse facts {((t, r−1, h), {(ai, vi)}mi=1)} are added
to B. For example, for a fact in the background
data, ((Game of Thrones (Q23572), cast member
(P161), Ciarán Hinds (Q314892)), {(character role
(P453), Mance Rayder (Q5991029))}), we add its
inverse facts ((Ciarán Hinds (Q314892), cast mem-
ber (P161)−1, Game of Thrones (Q23572)), {(char-
acter role (P453), Mance Rayder (Q5991029))}) to
the background data. To avoid data leakage, no
few-shot relations exist in B.

1In this paper, we conduct FSLPHFs through tail en-
tity prediction following (Xiong et al., 2018; Galkin et al.,
2020), as head entity prediction can be transformed into
tail entity prediction easily through inverse relations.
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Figure 2: The overview of MetaRH model. To distinguish the different elements in hyper-relational facts,
we use red for relations, blue for head and tail entities, pink for attributes, and purple for values.

4. The Proposed MetaRH Model

We propose MetaRH to tackle FSLPHFs. MetaRH
consists of three modules: relation learning,
support-specific adjustment, and query infer-
ence, as illustrated in Figure 2. To be
clear, in Figure 2 and what follows, we il-
lustrate MetaRH with the background facts =
{{((hj

s/t
j
s, r

l
b, t

l
b), {(albi , v

l
bi
)}mi=1)}Ll=1}kj=1, support

set Sr = {((hj
s, r, t

j
s), {(ajsi , v

j
si)}

m
i=1)}kj=1, and

query set Qr = {((hq, r, ?), {(aqi , vqi)}mi=1)}.

4.1. Relation Learning Module
It is designed to obtain an initial representation of
few-shot relation r using a background encoder
and a relation encoder.

The background encoder utilizes background
facts to generate semantic-rich entity representa-
tions in the support set. To leverage priori knowl-
edge from the background facts and enhance en-
tity representations, we employ a Graph Neural
Network with attention and gating mechanisms.

For example, the semantic-rich representation
tjs

′ of entity tjs is obtained by combining the ini-
tial entity representation tjs with its background fact
representation bl, using attention values α and a
gate value g, as follows:

tjs
′
= σ

(
L∑

l=1

gαlbl + (1− g) tjs

)
, (1)

where L is the number of background facts per en-
tity; the background facts of tjs is a set of facts in
B with tjs as the head entity; αl represents the at-
tention value of background fact bl; σ is an activa-
tion function. The semantic-rich head entity repre-
sentation hj

s
′ is obtained in the same manner as

tjs
′. Next, we provide a detailed explanation of the

background fact representation bl, attention value
αl, and gate value g.

The background fact representation bl is calcu-
lated by aggregating all the elements in bl. This
involves using a weighted sum operation ϕws and
a project operation ϕpro2 to fuse the auxiliary
attribute-value pairs representation ql

b to the rela-
tion representation rlb. The new relation represen-
tation is then combined with the tail entity repre-
sentation tlb using a project operation ϕpro and a
concatenate operation ϕcon. As a result, bl is ob-
tained as follows:

bl = ϕpro(ϕcon(ϕws(rlb, ϕpro2(ql
b)), tlb))

= W1

[
(τ ⊙ rlb + (1− τ)⊙ W2ql

b); tlb
]
+ b1,

(2)

where bl contains ((tjs, r
l
b, t

l
b), {(albi , v

l
bi
)}mi=1); W1

and W2 are parameterized projection matrixes; b1

is a parameterized bias; τ is a relation weight
hyper-parameter; ⊙ is a scalar product operation;
inspired by Galkin et al. (Galkin et al., 2020), ql

b

is obtained using a position invariant summation
function ϕsum and a rotate function ϕrot (Sun et al.,
2019), as follows:

ql
b = ϕsum({ϕrot(al

bi , v
l
bi)}

m
i=1)

=
∑

(al
bi
,vl

bi
)∈{(al

bi
,vl

bi
)}m

i=1

ϕrot(al
bi , v

l
bi),

(3)

where al
bi

and vl
bi

are the corresponding represen-
tations of albi and vlbi , respectively.

