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Abstract
Document-level Relation Extraction (DocRE) aims to identify relation labels between entities within a single document.
It requires handling several sentences and reasoning over them. State-of-the-art DocRE methods use a graph
structure to connect entities across the document to capture dependency syntax information. However, this is
insufficient to fully exploit the rich syntax information in the document. In this work, we propose to fuse constituency
and dependency syntax into DocRE. It uses constituency syntax to aggregate the whole sentence information and
select the instructive sentences for the pairs of targets. It exploits the dependency syntax in a graph structure with
constituency syntax enhancement and chooses the path between entity pairs based on the dependency graph. The
experimental results on datasets from various domains demonstrate the effectiveness of the proposed method. The
code is publicly available at https://github.com/xzAscC/FCDS.
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1. Introduction

Relation Extraction (RE) is a crucial task in in-
formation extraction that aims to model relational
patterns between entities in an unstructured text.
There are two specific scenarios: sentence-level
RE and document-level RE. Unlike sentence-level
RE (Dixit and Al-Onaizan, 2019; Lyu and Chen,
2021), where entities are located in the same
sentence, document-level RE (DocRE) identifies
the relation labels between entities within a doc-
ument. Therefore, DocRE better meets practical
needs and has recently received increasing atten-
tion (Zhou et al., 2021; Zhao et al., 2022).

A formidable obstacle confronting DocRE is in-
ferring relations of entity pairs in long sentences,
which often contain irrelevant or even noisy infor-
mation (Gupta et al., 2019). Figure 1 is an exam-
ple, which includes a sentence-level relation and
a document-level relation from DocRED. To infer
the relation between Louis Chollet and Conserva-
toire de Paris, models should exclude the influence
of unrelated entities and figure out that the word
‘He’ in sentence[2] refers to ‘Louis Chollet’. Buried
under massive irrelevant information, DocRE mod-
els often struggle with intricate relation instances.
Therefore, implicitly learning an instructive context
is not sufficient for DocRE (Bai et al., 2021).

In a document, interactions between entities are
complex. Pre-trained language models (PLMs)
(Kenton and Toutanova, 2019) have shown great
potential in many downstream tasks. Some work
(Ye et al., 2020; Zhou et al., 2021) implicitly cap-
tures such interactions between entities through
PLMs. Others, however, model this information ex-
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plicitly. They first construct document graphs (Zeng
et al., 2020; Liu et al., 2023) that consist of different
nodes (e.g., mentions, entities, sentences, or the
document) to turn instructive context into graphs.
Since syntax information can help DocRE by pro-
viding explicit syntax refinement and subsentence
modeling (Duan et al., 2022), recent studies (Sahu
et al., 2019; Wei and Li, 2022) adopt a dependency
graph to incorporate both syntax information and
structural context. They find that a structural graph
can better capture relations and shorten the dis-
tance between entities. However, as pointed out
in (Sundararaman et al., 2019; Bai et al., 2021),
although PLMs are trained with massive real-world
text data, there is still a great gap between the
implicitly learned syntax and the golden syntax. In
fact, syntax information is widely used in sentence-
level RE (Xu et al., 2016; Qin et al., 2021), but it
has not yet been fully explored under the DocRE
scenario.

To fully exploit the syntax information in the doc-
ument, we fuse constituency and dependency syn-
taxes in this paper. We mainly adopt dependency
graphs and constituency trees to incorporate extra
syntax information, and use information from the
constituency tree to further enhance the represen-
tation of the dependency graph. The dependency
and constituency syntax depict complementary but
different aspects of syntax information. The depen-
dency graph in figure 2a is mainly used to integrate
syntactic information within a single sentence that
strongly complements the original plain text, while
the constituency tree in figure 2b organizes differ-
ent words of a single sentence hierarchically and
reasonably.

We observe that dependency syntax is better

https://github.com/xzAscC/FCDS
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[1] Louis Chollet ( 5 April 1815 in Paris - 21 March 1851 , Paris ) 
was a French organist and composer for piano , choir and 
orchestra.[2]He was admitted to Pierre Zimmermann 's piano 
class at the Conservatoire de Paris aged ten in 1826 and two 
years later won first prize for piano ....

