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Abstract
Recently, fine-tuning the large pre-trained language models on the labeled sentiment dataset achieves appealing
performance. However, the obtained model may not generalize well to the other domains due to the domain shift,
and it is expensive to update the entire parameters within the large models. Although some existing domain
matching methods are proposed to alleviate the above issues, there are multiple relevant source domains in practice
which makes the whole training more costly and complicated. To this end, we focus on the efficient unsupervised
multi-source sentiment adaptation task which is more challenging and beneficial for real-world applications.
Specifically, we propose to extract multi-layer features from the large pre-trained model, and design a dynamic
parameters fusion module to exploit these features for both efficient and adaptive tuning. Furthermore, we propose a
novel feature structure matching constraint, which enforces similar feature-wise correlations across different domains.
Compared with the traditional domain matching methods which tend to pull all feature instances close, we show that
the proposed feature structure matching is more robust and generalizable in the multi-source scenario. Extensive
experiments on several multi-source sentiment analysis benchmarks demonstrate the effectiveness and superiority
of our proposed framework.

Keywords: Pre-trained language model, Multi-Source Sentiment analysis, Efficient domain adaptation, Features
structure matching

1. Introduction

Sentiment analysis (SA) (Cambria et al., 2020) is
an important task in the NLP field, which aims to
predict the sentiment label (i.e., positive or nega-
tive) with a given sentence (Susanto et al., 2022)
and has wide applications, e.g., conversation sen-
timent recognition (Tu et al., 2022), public opinion
monitoring (Lin and Luo, 2020). Previous methods
adopt relatively small networks to make predictions,
i.e., Convolutional Neural Networks (CNN) or Long
Short Term Memory Networks (LSTM) (Rhanoui
et al., 2019). While, with the advent of Trans-
former (Vaswani et al., 2017), various large pre-
trained language models (Devlin et al., 2019; Yang
et al., 2019b) significantly improve the performance
on the SA task, which often include two stages.
First, pre-training the transformer-based model on
the large-scale raw texts with some specific self-
supervision tasks. Second, fine-tuning the pre-
trained model on the newly-collected labeled senti-
ment dataset. Despite their great progress, there
still exist two issues:

(1) The fine-tuned model may not generalize
well under different distributions (Wilson and Cook,
2020), since text from different domain contains
different subjects or sentiment descriptions, as il-
lustrated in Figure 1 (left).

(2) The pre-trained language models often have
large parameters, fine-tuning the entire set of pa-
rameters is time-consuming and requires large
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GPU memory costs (Sung et al., 2022).
For the first issue, a straightforward way is to

adopt domain adaptation techniques (Wilson and
Cook, 2020). Most existing methods focus on the
single-source domain adaptation problem, and aim
to obtain domain-invariant features by pulling the
feature instances close (Du et al., 2020). While,
there often exist multiple source domains in real
practice (Guo et al., 2018), that can be leveraged
to improve the performance. However, due to vari-
ous multi-source domain distributions, pulling fea-
tures from all the domains together with conven-
tional methods may compromise the generalization
of the adapted model (Zhou et al., 2021), since
the shared (domain-invariant) information is signifi-
cantly reduced (Figure 1). Besides, Gulrajani and
Lopez-Paz (2021) also demonstrate most strict do-
main matching methods hurt the model’s general-
ization and lead to degraded performance in multi-
source domain scenarios, since forcing all features
close can distort their semantic information. On
the other hand, we assume that features across dif-
ferent domains should follow a similar feature-wise
structure for fine-grained distribution alignments
instead of pulling them arbitrarily. Therefore, we
propose a Features Structure Matching (FSM) con-
straint, which is shown to be robust and generaliz-
able. Specifically, we exploit the feature structure
by computing multi-order feature-wise correlation
matrices, and enforce these matrices to be con-
sistent across different domains. We empirically
demonstrate that FSM constraint achieves superior
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Figure 1: Illustration the problem of the multi-source domain shift, and the comparison of the model with
static parameters θ and dynamic parameters θx, i.e., conditioned on input x.

results than previous methods on multiple multi-
source sentiment benchmarks.