To capture the most valuable information from
background facts and filter out noisy facts, atten-
tion mechanisms and gating mechanisms are em-
ployed, referring to (Sheng et al., 2020; Niu et al.,
2021). The attention value αl of background fact
bl is calculated by applying the softmax function on
all absolute attention values, as follows:

αl =
exp

(
dl
)∑L

l=1 exp (dl)
. (4)

dl = LeakyReLU
(

UT
1 bl
)
, (5)
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where dl is the absolute attention value of bl;
LeakyReLU(·) (Maas et al., 2013) is an activation
function; U1 is a weight vector.

To further filter out noisy background facts, gat-
ing mechanisms are implemented. The gate value
g of all background facts is calculated using a sig-
moid function as follows:

g = sigmoid
(

UT
2

L∑
l=1

αlbl + bg

)
, (6)

where U2 is a weight vector, and bg is a scalar bias.
The relation encoder aims to generate few-

shot relation representations with semantic-rich
entity representations as input.

Many existing LPHFs models can generate re-
lation representations based on hyper-relational
facts. In this work, we select GRAN (Wang et al.,
2021) as the relation encoder, since it has shown
effectiveness in the LPHFs task. Taking the sup-
port instance ((hj

s, r, tjs), {(ajsi , vjsi)}mi=1) as an ex-
ample, the semantic-rich instance representation,
((hj

s
′, mask, tjs

′), {(aj
si , vj

si)}
m
i=1), is represented as

a heterogeneous graph G, where mask is a special
token denoting the few-shot relation r. More de-
tails on GRAN can be found in (Wang et al., 2021).
Then graph G is then processed through a stack of
D GRAN blocks, as follows:

Gd = GRAN
(
Gd−1

)
, d = 1, 2, · · · , D, (7)

where Gd is the hidden state after d-th layer. The
representation of mask in the last layer is selected
as the few-shot relation representation rTj .

The relation representations of other support in-
stances are obtained similarly. The few-shot re-
lation representation rT of the current task is ob-
tained through an average operation ϕavg :

rT = ϕavg({rTj}kj=1) =
1

k

k∑
j=1

rTj , (8)

where k is the number of support instances.

4.2. Support-specific Adjustment
Module

The previous module generates a few-shot rela-
tion representation. However, it is coarse due to
the simple aggregation operation in Equation 8.
Thus, the support-specific adjustment module is
designed to obtain meta relational information that
represents common knowledge within the task.
This module utilizes the gradient on support in-
stances to guide the adjustment of the coarse re-
lation representation based on an instance scorer.
Before introducing the adjustment of the relation
representation, we first introduce the instance
scorer and the loss of the support set.

Algorithm 1 The training process of MetaRH.
Input: Training tasks Ttraining; Initial parame-
ters.
1: repeat
2: Sample mini-batch tasks Ft from Ttraining.
3: for each task in Ft do
4: Sample few-shot instances as Sr.
5: Sample a batch of instances as Qr.
6: Get the background facts of Sr.
7: Generate semantic-rich entity representa-

tions in Sr (Equation 1∼Equation 6).
8: Generate an initial few-shot relation repre-

sentation rT (Equation 7∼Equation 8).
9: Calculate the loss of Sr (Equa-

tion 9∼Equation 12).
10: Generate meta relational information r′T

(Equation 13).
11: Calculate the loss of Qr (Equation 14).
12: end for
13: Update model parameters.
14: until process completes maximum times.