Subject: Louis Chollet
Object: French
Relation: place of birth

Subject: Louis Chollet
Object: Conservatoire de Paris
Relation: educated at

Other entities: 5 April 1815, Paris, Pierre Zimmermann

Figure 1: A sentence-level and a document-level
relation instance from DocRED. Entity pairs are
colored differently according to relation. To identify
irrelevant or even noisy relations, unrelated entities
are uniformly labeled with one single color .

for constructing paths between entity pairs (Wei
and Li, 2022), while constituency syntax is better
for aggregating sentence-level information. There-
fore, we follow previous studies by transforming the
dependency tree into a graph and extracting the
paths between entity pairs. However, the gap be-
tween the learned syntax in PLMs and the golden
syntax for dependency trees has heavily influenced
the performance of DocRE. To address this issue,
we propose to utilize the constituency tree to ag-
gregate sentence-level information to compensate
for the gap in the dependency tree. Specifically,
we utilize a single-layer MLP to fuse the sentence
root in the constituency tree and the dependency
graph to replace the original sentence root in the
dependency graph. Furthermore, in order to better
consider the sentence interaction in the depen-
dency graph, we add a document-level node and
link each sentence root to reduce the distance of
entity pairs and better capture long-distance re-
lations. Through extensive experiments on three
public DocRE benchmarks, DocRED (Yao et al.,
2019), CDR (Li et al., 2016), and GDA (Wu et al.,
2019), we demonstrate that our model outperforms
existing methods.

Our key contributions in this work can be sum-
marized as follows:

1. We propose to utilize the constituency tree to
aggregate sentence-level information to com-
pensate for the gap in the dependency tree
and improve the dependency graph by adding
a document node to reduce the distance of
entity pairs and simplify long-sentence inter-
action.

2. We process the dependency graph and the
constituency tree with Tree-LSTM and GCN,
respectively, and set a learnable parameter to
adjust their weights.

3. The results of the experiments demonstrate

(a) Dependency tree describes dependencies between
words within a single sentence. Exploiting such syntax in-
formation can significantly complement the original plain
text and capture the couplings among neighbors. Our
model converts the dependency tree to a dependency
graph.

(b) Constituency tree organizes the sentence in a tree
structure, which not only induces extra hierarchical syn-
tax information but also enables exploring subsentences
in arbitrary granularity. Non-leaf nodes are colored
green.

Figure 2: Syntactic parsing results of evidence
sentence “Louis Chollet ...” mentioned in the pre-
vious relation instance. (a) and (b) represent the
corresponding dependency and constituency tree,
respectively.

that our model outperforms the existing meth-
ods on three DocRE benchmarks, especially
on DocRED, where our model improves the
IgnF1 of the state-of-the-art methods by at
least 1.56%.

2. Relation Works

2.1. Document-level Relation Extraction

DocRE is a challenging task since long sentence
learning usually requires effective long-distance
feature encoding and reasoning (Sahu et al., 2019).
To tackle this challenge, some methods apply
PLMs for more informative contextual token en-
coding. (Tang et al., 2020) proposes a hierarchical
inference network from the level of entities, sen-
tences, and documents using BERT, while (Ye
et al., 2020) explicitly encodes the coreference
information to improve the coreferential reason-
ing ability of BERT. (Xie et al., 2022) empowers
DocRE by efficiently extracting evidence and ef-
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fectively integrating the extracted evidence in infer-
ence.

In addition to BERT-based methods, another line
of research proposes to use the graph structure
to shorten the distances between entities in the
document. (Zeng et al., 2020) uses two graphs to
represent mention-level and entity-level relations,
respectively, while (Wei and Li, 2022) employs lin-
guistic tools to build various edges, such as coref-
erence edges, which embed inter-sentence and
intra-sentence dependencies. (Xu et al., 2021b)
enforces the model to reconstruct reasoning paths
while identifying correct relations. (Duan et al.,
2022) utilizes the constituency tree to obtain ev-
idence for DocRE and incorporates dependency
graphs to classify the relations.