For the second issue, some previous methods
insert small trainable blocks into the large model
and only update their parameters during train-
ing (Houlsby et al., 2019; Li and Liang, 2021; Liu
et al., 2022). However, these methods still involve
the large backbone during adaptation training, and
the gradients will back-propagate through the en-
tire backbone for computing the corresponding
gradients of the inserted parameters (Sung et al.,
2022). To this end, we propose a new adaptive
tuning strategy, which does not involve the back-
bone during training. Thus, the adaptation training
latency can significantly reduced. Specifically, we
first extract the features from multi-layers of the
large language models as input. Then, for more
elastic adaptability, we further design a Dynamic
Parameters Fusion (DPF) module which can adjust
the network parameters according to each input, so
that the dynamic model can adaptively fit to various
input (Li et al., 2021), as shown in Figure 1 (right).
In this case, multiple diverse source domains can
be leveraged to enhance the generalization of the
model.

As discussed above, there is a strong motiva-
tion to develop an efficient and generalizable multi-
source sentiment analysis framework. We propose
two corresponding modules, which are FSM and
DPF for both transferability and efficiency. To sum-
marize, the contributions are as follows:

• We propose a Feature Structure Matching
(FSM) constraint, which focuses on match-
ing fine-grained feature-wise correlations and
leads to superior results in the multi-source
setting.

• A novel Dynamic Parameters Fusion (DPF)
module is designed for multi-layer feature pro-
cessing, and the corresponding large back-
bone is not involved for efficient adaptation.

• Extensive experimental results demonstrate
that our proposed framework achieves state-
of-the-art performance on multiple multi-
source sentiment adaptation benchmarks.

Section 2 introduces the related work. Section 3
gives the details of the proposed framework, fol-
lowed by the experimental results in Section 4. Fi-
nally, section 5 draws the conclusion.

2. Related Work

In this section, we introduce some representative
works about sentiment analysis, domain adapta-
tion, and dynamic networks.

Sentiment analysis is one of the important
tasks in the NLP field (Wankhade et al., 2022).
Previous methods use word2vec or GloVe embed-
ding as the text features, which can not capture the
contextual information and results in sub-optimal
performance. Recently, fine-tuning the large lan-
guage models achieves significant improvement
on the sentiment analysis task (Devlin et al., 2019;
Yang et al., 2019b), which can be attributed to
the large model capacity and the self-attention
module (Vaswani et al., 2017) for capturing the
contextual information. With the development of
large language models, they are dominating var-
ious tasks in the NLP field. However, fine-tuning
large language models is still cumbersome, and
the obtained model can not generalize well to the
other domains due to the domain shift (Du et al.,
2020).

Domain adaptation receives much attention
in the deep learning field (Zhao et al., 2022),
which aims to transfer knowledge from the la-
beled source domain to the unlabeled target do-
main. The mainstream is to learn the domain-
invariant feature by minimizing a specific distribu-
tion distance across domains, such as Maximum
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Figure 2: Illustration of our overall framework, which includes multi-layer features extraction and multi-
source adaptive tuning. It is noted that we use the extracted features as input during adaptive tuning,
which implies that we only need to update the trainable parameters within G and C denoted with red
blocks during adaptation.

Mean Discrepancy (MMD) (Long et al., 2019), co-
variance distance (Sun and Saenko, 2016), etc.
On the other hand, Du et al. (2020) introduce a
discriminator to pull features close via adversar-
ial training (Ganin et al., 2016; Goodfellow et al.,
2014). Some previous works also leverage pivot
words (Ziser and Reichart, 2018) to improve the
sentiment analysis. Most works focus on the single-
source domain adaptation, while the training data
often include multiple domains in real-world appli-
cations. Some relevant methods naturally adopt
single-source adaptation techniques. For exam-
ple, mixture-of-experts (Guo et al., 2018) simply
extends the MMD-based method by aligning ev-
ery domain pair. Multi-source Domain Adversar-
ial Networks (MDAN) (Zhao et al., 2018) extends
DANN (Ganin et al., 2016) with multiple domain
classifiers. Hoffman et al. (2018) proposes a the-
ory that determines the distribution-weighted com-
bination solution for the multi-source adaptation
problem. Therefore, an improved strategy is to
assign different weights for each source domain
based on the distribution discrepancy to the target
domain, and the final prediction is a weight com-
bination of the outputs from corresponding source
classifiers (Dai et al., 2020; Fu and Liu, 2022; Hoff-
man et al., 2018). However, some recent works
observed that arbitrarily pulling feature instances
close may hurt features’ semantic information and
sacrifice the model’s generalization (Gulrajani and
Lopez-Paz, 2021). In contrast to the traditional
domain matching methods, we propose a feature
structure matching constraint which focuses on
feature-wise correlation similarities. The original
distribution is less distorted, and the overall adap-
tation training is more robust. Therefore, different
domain distributions can be carefully aligned for
better performance.