The instance scorer evaluates the seman-
tic connections between few-shot relations and
other elements in instances. Previous research
in FSLPBFs (Chen et al., 2019) has shown that
the translation-based model TransE (Bordes et al.,
2013) performs well as an instance scorer. There-
fore, we adopt a translation-based instance scorer
in this work, which is designed as follows:

Taking the support instance ((hj
s, r, t

j
s),

{(ajsi , v
j
si)}

m
i=1) as an example, we first calculate

the auxiliary attribute-value pairs representation
qs similarly as ql

b (see Equation 3) and aggregate
it to rT , as follows:

ql
s = ϕsum({ϕrot(al

si , v
l
si)}

m
i=1)

=
∑

(al
si

,vl
si

)∈{(al
si

,vl
si

)}m
i=1

ϕrot(al
si , v

l
si),

(9)

rjs = ϕws(rT , ϕpro2(qj
s)) = τ ⊙ rT +(1− τ)⊙W2qj

s,
(10)

where aj
si , vj

si are the corresponding representa-
tions of ajsi , vjsi respectively; rjs is the new rela-
tion representation that incorporates the represen-
tation of auxiliary attribute-value pairs.

Then, following TransE, the score of the support
instance is calculated as follows:

f
(
hj
s, rjs, tjs

)
=
∥∥hj

s + rjs − tjs
∥∥ , (11)

where hj
s, tjs are the corresponding representations

of hj
s, tjs respectively; ||x|| is the L2 norm of vector

x; this function is denoted as “f ” in Figure 2. To
obtain accurate common knowledge from the sup-
port set, the initial entity representations are used
instead of rich-semantic ones.
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The loss of support set is defined as follows:

L (Sr)=
∑

(hj
s,rjs,tjs)∈Sr

[
µ+f

(
hj
s, rjs, tjs

)
−f
(

hj
s, rjs, tj

′′

s

)]
+
,

(12)
where [x]+ = max[0, x] is hinge loss; µ is a mar-
gin hyper-parameter; tj′′s is generated by randomly
corrupting tail entities of support instances.

The adjustment of rT is guided by the gradi-
ent of rT , which indicates how rT should be ad-
justed, as L(Sr) represents the ability of the in-
stance scorer to encode the truth values of in-
stances. Therefore, we obtain meta relational in-
formation r′T , as follows:

r′T = ϕsub(rT , Grad(rT ))

= rT − β
dL (Sr)

drT
,

(13)

where ϕsub is a subtraction operation; Grad(rT ) is
the gradient of rT ; β indicates the step size of the
gradient when adjusting rT .

4.3. Query Inference Module
The query inference module predicts the missing
entity in a query using an instance scorer. To
enhance the training efficiency of MetaRH, the
instance scorer in the query inference module
adapts the same structure and shares parameters
as the instance scorer introduced in the support-
specific adjustment module (see Section 4.2).

The loss of query set is computed similarly to
L(Sr) (see Equation 12), as follows:

L(Qr)=
∑

(hq,rq,tq)∈Qr

[
µ+f(hq, rq, tq)−f

(
hq, rq, t′′q

)]
+
,

(14)
where hq, tq is the corresponding representations
of hq, tq respectively; the new relation representa-
tion rq is obtained by combining the representation
of attribute-value pairs and meta relational informa-
tion, similar to rjs (see Equation 10); t′′q is the nega-
tive entity representation, which is generated in a
similar way as tj′′s (see Equation 12). For further
details on the training process, refer to Algorithm 1.

5. Experiments

5.1. Datasets
Since there is no dataset specifically designed for
FSLPHFs, we construct three new datasets, F-
WikiPeople, F-JF17K, and F-WD50K, by modify-
ing existing LPHFs benchmark datasets WikiPeo-
ple (Guan et al., 2018), JF17K (Wen et al., 2016),
and WD50K (Rosso et al., 2020), respectively.
These LPHFs datasets are derived from real-world
KGs and are widely used in LPHFs. Specifically,

the JF17K dataset is derived from Freebase (Bol-
lacker et al., 2008), and the Wikipeople and
WD50K datasets is derived from Wikidata (Vran-
dečić and Krötzsch, 2014). The Wikipeople
dataset stores a large number of facts related to
people, while WD50K stores a large number of
facts in which head entities appear in the well-
known knowledge graph FB15K-237 (Bordes et al.,
2013). We believe that our proposed datasets will
provide valuable resources for further research in
this field.