However, these methods either use regular
graph structures that cannot capture sequential
information in the original text (Zeng et al., 2020;
Xu et al., 2021b), or use dependency and con-
stituency information separately (Wei and Li, 2022;
Duan et al., 2022). This work overcomes this draw-
back by incorporating both constituency and de-
pendency information and enhancing the depen-
dency graph with a constituency tree. With differ-
ent syntax incorporated, our model can fuse dual-
granularity information and better capture long-
distance relations.

2.2. Constituency and Dependency
Syntax

Since syntax intuitively shares many common fea-
tures with RE, syntactic features are a highly ef-
fective DocRE performance enhancer, according
to several empirical verifications in previous work
(Zeng et al., 2020; Wei and Li, 2022; Xie et al.,
2022). In particular, dependency syntax is exten-
sively studied in DocRE, while constituency syntax
is overlooked.

Although the constituency and dependency syn-
taxes share some common syntactic information,
they characterize it from different perspectives.
Some work has revealed the mutual benefits of
integrating these two heterogeneous syntactic rep-
resentations for various NLP tasks. (Zhou and
Zhao, 2019; Strzyz et al., 2019) integrate depen-
dency and constituency syntactic information as a
representation of a parse tree or sequence. (Fei
et al., 2021), which is designed for the Seman-
tic Role Labeling (SRL) task, converts the depen-
dency and constituency trees into graphs and per-
forms the graph learning strategy on them. (Dong
et al., 2022) proposes to map phrase-level relations
in the constituency tree into word-level relations
and adopts multi-view learning to capture multi-
ple relationships from the constituency graph and
dependency graph for the Open Information Ex-

traction (OpenIE) task, which is the most relevant
model to ours.

Our model differs from (Dong et al., 2022) mainly
in two aspects: (1) (Dong et al., 2022) turns the
constituency tree into a graph by heuristic rules
and aligns instances of the same node across the
dependency graph and constituency graph. Our
model, however, utilizes Tree-LSTM to handle the
constituency syntax in tree form and compensate
for the inaccuracy of dependency; (2) To link differ-
ent syntax, we utilize the constituency tree to en-
hance the dependency graph instead of adopting
multi-view learning to fuse heterogeneous informa-
tion from both graphs.

3. Methodology

A document D contains I sentences {seni}Ii=1 and
N entities {ei}Ni=1. seni is the ith sentence, which
includes Pi tokens: {ti,1, ti,2, · · · , ti,Pi}. An entity
ek can have Qk mentions {mk,1,mk,2, . . . ,mk,Qk

}.
The goal of DocRE is to correctly in-

fer all relations between each entity pair
(es, eo)s,o=1,2,··· ,N ;s̸=o, where es is a subject entity
and eo is an object entity. The predicted relations
are subsets of the predefined relation set R or
{NA} (without relation).

The overall architecture of the Fusing Con-
stituency and Dependency Syntax (FCDS) is il-
lustrated in Figure 3. We exploit dependency and
constituency syntax to build a dependency graph
and constituency tree and utilize BERT to encode
words in the document. Then we use Tree-LSTM
to aggregate information from the constituency tree
and exploit the dependency graph by graph neural
network (GNN) (Kipf and Welling, 2017; Dai et al.,
2022) while utilizing the constituency tree to im-
prove the dependency graph. We obtain relations
between entity pairs by a learnable weight to com-
bine the dependency graph and the constituency
tree.

3.1. Text Encoding

Given a document, a special marker ‘*’ (Zhang
et al., 2017) will be first inserted before and after
each mention. Then we feed tokens from docu-
ment D into PLMs to obtain contextualized repre-
sentation H = {h1, . . . , hT } ∈ RT×d, where T is
the number of tokens and d is the dimension of
token embedding:

H = PLM{x1,1, · · · , xI,PI
} (1)

xi,j is the jth word for the ith sentence in the doc-
ument and the PLMs can be a pre-trained BERT
(Kenton and Toutanova, 2019) or LSTM model.
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Figure 3: The overview of our architecture. Note that we use the result of constituency syntax to enhance
the dependency graph and obtain relations between entity pairs with dynamic weighted fusion.

