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Abstract

Question Answer Generation (QAG) is an effective data augmentation technique to improve the accuracy of question
answering systems, especially in low-resource domains. While recent pretrained and large language model-based
QAG methods have made substantial progress, they face the critical issue of redundant QA pair generation, affecting
downstream QA systems. Implicit diversity techniques such as sampling and diverse beam search are proven
effective solutions but often yield smaller diversity. We present explicit diversity conditions for QAG, focusing
on spatial aspects, question types, and entities, substantially increasing diversity in QA generation. Our work
emphasizes the need of explicit diversity conditions for generating diverse question-answer synthetic data by
showing significant improvements in downstream QA task over existing widely adopted implicit diversity techniques.
In particular, generated QA pairs from explicit diversity conditions when used to train the downstream QA model
results in an average 4.1% exact match and 4.5% F1 improvement over QAG from implicit sampling techniques
on SQuADDU. Our work emphasizes the need for explicit diversity conditions even more in low-resource datasets
(SubjQA), where average downstream QA performance improvements are 12% EM.

Keywords: Question Answer Generation (QAG), Explicit conditions for diverse QAG, Coverage of QAG

1. Introduction

Annotating QA pairs is costly, tedious, and con-
strained to annotators’ limited coverage of the input
document which often leads to lower QA perfor-
mance in low resource domains (Rajpurkar et al.,
2016; Bartolo et al., 2020; Yadav et al., 2019). Re-
cent QAG methods, particularly neural pretrained
language models (PLM) and large language mod-
els (LLM), have generated high-quality synthetic
QA pairs leading to strong downstream QA perfor-
mance (Du and Cardie, 2018; Puri et al., 2020a;
Stasaski et al., 2021). It is reported that even
these prominent neural QAG methods suffer from
repeated redundant generation, even after utilizing
several implicit techniques for diverse generations
such as nucleus, topK sampling, and diverse de-
coding methods (Shao et al., 2017; Sultan et al.,
2020). Our work evaluates diversity of such widely
adopted implicit techniques for QAG and show the
QA generations to be still largely redundant, affect-
ing downstream QA performance. We conjecture
that artifacts in human annotations of the training
data leads to QAG redundancy. For example, 71%
of the questions in the benchmark QAG dataset
SQuADDU are annotated from the first half of the
document, and 73% of the questions are of the type
who, how, what, and why. As shown in fig. 1, hu-
man annotators have annotated QA pairs only from
the top and 4/5th position of the passage and only
what and how questions. Training on such skewed
dataset may overfit neural QAG methods on numer-
ous annotator artifacts, thus reducing diversification
effectiveness of implicit sampling techniques.