New FSLPHFs datasets are constructed as fol-
lows:

• Select relations with 20-1000 instances2 as
few-shot relations from each existing dataset.

• Get few-shot data by retrieving the instances
of few-shot relations.

• Remove instances with few-shot relations in
auxiliary attribute-value pairs from the few-
shot data to prevent data leakage.

• Get background data B by retrieving the in-
stances of entities in the few-shot data from
the original dataset.

• Remove instances containing few-shot rela-
tions from B to prevent data leakage.

• Divide the few-shot data into training tasks
Ttraining , validation tasks Tvalidation, and test-
ing tasks Ttesting, in the proportion of 85%:
5%: 10%, following (Xiong et al., 2018).

Table 1 provides statistics of the constructed
datasets, including counts for various elements:
#X is the number of X, E-q and R-q denote the
values and attributes in auxiliary attribute-value
pairs respectively, B-facts and F-facts denote the
facts in background data and few-shot data respec-
tively, B-N-rate and F-N-rate denote the proportion
of hyper-relational facts in background data and
few-shot data respectively, and Tasks denotes the
few-shot tasks.

5.2. Experimental Settings
Baselines. Due to the lack of models designed
specifically for FSLPHFs, MetaRH is primarily
compared with LPHFs and FSLPBFs models:
(1) representative or state-of-the-art LPHFs mod-
els: m-TransH (Wen et al., 2016), HypE (Fatemi
et al., 2019), NeuInfer (Guan et al., 2020),
HINGE (Rosso et al., 2020), StarE (Galkin et al.,
2020), GRAN (Wang et al., 2021), PolygonE (Yan

2The lower boundary is to have enough facts for eval-
uation. The upper boundary is to retain some facts to be
used as background data.
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Dataset #E #R #E-q #R-q #B-facts B-N-rate #F-facts F-N-rate #Tasks
F-WikiPeople 40529 237 4663 75 314670 9.1% 4470 1.5% 30
F-JF17K 19721 480 4928 127 86415 49.3% 5157 19.2% 52
F-WD50K 43802 697 10242 85 358439 13.8% 21214 1.8% 118

Table 1: Statistics of the constructed datasets.

Method F-WikiPeople F-JF17K F-WD50K
MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1

m-TransH 0.197 0.403 0.309 0.101 0.045 0.076 0.047 0.021 0.051 0.081 0.047 0.015
HypE 0.291 0.516 0.368 0.195 0.042 0.111 0.040 0.014 0.051 0.106 0.063 0.024

PolygonE 0.231 0.388 0.268 0.137 0.057 0.192 0.134 0.025 0.052 0.107 0.060 0.018
NeuInfer 0.289 0.581 0.455 0.155 0.092 0.156 0.111 0.061 0.133 0.231 0.180 0.078
HINGE 0.333 0.439 0.276 0.277 0.084 0.124 0.095 0.064 0.154 0.267 0.213 0.089
StarE 0.286 0.558 0.471 0.118 0.117 0.151 0.135 0.090 0.102 0.177 0.134 0.057
GRAN 0.287 0.432 0.374 0.209 0.119 0.157 0.124 0.101 0.126 0.222 0.162 0.077

ShrinkE 0.314 0.504 0.421 0.221 0.051 0.123 0.063 0.020 0.046 0.081 0.059 0.024
HyConvE 0.364 0.621 0.428 0.272 0.177 0.289 0.234 0.123 0.086 0.176 0.118 0.038

HAHE 0.392 0.583 0.480 0.306 0.182 0.293 0.276 0.117 0.157 0.265 0.206 0.102
FAAN 0.266 0.550 0.412 0.092 0.032 0.090 0.034 0.003 0.116 0.226 0.166 0.059
MetaR 0.282 0.556 0.459 0.147 0.047 0.086 0.055 0.022 0.108 0.183 0.139 0.064
GANA 0.341 0.475 0.371 0.275 0.074 0.218 0.130 0.016 0.176 0.313 0.246 0.100