3.2. Constituency Tree Construction

After obtaining the token-level embedding through
the PLMs model, FCDS utilizes a constituency tree
to compensate for the inaccuracy in the depen-
dency tree based on hierarchical syntax informa-
tion. Specifically, we take advantage of the con-
stituency tree based on the document D and use
Tree-LSTM (Miwa and Bansal, 2016; Duan et al.,
2022) to incorporate root information of a sentence.
First, we parse each sentence into the correspond-
ing constituency tree1. We can see from Figure
2b that each constituency tree describes a logical
way to restore the entire sentence piece by piece.
Using a constituency tree, we can not only incorpo-
rate extra hierarchical syntax information but also
encode sentences with arbitrary granularity.

To represent the constituency tree with Tree-
LSTM, we first initialize hidden state hj and mem-
ory cell state cj with zeros. The input vector of
leaf nodes is initialized with their corresponding
representations inside PLMs, while non-leaf nodes
are set to zeros. We then broadcast features of
leaf nodes all the way up to the root node using
Tree-LSTM (Miwa and Bansal, 2016). The input
gate ij , the output gate oj , and the forget gate fjk
of an arbitrary node j in the constituency tree are
calculated as:

ij = σ(Wixj +
∑

l∈Child(j)

hlWil + bi) (2)

oj = σ(Woxj +
∑

l∈Child(j)

hlWol + bo) (3)

1constituency trees are obtained using the Stanza
library. https://stanfordnlp.github.io/stanza/

fjk = σ(Wfxj +
∑

l∈Child(k)

hjlWkl + bf ) (4)

where σ is the sigmoid function, W, b are trainable
parameters. xj denotes the input vector of node
j and Child(j) means the child of node j in the
constituency tree.

The integrated result uj is calculated as:

uj = tanh(Wuxj +
∑

l∈Child(j)

hlWul + bu) (5)

At last, we update hidden state hj and memory
cell state cj as follow,

cj = ij ⊙ uj +
∑

l∈Child(j)

fjl ⊙ cl (6)

hj = oj ⊙ tanh(cj) (7)

In practice, we extract information from its child
nodes recurrently and use the sentence root fea-
ture as the sentence feature vector. For a docu-
ment with I sentences, we can get all the sentence
vectors {si}Ii=1. Since not all sentences contain rel-
evant information for relation reasoning, we employ
a multi-head attention layer over the sentence vec-
tor to identify the most relevant ones. We formulate
this process as:

Vdoc = [s1, s2, . . . , sI ] (8)

S, A = Attn(Wt1(es − eo),Wt2Vdoc,Wt3Vdoc) (9)

where Wt1,Wt2, and Wt3 are trainable weights and
Attn represents an attention layer. A is the atten-
tion score and S is the sentence vector through the

https://stanfordnlp.github.io/stanza/
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attention layer. Then, we combine the weighted
sentence with entity pairs and calculate the score
zconst of relation r:

zs = tanh(W(s1)es +W(s2)S) (10)

zo = tanh(W(o1)eo +W(o2)S) (11)

zconst = z⊤s Ws,ozo + bconst (12)

where W, b are trainable parameters. As a result,
we obtain the relation scores zconst based on the
constituency tree with attention score A and sen-
tence vector S to enhance the dependency graph.

3.3. Dependency Graph Construction

After obtaining the above representation, we con-
struct a dependency graph to aggregate informa-
tion of syntactically associated words. Each sen-
tence in the document is fed into a dependency
parser, which generates a dependency syntax tree.
Then we convert the dependency trees to depen-
dency graphs. Note that we add a document node
to shorten the distance between entity pairs and
better aggregate information of long-distance sen-
tences.

The dependency graph contains four kinds of
nodes: non-root token nodes, root token nodes,
mention nodes, and document nodes. Specifically,
each token in the document corresponds to a token
node, and for tokens that are not the sentence root
in the dependency tree, its encoded feature corre-
sponds to its node feature. For sentence root, we
treat it especially to combat possible error parsing,
taking advantage of the root feature S obtained
by the Eq. 9. We use MLP to fuse the original
feature with S in Eq. 9 since the sentence root
in the dependency graph is expected to include
information of the entire sentence. For the mention
node, the node feature is calculated by averaging
the features of tokens in this mention. The doc-
ument node, as a node that includes information
of each sentence root and emphasizes the con-
ducive sentences, is calculated as the weighted
average of each sentence vector. The weight is
the attention score of the entity pairs in Eq. 9 .