Our work focuses on explicit diversity conditions

where we present three types of explicit prompts,
conditioning QAG on (1) various positions (POS)
within the input document from where QA pairs are
generated, (2) 8 types of WH questions for gener-
ating questions of different types, and (3) questions
based on different named entities (ENT ). As shown
in upper block of fig. 1, these explicit diversity con-
ditions are concatenated as prompts to the input
document for diverse QA generation. These ex-
plicit conditions can also be easily combined to one
another for jointly prompting QAG models, espe-
cially the LLM based ones where we observed the
best downstream QA performance (§4). Our work
primarily focuses on establishing the importance of
adding diversity conditions explicitly over the widely
adopted implicit sampling techniques. The clear
benefits of explicit prompting based QAG are high-
lighted with improved downstream QA performance
(§4) and coverage of diverse information (§5) from
the input document. Our key contributions are:
(1) We study diversity of implicit sampling tech-
niques and compare them with several explicit di-
versity conditions for QAG. The synthetic QA pairs
generated from our explicit diversity conditions sig-
nificantly improve the downstream QA performance
outperforming implicit sampling techniques by 4.1%
EM and 4.5% F1 on widely studied SQuADDU
dataset (Du et al., 2017). The improvements from
our explicit conditions drastically exceed in the multi-
domain low resource SubjQA dataset (Ushio et al.,
2022) with improvements of 12% F1 score.
(2) Our explicit diversity prompts show substantial
diversity improvements, resulting in only 30% to-
ken overlap among generated QA pairs from the
input document, compared to the 64% overlap in
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The tentacles of cydippid ctenophores are typically fringed 
with tentilla ("little tentacles"), although a few genera have 
simple tentacles without these sidebranches. The tentacles 
and tentilla are densely covered with microscopic 
colloblasts that capture prey by sticking to it. Colloblasts are 
specialized mushroom-shaped cells in the outer layer of the 
epidermis, and have three main components: a domed 
head with vesicles (chambers) that contain adhesive; a stalk 
that anchors the cell in the lower layer of the epidermis or 
in the mesoglea; and a spiral thread that coils round the 
stalk and is attached to the head and to the root of the 
stalk. The function of the spiral thread is uncertain, but it 
may absorb stress when prey tries to escape, and thus 
prevent the collobast from being torn apart. In addition to 
colloblasts, members of the genus Haeckelia, which feed 
mainly on jellyfish, incorporate their victims\' stinging 
nematocytes into their own tentacles – some cnidaria-
eating nudibranchs similarly incorporate nematocytes into 
their bodies for defense. The tentilla of Euplokamis differ 
significantly from those of other cydippids: they contain 
striated muscle, a cell type otherwise unknown in the 
phylum Ctenophora; and they are coiled when relaxed, 
while the tentilla of all other known ctenophores elongate 
when relaxed. Euplokamis\' tentilla have three types of 
movement that are used in capturing prey: they may flick 
out very quickly (in 40 to 60 milliseconds); they can wriggle, 
which may lure prey by behaving like small planktonic 
worms; and they coil round prey. The unique flicking is an 
uncoiling movement powered by contraction of the striated 
muscle. The wriggling motion is produced by smooth 
muscles, but of a highly specialized type. Coiling around 
prey is accomplished largely by the return of the tentilla to 
their inactive state, but the coils may be tightened by 
smooth muscle.

What are the tentacles of cydippid 
ctenophores are usually fringed with?  
tentilla
What are colloblasts? specialized 
mushroom-shaped cells in the outer 
layer of the epidermis

What makes the tentilla of euplokamis 
different from other cysippids? they 
contain striated muscle
How many types of movements do 
euplokamis tentilla have? three types of 
movement
What does the euplokamis use three 
types of movement for? capturing prey

1) What are the main 
components of a domed head 
with vesicles? a doming head 
with Vesicles (chambers) that 
contain adhesive; a stalk that 
anchors the cell in the lower 
layer of the epidermis or in the 
mesoglea; and a spiral thread

2) What is the domed head 
with vesicles called? chambers 

3) What do the name of the 
group of jellyfish that feed 
mainly on jellyfish? Haeckelia

4) What is the cell type of 
Euplokamis’ tentilla?  striated 
muscle

5) How long do Euplokamis’ 
tentacles become coiled? 
When relaxed?

Where) Where are the 
tentacles of cydippid 
ctenophores fringed? tentilla 
(“little tentacles”)
Which) Which group of 
ctenophores have small 
tentacles? cydippid ctenos

What) What are the tentacles 
of cydippid ctenophores 
typically fringed with? tentilla 
(“little tentacles”)

Who) Who is the only cnidria-
eating nudibranch that 
incorporate nematocytes into 
their own tentacles? cnids
Why) Why do cnidaria-eating 
nudibranchs incorporate 
nematocytes into their own 
tentacles? Defense

When) When do Euplokamis’ 
tentacles become coiled? 
When relaxed

Other) How long do the 
tentacles of cydippid 
ctenophores last? 40 to 60 
milliseconds

epidermis) What is the main 
component of a cydippid’s 
tentacles?  a doomed head 
with vesicles