ChatGPT - 0.584 0.548 0.358 - 0.165 0.140 0.093 - 0.548 0.474 0.237
MetaRH 0.415 0.644 0.500 0.318 0.214 0.329 0.292 0.141 0.192 0.340 0.278 0.109

Table 2: Few-shot link prediction performance on hyper-relational facts.

et al., 2022), ShrinkE (Xiong et al., 2023), Hy-
ConvE (Wang et al., 2023), and HAHE (Luo
et al., 2023); (2) advanced FSLPBFs models:
MetaR (Chen et al., 2019), FAAN (Sheng et al.,
2020), and GANA (Niu et al., 2021). More details
on these models can be found in Section 2. Addi-
tionally, MetaRH is compared with ChatGPT 3, a
recently prominent Large Language Model (LLM).

Evaluation metrics used are Hits@k and Mean
Reciprocal Rank (MRR), with k = 1, 5, 10, follow-
ing (Xiong et al., 2018). The hits@k metric is the
proportion of the correct answer ranked within the
top k, while the MRR metric is the average of the re-
ciprocal rank of the correct answer. Higher values
of MRR and Hits@k indicate better performance.

Implementation details. Hyper-parameters
of MetaRH are selected within the follow-
ing ranges: The embedding dimension
∈ {50, 100}, the batch size of tasks per epoch
∈ {128, 256, 512, 1024, 2048}, the batch size of
queries per task ∈ {1, 2, 3, 4, 5}, the learning rate
∈ {5e−3, 1e−3, 5e−4, 1e−4}, the maximum number
of background facts per entity ∈ {10, 20, 30, 50},
the margin µ ∈ {1, 2, 3, 4, 5}, and the relation
weight τ ∈ [0.0, 1.0] with step is 0.1. The
embedding layer is initialized with pre-trained
embeddings trained on the background data
with HINGE, following (Xiong et al., 2018). The
Adam optimizer (Kingma and Ba, 2014) is used to
optimize the model. We conduct all experiments
in the 5-shot scenario, that is, k is set to 5. The
Code and datasets of this paper can be found at
https://github.com/JiyaoWei/MetaRH.

To ensure a fair comparison, LPHFs baselines
are trained using all facts in {Ttraining, Sr ∈
Tvalidation ∪ Ttesting, B}, while FSLPBFs baselines

3https://openai.com/blog/chatgpt/

are trained using the same Ttraining and B em-
ployed by MetaRH. The hyper-parameters of all
baselines, except ChatGPT, are tuned on each ex-
perimental dataset.

For ChatGPT, to enhance the persuasiveness
of the experiments, we manually constructed the
prompt of ChatGPT for each query following Zhu
et al. (Zhu et al., 2023). Furthermore, we mod-
ified the prompt to produce multiple candidates
for a more in-depth comparative analysis. Specifi-
cally, we added “Please list the 10 most likely an-
swers and rank them in descending order of con-
fidence.” at the end of the current prompt. Chat-
GPT would generate 10 rows, each representing
one candidate answer, i.e. “1. {candidate}\n 2.
{candidate}\n ... 10. {candidate}”. {candidate}
indicates a generated answer. For the metric
Hits@10, if the true entity appears in any of the
answers generated by ChatGPT, the prediction is
considered correct. For the metric Hits@k, if the
true entity appears in the first k generated answers,
the prediction is considered correct. Figure 3 il-
lustrates the format of the prompts, which include
support instances and a query. Given that the ac-
curacy of the responses generated by ChatGPT
is the only metric available, we only show its Hits
metrics.

5.3. Experimental Results and Analysis
The experimental results for all three datasets are
displayed in Table 2, highlighting the best results in
bold and the second-best results underlined. We
have the following observations:

Comparing MetaRH with LPHFs baselines,
MetaRH outperforms all existing models across
all three datasets. For instance, in terms of the
Hits@10 metric, MetaRH achieves improvements
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F-WikiPeople F-JF17K F-WD50K
Methods MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1
MetaRH 0.415 0.644 0.500 0.318 0.214 0.329 0.292 0.141 0.192 0.340 0.278 0.109
-background 0.382 0.540 0.421 0.304 0.199 0.306 0.285 0.109 0.177 0.326 0.265 0.091
-adjustment 0.328 0.450 0.414 0.261 0.182 0.299 0.270 0.104 0.152 0.285 0.219 0.082

Table 3: Experimental results of the ablation study.