There are four types of edges in this graph.
Three of them are bi-directed, and one is directed.
Bi-directed dependency syntax edges are added
between each pair of connected tokens in the syn-
tax tree. Then the bi-directed edges are added
between the dependency syntax tree roots of adja-
cent sentences, since there exist close context re-
lationships between adjacent sentences. As each
sentence in the document serves the same topic

of this document, bi-directed edges are added be-
tween dependency syntax tree roots and the doc-
ument node. The last type of edge is directed
and exists between non-adjacent sentence roots
to capture long-distance information and embed
sequential information.

The weight of bi-directed edges is 1 to inform
their strong connection. The weight ADJi,j of
directed edges from non-adjacent sentence root
node i to j are calculated based on their feature
vectors:

ADJi,j =
Si · Sj

||Si|| · ||Sj ||
(13)

where Si and Sj are the sentence vector i and j
in Eq. 9. Using these learned weights, our model
can obtain a logic flow from the earlier root to the
later root automatically and fuse the information
between dependency and constituency syntax to
aggregate information from different perspectives.

After obtaining the adjacent matrix ADJ of the
dependency graph, we employ GCN for feature
aggregation and entity strengthening.

ql+1 = GCN(ql, ADJ) (14)

where ql is the input feature of layer l and ql+1 is
the output feature.

Then entity representation entityi is abstracted
by merging the embeddings of all mentions of this
entity based on logsumexp (Jia et al., 2019):

entityi = log
∑
j

exp(mi,j) (15)

where mi,j is jth mention embedding of entityi.
In addition to entity-specific embeddings, we

also extract the shortest path paths,o between
two targeted entities to complement the entity pair
(es, eo) on the dependency graph.

paths,o = [es, node1, node2, · · · , noden, eo] (16)

For efficiency, we limit the maximum length of the
selected path to 14, which means that a maximum
of 12 path nodes will be selected except the head
and tail entities. Any path longer than 12 will select
the first 12 nodes, while a path less than 12 will be
filled with zero tensor. In addition, we use MLP to
explore the relation of entity pairs.

pairs,o = LeakyRelu(Wp1es +Wp2eo) (17)

Through the above steps, dependency syntax
complemented entity and context representations
are acquired. Following the previous methods
(Mou et al., 2016), we then concatenate them all
to strengthen the features of this entity pair:

Is,o = [es; eo; pairs,o; paths,o] (18)
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We compute the relation score zdep based on de-
pendency graph:

zdep = W(d2)σ(W(d1)Is,o + b(d1)) + b(d2) (19)

where W, b are trainable parameters.

3.4. Dynamic Fusion and Classification

Finally, we combine two scores acquired by the
dependency graph and constituency tree as a dy-
namic weighted sum of them (Kendall et al., 2018).

zfinal = zdep + ηzconst (20)

We adopt adaptive margin loss as loss function
(Wei and Li, 2022).

L =
∑

1≤i≤C

max(0, α− ci(z
i
final − zsfinal)) (21)

where α > 0 is a hyper-parameter for margin and
ci is 1 if the sample belongs to the positive class
and -1 otherwise. C is the number of classes and
zifinal, zsfinal is the final score of nonNA,NA
classes. Note that the proposed adaptive margin
loss is reduced to Hinge loss (Gentile and War-
muth, 1998) in the binary RE tasks.

4. Experiments

4.1. Datasets

To comprehensively evaluate our model, we as-
sess the proposed model on three document-level
datasets from various domains. Statistics of these
datasets are listed in Table 1.

• DocRED (Yao et al., 2019) is a large-scale
human-annotated dataset constructed from
Wikipedia and Wikidata. It contains 132,275
entities, 56,354 relational facts and 96 relation
classes. More than 40.7% of the relation pairs
are cross-sentence relation facts.

• CDR (Li et al., 2016) is a biomedical DocRE
dataset built from 1,500 PubMed abstracts
that are randomized into three equal parts for
training, validation and testing. The task is to
predict the binary relation between Chemicals
and Diseases.