Dynamic networks are designed to adjust the
model’s architecture or parameters conditioned on
inputs, which can increase the model’s capacity
and adaptability (Han et al., 2022; Xu and McAuley,
2023). CondConv (Yang et al., 2019a) and DY-
CNNs (Chen et al., 2020b) select the optimal com-
bination of the convolution parameters, which in-
crease the model capacity with marginal cost. Han
et al. (2022) reports several strategies of dynamical
computation in the NLP field. Li et al. (2021) and Li
et al. (2022) demonstrate that dynamic networks
can achieve improved results on the multi-source
domain adaptation tasks. Inspired by these works,
we propose a dynamic parameters fusion module,
which is conditioned on the global features and out-
puts parameters for the dynamic fully-connected
layers. Therefore, the dynamic layer can adjust
suitable parameters for more adaptive tuning.

3. Method

In this section, we introduce the details of our
method for multi-source sentiment adaptation. We
first present the task formulation and the motiva-
tion. Then, we explain the architectures and the
loss functions used in the framework. Last, we give
the overall training procedure of our method.

3.1. Formulation and Overall Framework

We focus on the unsupervised multi-source sen-
timent analysis task, where there are K la-
beled source domains S = {Sk}Kk=1, i.e., Sk =

{xSk
m , ySk

m }
|Sk|
m=1 and an unlabeled target domain

T = {xT
m}

|T |
m=1, | · | indicates number of instances

in the domain. Not only each source domain has
different distributions with the target domain (i.e.,
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PSk
̸= PT ), but also every two source domains

have different distributions (i.e., PSk
̸= PSq

). There-
fore, it is more complicated than the single-source
domain adaptation problem, and our goal is to
train a sentiment analysis model on the given data,
which can generalize well on the target domain.

Figure 2 shows the overall framework of our
method. We adopt a pre-trained language model
as the backbone due to their superior performance.
For efficient adaptation, we extract last-l layer fea-
tures and concatenate them as the input for the
subsequent multi-source adaptive tuning. It is
noted that the adaptation training stage is inde-
pendent from the backbone, the trainable model
only consists of a Features Processor (G) for pro-
cessing the multi-source multi-layer features, and
a Classifier (C) for the sentiment prediction. To
obtain a more generalizable model, we design a
dynamic parameters fusion module within G. Each
module and objective will be detailed as follows.

3.2. Multi-layer Features Extraction

As shown in Figure 2 (left), our framework adopts
a pre-trained language model as the backbone
for the feature extraction. A sentence is denoted
as a = [a0

1, a0
2, ..., a0

|a|] (assume the raw text
in the 0th layer), |a| is the number of words in
a. The backbone often consists of multiple trans-
former layers, and the corresponding output for lth-
layer layer denotes al = Transformerl(al−1) =
[al

1, al
2, ..., al

|a|], ali is the ith word embeddings
in the lth-layer layer, and so on so forth. In order
to save memory and computation costs, we tend
to use the extracted features from different trans-
former layers as input for the subsequent adapta-
tion, and leave the backbone freezing. In addition,
sentences could have different word lengths, and
to maintain the same input dimensions, we average
all the word embeddings within al as the extracted
feature of the lth-layer, i.e., fl = Avg(al). There-
fore, the corresponding sentence features from
multiple transformer layers are f = {f1, f2, ..., fl},
where we use last l-layer features in the experi-
ments.

3.3. Dynamic Parameters Fusion

Sun et al. (2019) demonstrates the fine-tuning dif-
ferent layers of BERT (Devlin et al., 2019) could
have different performance, which indicates that
different layer features contain different aspects
information of the sentence. On one hand, it is
important to fully leverage the multi-layer features
for better results; On the other hand, the adapta-
tion model should be more elastic to fit to various
domains. Therefore, we introduce a novel Dynamic
Parameters Fusion (DPF) module within G, which

Figure 3: The architecture of G which includes a
dynamic parameters fusion module. The activation
function is omitted for simplicity.

can produce the parameters of a specific layer con-
ditioned on the global input feature. This indicates
that our framework can automatically adjust the
model’s parameters for various input from different
domains. In this case, the model is more gener-
alizable and can be easily adapted to the target
domain.