Figure 3: An example of ChatGPT prompts for
FSLPHFs.

of 2.3% on the F-WikiPeople dataset (3.7% rela-
tive improvement ), 3.9% on the F-JF17K dataset
(13.3% relative improvement), and 7.3% on the
F-WD50K dataset (27.3% relative improvement).
The remarkable success of MetaRH can be at-
tributed to learning meta relational information.
This targeted design empowers MetaRH to effec-
tively capture the essential knowledge of relations
with limited instances. Notably, MetaRH demon-
strates the most significant performance improve-
ment on the F-WD50K dataset, which involves the
maximum number of training tasks. This observa-
tion suggests that the more training tasks there are,
the stronger MetaRH’s ability to learn meta rela-
tional information.

Comparing MetaRH with FSLPBFs baselines,
MetaRH outperforms existing models across all
three datasets. For instance, in terms of
the Hits@10 metric, MetaRH achieves improve-
ments of 8.8% on F-Wikidata (15.8% relative
improvement), 11.1% on the F-JF17K dataset
(50.9% relative improvement), and 2.7% on the
F-WD50K dataset (8.6% relative improvement).
This improvement demonstrates the effectiveness
of leveraging auxiliary attribute-value pairs in
few-shot relation learning. Moreover, MetaRH
achieves a significant improvement on the F-
JF17K dataset, which has a high proportion of
hyper-relational facts, further emphasizing the im-
portance of using auxiliary attribute-value pairs.

Comparing MetaRH with ChatGPT, MetaRH
performs better on the F-JF17K dataset but falls
short on the F-WikiPeople and F-WD50K datasets,
considering most metrics. This performance dis-
crepancy may be due to the variance in data
sources. The F-JF17K dataset is derived from
Freebase, while the F-WikiPeople and F-WD50K
datasets are derived from Wikidata. MetaRH
achieved a relative improvement of up to 51.6% in

the metric hits@1 on the F-JF17K dataset, where
87% of the knowledge is domain-specific knowl-
edge, including film and sport. MetaRH does not
perform well on the F-WikiPeople dataset and F-
WD50K dataset, since these two datasets are de-
rived from Wikidata, storing a large amount of
generalized domain knowledge such as geogra-
phy, country, etc. This indicates that knowledge
graph models are still necessary in the real sce-
nario currently. They achieve better performance
on the reasoning task in non-generalized domains,
as demonstrated by the LLM survey (Pan et al.,
2024). We also speculate that the unpublished
training datasets used by ChatGPT include Wiki-
data or related datasets such as Wikipedia, but
not Freebase. The opacity of the training data seri-
ously affects its practical applications. Additionally,
crafting high-quality prompts is crucial, but it is la-
borious and requires expert experience. For the
metric MRR, calculating it of ChatGPT on link pre-
diction is still a challenge since we can only check
if the answer is in the response of ChatGPT but is
almost impossible to get the rank for each answer.

Furthermore, we conduct experiments on the
largest dataset F-WD50K to analyze the impact of
the k-shot setting. We follow Sheng et al. (Sheng
et al., 2020) to vary k from 1 to 6. We com-
pared MetaRH with several competitive baseline
models, namely HINGE, NeuInfer, GANA, and
HAHE. The results, depicted in Figure 4, show
that MetaRH consistently outperforms the baseline
models across various k values. Additionally, the
performance of baselines does not plateau. We
speculate that it is due to that they are less ca-
pable of data utilization. Specifically, the base-
lines for link prediction on hyper-relational facts
(e.g., HINGE, Nueinfer, and HAHE) cannot effec-
tively capture the essential knowledge of relations
with limited instances. The few-shot link prediction
baseline (e.g., MetaR) cannot leverage auxiliary
attribute-value pairs. They all have data utilization
issues and are sensitive to different values of k.