• GDA (Wu et al., 2019) is also a biomedi-
cal DocRE dataset contains 30,192 abstracts.
The dataset is annotated with binary relations
between Gene and Disease concepts using
distant supervision.

Table 1: Statistics of three benchmarks used in our
experiments.

Statistics DocRED CDR GDA
# Train 3053 500 23353
# Dev 1000 500 5839
# Test 1000 500 1000

# Relations 96 2 2
Avg.# sentences per Doc 8.0 9.7 10.2

4.2. Implementation details

Our model is implemented on Pytorch (Paszke
et al., 2019) and uses stanza (Qi et al., 2020) to
extract constituency and dependency syntax. For
all experiments, the learning rate is set to 5e-5
and the weight decay is 1e-4. The GCN layer
number for the dependency graph is set to 3 and
the output dimension is 128. The hidden state
and cell state of each node in the constituency
tree share a dimension of 256. α in Eq. 21 is
set to 1.0 and learning rate warmup (Goyal et al.,
2017) with ratio 0.06 is implemented followed by a
linear decay to 0. The entire model is optimized by
AdamW (Loshchilov and Hutter, 2019).

4.3. Results on DocRED

We compare our model with graph-based meth-
ods and BERT-based methods in DocRED. For
BERT-based methods, we compare the proposed
method with BERT (Yao et al., 2019), ATLOP (Zhou
et al., 2021), evidence-based EIDER (Xie et al.,
2022), and self-training method DREEAM (Ma
et al., 2023). Graph-based models include LSR
(Nan et al., 2020), HeterGSAN (Xu et al., 2021b),
DRE (Xu et al., 2021a), CorefDRE (Xue et al.,
2022), GAIN (Zeng et al., 2020), SagDRE (Wei
and Li, 2022), and LARSON (Duan et al., 2022).
Following previous work (Zhou et al., 2021), we
train our model on BERTbase and DeBERTaLarge.
We report not only F1 and Ign F1 (F1 score ex-
cluding the relational facts shared by the training
and dev/test set) following the prior studies (Yao
et al., 2019), but also Intra F1 (F1 that only consid-
ers intra-sentence relational facts) and Inter F1 (F1
that only considers inter-sentence relational facts).

The experimental results listed in Table 2 show
that our model can achieve leading performance in
DocRE data in the general domain. The proposed
model outperforms the dependency graph-based
methods SagDRE (Wei and Li, 2022) by margins
of 2.29% and 1.94% on the test set in terms of Ign
F1 and F1, respectively, indicating that the combi-
nation of dependency and constituency syntax is
useful for document-level relation extraction. Our
model improves the IgnF1 score on the test set by
1.56% over the state-of-the-art method LARSON
(Duan et al., 2022), which uses the constituency
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Table 2: Results (%) of relation extraction on the dev and test set of DocRED. Results of other methods
are directly taken from original papers.

Model dev test

IgnF1 F1 Intra F1 Inter F1 IgnF1 F1

BERTbase(Yao et al., 2019) - 54.16 61.61 47.15 - 53.20
LSR− BERTbase(Nan et al., 2020) 52.43 59.00 65.26 52.05 56.97 59.05
GAIN− BERTbase(Zeng et al., 2020) 59.14 61.22 67.10 53.90 59.00 61.24
HeterGSAN− BERTbase(Xu et al., 2021b) 58.13 60.18 - - 57.12 59.45
DRN− BERTbase(Xu et al., 2021a) 59.33 61.09 - - 59.15 61.37
ATLOP− BERTbase(Zhou et al., 2021) 59.22 61.09 - - 59.31 61.30
CorefDRE− BERTbase(Xue et al., 2022) 60.85 63.06 - - 60.78 60.82
EIDER− BERTbase(Xie et al., 2022) 60.51 62.48 68.47 55.21 60.42 62.47
SagDRE− BERTbase(Wei and Li, 2022) 60.32 62.06 - - 60.11 62.32
LARSON− BERTbase(Duan et al., 2022) 61.05 63.01 68.63 55.75 60.71 62.83
DREEAM− BERTbase(Ma et al., 2023) 60.51 62.55 - - 60.03 62.49
FCDS-BERTbase 62.61 64.42 68.79 57.24 62.08 64.21

ATLOP−DeBERTaLarge(Zhou et al., 2021) 62.16 64.01 68.45 59.63 62.12 64.08
FCDS-DeBERTaLarge 64.12 66.17 70.19 58.73 64.03 65.86

Table 3: F1 Results (%) of relation extraction on
the test set of CDR and GDA.