Haeckella) What does 
Haeckelia mainly feed on? 
Jellyfish

Ctenophora) What is the cell 
type of Euplokamis; tentilla 
called? striated muscle

Three) How many main 
components does a colloblasts 
have? Three

40 to 60) How fast do the 
tentacles of Euplokamis’ 
tentacles flick out? 40 to 60 
milliseconds

Euplokamis) What is the name 
of the small, small, tentacles 
that are used to capture of 
prey Euplokamis’ tentilla 

Document Human POS prompting WH prompting ENT prompting

What are the tentacles of 
cydippid ctenophores typically 
fringed with? Tentilla
 What are the tentacles of 
cydippid ctenophores called? 
little tentacles
What are the tentacles of 
cydippid ctenophores called? 
tentilla
What are the tentacles of 
cydippid ctenophores? fringed 
with tentilla
What do the tentacles of 
cydippid ctenophores consist 
of? tentilla

Beam Search

QAG QAG-POS QAG-WH QAG-ENT

Prompt 1: Generate a QA pair from position 1
Prompt 2: Generate a QA pair from position 2
.
.
Prompt 5: Generate a QA pair from position 5

Prompt 1: Generate a where QA pair
Prompt 2: Generate a which QA pair
.
.
Prompt 7: Generate a why pair
Prompt 8: Generate a other pair

Prompt 1: Generate a QA pair  on epidermis
Prompt 2: Generate a QA pair  on Haeckella
.
.
Prompt 6: Generate a QA pair  on Euplokamis

Figure 1: A sample input passage and QA pairs generated by human annotators, nucleus sampling based beam search and our explicit diversity
prompting techniques. Different colors in the document text depict the 5 different positions. QA pairs from specific positions are depicted in the same
font color and WH question types are indicated in blue bounding boxes. Example of each explicit diversity prompts are shown in the top block.

QA pairs from implicit sampling-based QAG. The
coverage of information from the input document in
terms of position, question type, and named entity
attributes is also considerably higher in generated
QA pairs from explicit diversity prompting over im-
plicit sampling techniques.

2. Related Work
Recent studies have highlighted redundancy in
neural-QAG approaches and while some widely
adopted diverse sampling and beam decoding
methods (Sultan et al., 2020; Holtzman et al., 2019;
Vijayakumar et al., 2018) have shown improve-
ments, these implicit techniques only moderately
enhance the diversity of generation (see table 3).
Furthermore, implicit sampling techniques lack pre-
cise control of QAG for accessing specific informa-
tion from the input document. For example, QAG
models using nucleus sampling or diverse decod-
ing would still generate QA pairs from a random
position of the document or of random WH question
type. In contrast, our explicit prompting techniques
offer high control over QA generation, allowing se-
lection from specific positions or named entities
in the input document, and the types of questions
(shown in last 3 columns of fig. 1).

Many previous QAG methods can be broadly cat-
egorized as either explicit or implicit techniques.
For instance, Zhou et al. (2019) is analogous to our
explicit WH-type QAG model, while answer selector
modules (Yao et al., 2022; Back et al., 2021; Puri
et al., 2020b), which select answer spans to con-

dition QG, are analogous to our entity-conditioned
QAG method. On the other hand, sampling, beam
search and additional embedding (Lee et al., 2020)
based approaches can be grouped under implicit
diversity conditions. From these, we mainly focus
on widely adopted sampling and diverse decod-
ing methods as implicit diversity baselines(§3.3).
Our work primarily focuses on comparing these two
broad directions of explicit versus implicit diversity
methods by showing their impact on diverse gener-
ation, downstream QA performance, and informa-
tion coverage from the input document. We show
experiments on the standard question generation
benchmark - QGbench (Ushio et al., 2022). QG-
bench authors highlighted higher performance from
pretrained-LMs over RNN based models. For fair
comparisons, we implemented both explicit and im-
plicit sampling techniques on the same base PLM
(BART (Lewis et al., 2020)) and LLM (LLaMa-7B
(Touvron et al., 2023)) models. Further, Ushio et al.
(2023) showed end-to-end QAG as the best setting
where both question and answer are generated as
a single output, in a single generation step. We
use the same setting throughout our experiments.