5.4. Ablation Studies
The two essential components of MetaRH are the
background encoder and support-specific adjust-
ment module. To evaluate their necessity, abla-
tion studies are conducted on all three datasets.
The results in Table 3 provide important in-
sights. Firstly, removing the background encoder
(-background) results in a noticeable performance
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Figure 4: Impact of the few-shot size on the F-
WD50K dataset.

Figure 5: Impact of the number of background
facts per entity and relation weight on the F-
WD50K dataset.

drop. This highlights the benefit of enhancing en-
tity representations with background facts. Sec-
ondly, removing the support-specific adjustment
module (-adjustment) leads to a significant decline
in performance, emphasizing the crucial role of ad-
justing relation representations to capture meta re-
lational information. Notably, -adjustment suffers
the most significant performance degradation on
the F-WikiPeople and F-WD50K datasets, which
have a large amount of background data. This sug-
gests that the richer the information in the gener-
ated relation representations, the more necessary
it is to capture meta relational information.

5.5. Analysis on key Parameters
The two key parameters of MetaRH are the max-
imum number of background facts per entity (L)
and relation weight (τ ). To analyze the impact of
these parameters on MetaRH’s performance, ex-
periments are conducted on the largest dataset
F-WD50K. Figure 5 illustrates that L significantly
affects MetaRH’s performance. If L is too small,
important background facts may be lost, while too
large may result in insufficient attention to the most
useful facts. In terms of τ , the optimal performance
of MetaRH is achieved when τ is set to 0.9, indi-
cating that relations carry most of the type informa-
tion of hyper-relational facts, compared to auxiliary
attribute-value pairs, in the F-WD50K dataset.

5.6. Case Study
To analyze the practical performance of MetaRH,
we randomly selected 6 queries from the F-WD50K
dataset for the case study, including 3 hyper-
relational facts and 3 binary facts. As shown in Ta-
ble 4, MetaRH outperforms GANA on most facts,

Query MetaRH GANA
((Prince of Wales (Q180729),position held (P39),
monarch (Q116)),
{(of (P642), Irish Free State (Q31747))})

32 7

((Steve Jobs (Q19837),position held (P39),
chief executive officer (Q484876)),
{(of (P642), Apple (Q312))})

7 151

((Victor Hugo (Q535),position held (P39),
president (Q30461)),
{(of (P642), Literary Society (Q3488144))})

81 373

(Second Punic War (Q6271),participant (P710),
Macedonia (Q83958)) 1 3
(Rhine (Q584),basin country (P205),
Switzerland (Q39)) 8 8
(Operation Barbarossa (Q83055),
participant (P710), Romania (Q203493)) 31 44

Table 4: Case study on the F-WD50K dataset. Tail
entities in these case facts are assumed to be pre-
dicted and are highlighted in red. The second and
third columns are the ranks of correct answers
for MetaRH and the best baseline GANA, respec-
tively.

demonstrating its superior performance. For the
first case of answering the position held by the
Prince of Wales in the Irish Free State, MetaRH
does not perform as well as GANA. This can be at-
tributed to a lack of background data. Since there
are only three facts related to the Irish Free State
in the background data, it prevents MetaRH from
understanding the auxiliary attribute value pairs.

6. Conclusion

In this paper, we introduced a new task that is prac-
tical in real-world scenarios, called Few-Shot Link
Prediction on Hyper-relational Facts (FSLPHFs).
We defined the task and proposed a solution
model called MetaRH, which consists of three
modules: relation learning, support-specific ad-
justment, and query inference. These modules
generate initial few-shot relation representations,
adjust them based on the support set, and make
inferences about queries, respectively. In addi-
tion, we constructed three datasets to test our ap-
proach. The experimental results show a signifi-
cant improvement of MetaRH over existing mod-
els. In future research, we plan to utilize LLMs to
reduce the dependence on background data and
training tasks.
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