Model CDR GDA
LSR-BERT(Nan et al., 2020) 64.80 82.20
SciBERT(Zhou et al., 2021) 65.10 82.50
ATLOP-SciBERT(Zhou et al., 2021) 69.40 83.90
EIDER-SciBERT(Xie et al., 2022) 70.63 84.54
SagDRE-SciBERT(Wei and Li, 2022) 71.80 -
LARSON-SciBERT(Duan et al., 2022) 71.59 86.02
DREEAM-SciBERT(Ma et al., 2023) 71.55 84.51
FCDS-SciBERT 72.62 87.39

tree to predict the evidence for DocRE and uses the
constituency and dependency syntax separately.
The advance confirms that information of different
granularity can assist relation extraction in DocRE.

4.4. Results on Biomedical Datasets

In addition to general domain DocRE methods,
we also compare our model with various advanced
methods including LSR (Nan et al., 2020), sciBERT
(Zhou et al., 2021), ATLOP (Zhou et al., 2021),
EIDER (Xie et al., 2022), SagDRE (Wei and Li,
2022) and LARSON (Duan et al., 2022) on two
biomedical domain datasets CDR and GDA.

Experimental results are listed in Table 3. In
summary, our model achieves significant improve-
ments over two tested datasets (0.93% on CDR
and 1.27% on GDA). GDA and CDR have more
sentences than DocRED, thus our model can deal
with complex documents, further demonstrating its
generality.

Furthermore, to assess the significance of im-
provements, we perform a two-sample t-test com-

Table 4: Two-sample t-test on all datasets. Use
BERT for embeddings on DocRED, and SciBERT
on CDR and GDA.

Model \ Metric IgnF1 F1
LSR(Nan et al., 2020) 0.0146 0.0129
ATLOP(Zhou et al., 2021) 0.0240 0.0213
EIDER(Xie et al., 2022) 0.0337 0.0313
LARSON(Duan et al., 2022) 0.0352 0.0341
DREEAM(Ma et al., 2023) 0.0470 0.0439

Figure 4: The learning curve of η on DocRED, CDR
and GDA datasets.

paring our approach with five other methods in
three datasets. The obtained p-values are pre-
sented in Table 4. It can be seen that all values
are less than 0.05, demonstrating a significant im-
provement of FCDS.
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Table 5: Ablation study of our model in dev set of
DocRED.

Ablation F1 IgnF1
FCDS 64.42 62.61
separate syntax 62.59 60.63
w/o document node 62.78 60.92
w/o constituency tree 62.15 60.22
w/o dependency graph 61.63 59.41

4.5. Ablation Study

To exhaustively understand how each component
of our method contributes to the final performance,
we perform ablation studies to analyze the function
of different syntaxes. In Figure 4, we plot the learn-
ing curve of η in Eq. 20. We can observe that η
decreases from the initial value of 1.0, indicating
that the dependency graph plays a more vital role
during the process, possibly due to the fact that
the dependency graph combines the features of
the constituency tree and captures fine-granularity
information.

Furthermore, we remove one component at a
time and assess the resulting model using the dev
set in DocRED in Table 5. For separate syntax
case, we do not use the constituency tree to en-
hance the dependency graph and observe that F1
and IgnF1 decrease by 0.78% and 0.94%, indicat-
ing that fusing syntax is beneficial for DocRE. Then
we remove the document node from the depen-
dency graph, dependency graph, and constituency
tree, respectively. For w/o document node, we
observe that F1 and IgnF1 decrease by 0.59%
and 0.65%. We speculate that the document node
reduces the distance between entity pairs, which
contributes to DocRE. For the w/o dependency
graph, only the constituency tree is incorporated
for relation prediction. We can observe that the F1
score decreases by 2. 16%. Similar trends occur
when we remove the constituency tree, where F1
decreases to 62.15%. Therefore, both dependency
graphs and constituency trees are significant for
our models.