Specifically, we define N fully-connected layers
{Wi,bi}Ni=1 within the DPF, W and b denote the
parameters of the weight and bias. Instead of com-
puting a weight for each layer feature for fusion,
we first employ a fully-connected layer (FC) to ex-
tract global information for DPF, so that DPF can
leverage all the information within the multi-layer
features. The output of DPF is the dynamic pa-
rameters (Wd,bd) for a dynamic fully-connected
layer. The dynamic fully-connected layer can be
viewed as aggregating N fully-connected layers
with different coefficients α, which is defined as
follows:

Wd =

N∑
i=1

αi(FC(f))Wi bd =

N∑
i=1

αi(FC(f))bi

s.t. αi(FC(f)) ∈ [0, 1],

N∑
i=1

αi(FC(f)) = 1 (1)

where αi(·) denotes the coefficient for the ith fully-
connected layer, which is conditioned on FC(f). As
shown in Figure 2 (right), we use a small dynamic
weights network that includes two fully-connected
layers with N neuron outputs to derive the coef-
ficients {αi}Ni=1 in our experiments (Chen et al.,
2020b). Based on the above descriptions, the dy-
namic fully connected layer can adjust its parame-
ters based on various inputs, so that the adapted
model can fully exploit the multi-layer features and
is allowed to fit multiple domains.

3.4. Feature Structure Matching

To further improve the performance on the unla-
beled target domain, we need to match the do-
main distributions. However, pulling the features
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arbitrarily may distort the original semantic infor-
mation. Therefore, we propose to match feature
structures, which correspond the high-order cor-
relations (Chen et al., 2020a) among different di-
mensions within the features. In this case, feature
distributions can be adjusted in a fine-grained man-
ner. We demonstrate that our feature structure
matching constraint is more robust and suitable for
multi-source domain adaptation.

We use the multi-order feature correlation matri-
ces Sh to define the structures of feature h, which
is defined as follows:

Sh = {h⊗p}∞p=2

h⊗p = h⊗ h⊗ ...⊗ h︸ ︷︷ ︸
p

∈ Rcp (2)

where ⊗ denotes the outer product operation, and
c is the number of dimensions in the h. Sh includes
multiple correlation matrices from second-order
to infinity-order. Each correlation matrix is only
related to the number of dimensions c.

In addition, when p = 2, the corresponding
second-order correlation matrix is h⊗2 = h⊗ h =
(hT × h) ∈ Rc×c, which is exactly the Gram ma-
trix (Johnson et al., 2016) and is widely used in the
image style transfer. Therefore, the feature corre-
lation matrices contain the distribution information.
As shown in Figure 2 (right), the feature structure
matching between the source domain and the tar-
get domain can be expressed as follows:

ℓfsm =

∞∑
p=2

1

cp
||1
b

b∑
m=1

hs
m

⊗p − 1

b

b∑
m=1

ht
m

⊗p||2F (3)

where b denotes the batch size during training.
hm denotes a processed feature by G, i.e, hm =
G(fm). Footnote s and t denote the source domain
and the target domain, respectively. Therefore,
ℓfsm tends to match all the high-order feature-wise
correlations. Noted that we remove the first-order
matching, which is equivalent to the linear MMD
constraint. We observe that first-order matching is
too strict, which may hurt the model performance
under multi-source scenarios.

3.5. Overall Training Procedures

We define the final prediction model as the compo-
sition of G and C, and the classification output as
pG,C(f). Therefore, the overall objectives can be
expressed as follows:

min
θG,θC

1

K

K∑
k=1

[ℓkce(G,C) + λdℓ
k
fsm(G)] (4)

where ℓkce(G,C) = − 1
b

∑b
m=1 ym

Sk log pG,C(fm
Sk)

is the supervised cross entropy in the kth source

domain, ℓkfsm(G) is the feature structure matching
loss between the kth source domain and the target
domain. λd is a hyperparameter that trade-offs
their effects.