3. Approach

The task of QAG is to generate QA pairs given an
input document. Formally, given a document D
which contains M tokens, D = (d1, ..., dM ) and
ith QA pair has t number of tokens i.e., qai =
(qai1, ..., qa

i
t), the task is formulated as a condi-
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tional sequence generation at the token level i.e.,
P (qaik|qai1...qaik−1, d1, ..., dM ). We model the con-
ditional probability P (qa|D) using 1) BART, a PLM
that achieves best results on QGbench and 2)
LLaMa-7B, a decoder only LLM. Our three explicit
diversity conditions are described below.
3.1. Explicit diversity prompts
POS prompting: We consider 5 splits of the input
document based on its total word count. For exam-
ple, if a document contains 400 tokens, each split
will cover 80 tokens each. QAGPOS is then con-
ditioned on positions of each of the 5 splits, thus
encouraging generation of QA pairs from 5 different
positions1. In particular, we explicitly prompt the
QAGPOS model to generate qa from pos position of
the document where pos ∈ 1, 2, 3, 4, 5.

qapos ∼ P (qa|D, pos) (1)

For example, to generate a QA pair from the 2nd
position of the document (shown by blue font in the
1st column of fig. 1), we prompt: "Generate a QA
pair from position 2" to our QAGpos model. Splitting
of the input document based on word count is a
bit rigid segmentation. However, we observed that
even with such rough segmentation, QAGpos model
is able to learn approximate alignment between po-
sition of the input document and its corresponding
generated QA pair. During training, we use the start
offset of the human annotated answer to determine
which position split the QA pair was annotated from.
During inference, we generate 5 QA pairs from all
the 5 different positions of the document.
WH prompting: Similar to POS prompting, we
condition on the wh question type where wh ∈
{"where", "which", "when", "what", "who", "how",
"why" } to encourage the QAGWH model to generate
different types of questions.

qawh ∼ P (qa|D,wh) (2)

During training of QAGWH, we use the wh type
from human annotated questions and during infer-
ence, we simply generate QA pairs by conditioning
on all 7 wh types. If the annotator’s question did not
have any wh type, then we consider it as "other".
As shown in 2nd last column of fig. 1, prompting
QAGWH with wh generates diverse QA pairs with
different question type.
ENT prompting: QAGENT is conditioned on named
entities in the input document to generate entity-
specific QA pairs. During training, we select
named entities present in the human annotated
QA pairs and the input document, identified using
the SpaCy NER tagger with 18 entity classes from
OntoNotes(Weischedel et al.). During inference,

1We tried different number of positions from the docu-
ment ∈ 2, 5, 10 and found the best QAG with 5 positions.

we split the document into individual sentences and
select the longest named entity from each sentence
to use in the prompt. The named entity-conditioned
prompt, along with the input document, generates
a QA pair for that specific entity. As shown in fig. 1,
QAGENT generates diverse QA pairs by condition-
ing on different entities from the input document.

3.2. Combined prompts
Our three base diversity prompts can be rigid some-
times; for example, a specific WH question may not
be feasible for a particular document. To address
this issue, we propose a two step process, with the
first step being wh question type prediction given
a position or entity. For example, given pos = 2,
a trained wh predictor model predicts "what" type
of question in the 1st step. In the 2nd step, QAG
model generates a "what" type question from the
2nd position of the document. This two step pro-
cess of combining wh type with position and entity
diversity conditions is explained below.