Finally, to examine the impact of document
nodes on reducing the distance between entity
pairs, we analyze the changes in entity distances
before and after adding document-level nodes in
three datasets in Table 6. Through a random se-
lection of 600 cases, we assess the average, max-
imum, minimum, and standard deviation of entity
distances with and without document nodes. Our
finding indicates a reduction in average entity dis-
tances, suggesting that document nodes could im-
prove DocRE by simplifying interactions between
entities.

E R

R E

Yellow  is  a  song   by  American singer

The music video was released on 2014/02/14

shortest path

between entities

E

R

R

E

Yellow

is

released

on

2014/02/14

E Entity

(mention node)

R sentence root

non-root token

(a) In this case, the dependency graph plays a positive
role in DocRE by extracting the shortest path ’Yellow is
released on 2014/02/14’ between entities Yellow and
2014/02/14.

E R

R E

Yellow  is  a  song   by  American singer

It was produced by Chppa Boi

shortest path

between entities

E

R

R

E

Yellow

is

was

Chppa Boi

E Entity

(mention node)

R sentence root

non-root token

(b) In this case, the dependency graph plays an ambiva-
lent role in DocRE. It extracts the shortest path ’Yellow is
was Chppa Boi’ between Yellow and its author Chppa
Boi. However, due to the inaccuracy of the dependency
parser, the model cannot capture the keyword produced,
therefore it is hard to predict the real relation between
entities.

Figure 5: Two different cases in DocRED.

4.6. Case Study

To better understand the bottleneck of FCDS and
inspire future work, we conduct a case study to
investigate the predictions that FCDS makes. The
result is shown in Figure 5.

The first case in Figure 5a is a successful de-
pendency graph and illustrates how the depen-
dency syntax helps the model complete DocRE.
In this case, the dependency parser successfully
parses the dependency syntax within two sen-
tences and extracts vital keywords to manage the
prediction. With the short path "Yellow is released
on 2014/02/14.", simple sentence-level models can
finish the prediction.

The second case in Figure 5b illustrates the mo-
tivation behind our methods, which is to alleviate
the inaccuracy of the dependency parser and the
failure of selecting keywords for entities. Although
the dependency syntax is a useful tool for DocRE,
it sometimes fails to identify the relevant keywords
for entities. In this case, the shortest path "Yellow
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DocRED CDR GDA
with document w/o document with document w/o document with document w/o document

node node node node node node
avg & std 6.19 ± 1.02 7.23 ± 1.55 5.96 ± 2.26 6.44 ± 2.23 6.82 ± 1.99 7.38 ± 2.43

max 7 9 8 12 11 14
min 4 4 4 4 3 4

Table 6: The average/max/min length and standard deviation of entity distances with document node and
w/o document node in DocRED, CDR, GDA.

is was Chppa Boi" is far from finishing the pre-
diction, while the real keyword "produced" is not
selected in the path. Furthermore, errors in the
dependency parser lead to a severe lack of infor-
mation. To address this issue, we utilize the con-
stituency tree and fuse the information from depen-
dency and constituency syntax, which organizes
different words of a single sentence hierarchically
and can aggregate the sentence-level information
naturally towards the sentence root. By doing so,
the sentence root can obtain the mixed informa-
tion of the root itself and the sentence information,
adding the information of the path and alleviating
the inaccuracy of the dependency parser.

5. Conclusion

In this work, we propose a novel model for the
document-level relation extraction task. Our model
exploits two types of extra syntax information,
namely dependency syntax and constituency syn-
tax. GCN and Tree-LSTM are adopted to encode
the two types of information. Furthermore, by us-
ing the constituency tree to enhance the depen-
dency graph and adding a document node in the
dependency graph, we can improve the expres-
sion capability of the dependency graph and better
capture long-distance correlations. Experiments
on three public DocRE datasets demonstrate that
our model outperforms the existing method. In the
future, we plan to select the most conducive sen-
tences for entity pair by constituency tree, which
captures the information from another perspective
and complements the dependency graph.
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