We proceed the training by optimizing G and C
based on the averaged losses over all the source
domains as shown in Eq. 4. The detailed opti-
mization procedure is summarized in Algorithm 1.
During the test, we adopt the composition of G ◦C
as the final model.

Algorithm 1 Pseudo-code of our efficient multi-
source sentiment analysis model
Input: Extracted last l pre-trained language model

features for all the domains (including K
source domains and the target domain), learn-
ing rates ζ for the features processor G and
the classifier C;

Output: θG, θC ;
1: for step = 1 to all_steps do
2: for each mini-batch b do
3: for k = 1 to K do
4: Compute the source supervised cross-

entropy loss: ℓkce;
5: Compute the features structure match-

ing loss: ℓkfsm;
6: end for
7: averaging the losses over all the domains

based on Eq. 4;
8: Update G and C via:

θC , θG ←
Adam(∇θG,θC (

1
K

∑K
k=1[ℓ

k
ce(G,C) +

λdℓ
k
fsm(G)]), θG, θC , ζ);

9: end for
10: end for

4. Experiments

In this section, we will evaluate our framework on
two widely used sentiment analysis benchmarks.
We first introduce the experimental settings, which
include dataset descriptions and implementation
details. Then, we compare our method with the
recent state-of-the-art multi-source domain adap-
tation methods. Finally, extensive ablation studies
and modal analysis are presented to verify the ef-
fectiveness of our framework.

4.1. Experimental Settings

Amazon-reviews dataset 1: contains reviews from
four-product domains, namely, Books, DVD, Elec-
tronics, Kitchen. Each domain includes 1,000 posi-
tive and negative reviews, respectively. Following
a similar adaptation protocol to Li et al. (2022), we

1https://www.cs.jhu.edu/ mdredze/datasets/sentiment/
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Method D, E, K→ B B, E, K→ D B, D, K→ E B, D, E→ K Avg.
Previous methods
DANN (Ganin et al., 2016) 0.779 0.789 0.849 0.864 0.820
MDAN (Zhao et al., 2018) 0.786 0.807 0.853 0.863 0.827
MoE (Guo et al., 2018) 0.794 0.834 0.866 0.880 0.843
2ST-UDA (Dai et al., 2020) 0.799 0.839 0.851 0.877 0.841
CTDA (Fu and Liu, 2022) 0.800 0.839 0.866 0.880 0.846
AML (Li et al., 2022) 0.852 0.856 0.880 0.892 0.870
Single-best 0.861 0.858 0.883 0.879 0.870
Source-combined 0.854 0.863 0.887 0.892 0.874
Our model 0.872 0.867 0.895 0.900 0.884

Table 1: Comparison of multi-source unsupervised sentiment adaptation on Amazon-reviews datasets.
The best results are denoted with bold.

Method B, D, E, K→ AL B, D, E, K→ AP Avg.
AML (Li et al., 2022) 0.850 0.695 0.772
Single-best 0.860 0.698 0.764
Source-combined 0.863 0.695 0.756
Our model 0.876 0.703 0.789

Table 2: Adaptation performance from multiple product review domains (Amazon) to one of air-travel
review domains (Skytrax). The best results are denoted with bold.

conduct four unsupervised multi-source sentiment
adaptation tasks by treating any one as the target
domain and the remaining domains as the source
domains.
Skytrax-reviews dataset 2: includes two air-travel
related reviews from skytrax website, i.e., Airline
(AL) and Airport (AP). To align with Amazon view
datasets, we randomly sample 1,000 positive and
1,000 negative reviews from AL and AP domains
for training. Since they are very different from the
product domains, the domain discrepancy between
the Amazon views and Skytrax reviews is large.
We use all four product datasets as source do-
mains and one of Skytrax view datasets as the
target domain. These two multi-source sentiment
adaptation tasks can verify the effectiveness of our
method under challenging settings.
Implementation details: In all experiments, the
pre-trained BERTbase-uncased (Devlin et al., 2019)
is adopted to extract features. For fair comparison
and efficiency as reported in Merchant et al. (2020),
we use features from the last 4 transformer layers.
The computation costs for higher-order correlation
matrices is surging and the improvement is limited
when p ≥ 4. Therefore, we adopt second- and
third-order correlation matrices to approximate the
feature structures. We adopt a similar experimen-
tal setting with the recent work (Li et al., 2022)
for fair comparison. All the datasets are public
and split into the training and test set. We use
Adam (Kingma and Ba, 2015) optimizer and set

2https://github.com/quankiquanki/skytrax-reviews-
dataset

λd to 102, the learning rate to 5 × 10−5 in all the
experiments.

4.2. Experimental Results

Results on Amazon-reviews benchmarks: Ta-
ble 1 reports the accuracy of our method and re-
cent multi-source unsupervised adaptation meth-
ods on Amazon-reviews benchmarks. It is obvious
that our method achieves the best performance
on all four multi-source sentiment adaptation tasks.
Note that most previous methods adopt word em-
beddings, which are less informative. While, we
use the BERT features as input, thus, better per-
formance can be expected. For example, the av-
erage performance of CTDA (Fu and Liu, 2022) is
84.6%, our model can significantly outperform it
by around 4 percentage points. In addition, train-
ing with pseudo labels achieves impressive perfor-
mance on the various domain adaptation tasks (Liu
et al., 2021), recently. AML (Li et al., 2022) also
adopts BERT backbone for training, and involves
pseudo-label training with multiple classifier heads.
Our model is based on distribution matching and
achieves average accuracy of 88.4%, which sur-
pass AML by 1.4 percentage points. We also
demonstrate that our model is orthogonal with the
recent self-training techniques for more enhanced
performance (shown in Sect. 4.4).
Adaptation Results from Amazon to Skytrax:
Table 2 compares the performance of sentiment
adaptation from Amazon product reviews to airline
(AL) and airport (AP) reviews, respectively. Our
model still outperforms the previous pseudo-label
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Method D, E, K→ B B, E, K→ D B, D, K→ E B, D, E→ K Avg.
MMD (1st-order matching) 0.859 0.860 0.885 0.892 0.874
ℓfsm w/o. 2nd-order matching 0.864 0.864 0.890 0.893 0.878
ℓfsm w/o. 3rd-order matching 0.868 0.866 0.893 0.896 0.881
ℓfsm 0.872 0.867 0.895 0.900 0.884

Table 3: Ablation study of the effects of each order correlation constraint in the proposed ℓfsm. The best
results are denoted with bold.

Figure 4: Hyperparameter analysis of λd on the Amazon view dataset.

training method (AML) by around 2 percentage
points on average. ‘Single-best ’ indicates the best
performance is achieved with a single source do-
main, which often follows more similar distributions
to the target domain. ‘Source-combined ’ indicates
the performance is achieved by training on the
combined source domains, which is regarded as
a strong baseline. The performance of ‘Source-
combined ’ is sometimes worse than that of ‘Single-
best ’, even with more data. We speculate that var-
ious source domain distributions cause conflicts,
and simply combining all the source datasets can
hurt the model’s performance. On the contrary, our
model can consistently outperform both baselines,
which verifies the effectiveness of our method.

Figure 5: The effect of number of Fully-Connected
layers in DPF.

4.3. Ablation Study

Effectiveness of FSM: We first validate the effec-
tiveness of the Feature Structure Matching con-
straint by removing the corresponding loss ℓfsm in
the Eq. 4. As shown in Table 1-2, our model im-
proves the baselines in all the multi-source adapta-
tion tasks, which verifies that FSM can alleviate the
domain shift for better performance. In addition, we
study the effects of different order correlation con-
straints within ℓfsm. As shown in Table 3, removing
any-order correlation constraints decreases the
adaptation performance. We also try to add higher-
order correlation constraint, i.e., p >= 4, which
only brings about marginal performance improve-
ment, but incurs significant computation cost. In
addition, our ℓfsm is also superior to the first-order
statistics matching constraint, i.e., MMD (p = 1)
with the linear kernel or Gaussian kernels. MMD
is observed to be sensitive to λd, and often fails to
converge in our experiments. This demonstrates
the superiority of FSM in multi-source settings. We
speculate that MMD constraint tends to arbitrarily
pull the feature instances from all domains close,
which can hurt their semantic information. While
our ℓfsm focuses on aligning feature structures, the
semantic information of feature is less affected.

Effectiveness of DPF: We further remove the
Dynamic Parameters Fusion module within G to
verify its effectiveness, the corresponding module
becomes a static network which is equivalent to
a fully-connected layer. The comparison perfor-
mances are shown in Table 4. It is obvious that our
proposed DPF module can consistently improve
the overall performance, which validates that ad-
justing the model’s parameters based on different
inputs can enhance its generalization since the
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Method B, D, E, K→ AL B, D, E, K→ AP Avg.
w/o. DPF (static model) 0.872 0.695 0.783
w/. DPF (dynamic model) 0.876 0.703 0.789

Table 4: Ablation study the effects of the proposed DPF module. The best results are denoted with bold.

Method D, E, K→ B B, E, K→ D B, D, K→ E B, D, E→ K Avg.
w/. BERT 0.872 0.867 0.895 0.900 0.884
w/. Sentence-BERT 0.896 0.893 0.920 0.931 0.910

Table 5: Comparison of the adaptation results with the backbone of BERT (Devlin et al., 2019) and
Sentence-BERT (Reimers and Gurevych).

Figure 6: Comparison the performance of our
model with and without self-training, accuracy w.r.t.
training steps.

model becomes more elastic for fitting various dis-
tributions. The corresponding accuracy on the chal-
lenging adaptation tasks from Amazon-review to
Skytrax-review increases by 0.6 percentage points
on average (78.3% vs. 78.9%).

4.4. Modal Analysis

Hyperparameter analysis: In this section, we ex-
plore the sensitivity of our framework to the hyper-
parameter λd in Eq.4, which trade-offs the effect

of feature structure matching loss (ℓfsm). We ob-
serve that ℓfsm is quite robust, and we select λd

from {100, 101, 102, 103}. The adaptation results
on Amazon review benchmark are reported in Fig-
ure 4. It can be noted that with the increasing of λd

from 100 to 102, the corresponding performance on
all the tasks are increased with a different extent,
which indicates that ℓfsm is helpful to alleviate the
domain shift and improve the transferability of the
model. Besides, we further increase λd to a large
value (i.e., 103), the tendency of the accuracy curve
is still stable, which verifies that the proposed ℓfsm
is very robust.

We also validate the effectiveness of the number
of fully-connected layers (N ) within the dynamic pa-
rameters fusion module. As shown in Figure 5, we
set N to {1, 4, 8, 16} for comparisons. It is noted
that N = 1 indicates that the whole model be-
comes static and can be regarded as the baseline.
It is clear that increasing N can improve the perfor-
mance on all the tasks, which implies that dynami-
cally adjusting the network’s parameters based on
each input is more generalizable. In particular, in
the task of adaptation from Amazon to Airport, the
accuracy reaches 70.8% when N = 8. However,
there is a decline when N goes larger, i.e., N = 16.
We consider that a large number of layers could
increase the training difficulties. Consequently, we
set N = 4 in all experiments. This analysis also
shows that proper designation of the model and
selection of hyperparameters can further improve
the final results.
Orthogonal with self-training: Recently, self-
training with pseudo-labels (Sohn et al., 2020) has
been widely adopted in various semi-supervised
learning and domain adaptation tasks. We show
that our proposed framework is orthogonal with the
self-training method. Specifically, we use model
to infer pseudo-labels of the target data which will
join the training during the adaptation. As shown
in Figure 6, the accuracy of our model can be fur-
ther improved with the help of self-training on both
tasks.
Complementary to Sentence-BERT: Sentence-
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BERT (Reimers and Gurevych) is a more ad-
vanced pretrained language model which is trained
with siamese networks, and the extracted features
should be more informative. As shown in Table 5,
we investigate the performance by adopting the
Sentence-BERT as the backbone, and observe
around 2.6 percent points improvement on aver-
age on the Amazon benchmark.

5. Conclusion

In this work, we propose a novel framework for
unsupervised multi-source sentiment adaptation.
In contrast to traditional domain matching meth-
ods which may compromise performance in multi-
source scenarios, we propose a feature structure
matching constraint for more robust and general-
izable adaptation. Besides, to achieve efficient
adaptive tuning with the large pretrained language
model, we propose a dynamic parameters fusion
module to fully exploit the global information and
adjust the model’s parameters to fit various in-
put. Experiments on multiple sentiment adapta-
tion benchmarks and the ablation studies verify the
effectiveness of our framework.
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