• Position-based question type generator: We
train a separate BART model to generate a list of
relevant WH-types (or ’none’ if no QA is possible)
for a specific position in the input document. Then,
we generate QA pairs conditioned on both the spec-
ified position and the predicted WH types.

wh ∼ P (wh|D, pos) (3)
qapos,wh ∼ P (qa|D, pos, wh) (4)

• Entity-based question type generator: Similarly,
we predict potential wh question types for the se-
lected entity from the input document. We then
generate QA pairs given the selected entity and the
predicted WH types.

wh ∼ P (wh|D, ent) (5)
qaent,wh ∼ P (qa|D, ent, wh) (6)

Please note that this 2 step process for combing
different explicit diversity conditions is required only
for BART-QAG. As LLMs can follow instructions and
generate long sequences (Wei et al., 2022), a sin-
gle prompt for combining two explicit conditions -
"Generate N questions of different question type
from different positions" is given to the LLaMa-7B
QAG model. This single prompt based combin-
ing of explicit conditions for QAG is referred to as
Combined in table 1.

3.3. Implicit Sampling and Decoding
We considered four widely adopted decoding tech-
niques as implicit diversity baselines: nucleus sam-
pling, top_k sampling, beam search with sampling,
and diverse decoding (Sultan et al., 2020; Holtz-
man et al., 2019; Vijayakumar et al., 2016, 2018).
In addition, we also assessed these sampling tech-
niques in combination with our explicit diversity
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conditions. Our position and entity prompt condi-
tioned QAG models performed consistently better
with diverse decoding, while WH prompting showed
higher downstream QA performance with nucleus
sampling.

Hyperparameters: We conducted our experi-
ments with the PyTorch implementation of BART
and LLaMa from the Hugging Face Transform-
ers library (Wolf et al., 2020). For training BART-
QAG, the final hyperparameters were epoch=4,
batch size=16, learning rate=3e-5, and adam opti-
mizer on V100 GPUs. The remaining hyperparam-
eters were used as default suggested in (Ushio
et al., 2022). We used 4 A100 GPUs to fine-
tune our LLaMa-QAG models using following hy-
perparameters: batch size=4, learning rate=2e-5,
epoch=3, and float32=True. For training the BERT-
large-uncased-wwm QA model, the final hyperpa-
rameters were epoch=2, learning rate=3e-5, seq
length=384, batch size=8, and stride=128

4. Evaluation

We evaluate the impact of our explicit diversity
prompts on downstream QA task on the standard
datasets from QGbench (i) SQuADDU(Du et al.,
2017) (ii) and low-resource multi-domain SubjQA
(Bjerva et al., 2020) which has less than 150 anno-
tations. We trained a BERT-large-uncased-wwm
based QA model (Devlin et al., 2019) over synthetic
QA pairs generated from our explicit conditions and
implicit sampling techniques. Each experiments is
run 5 times and average QA performance on the
SQuADDU test split is reported in table 1. We re-
port both the F1 and exact match (EM) using the
standard SQuAD evaluation script (Rajpurkar et al.,
2016).
(1) Downstream QA performance: QA model
trained on data from explicit diversity prompted
QAG models (row-block 2 of table 1) achieve, on
average, 4.1% higher EM and 4.5% higher F1
scores compared to the implicit sampling tech-
niques (row-block 1 of table 1) in our BART-QAG
methods. These empirical evidences highlight the
importance of explicit diversity conditioning for ef-
fective QAG. Performances improve further (row-
block 3) when diversity conditions are combined in
a learned setting (§3.2), suggesting the need for a
learned module to capture complex relationships
between the three explicit diversity conditions. In-
terestingly, combining multiple explicit conditions in
a single prompt for LLaMa-QAG (denoted by Com-
bined in table 1) results in the best downstream QA
performance.
(2) BART vs LLaMa - QA pairs generated from
LLaMa-QAG consistently lead to better down-
stream performance than BART-QAG. As expected,

BART LLaMa-7B
SRC I/E Approach Orig Size Orig Size

EM F1 EM F1
Syn I Greedy 64.76 76.66 71.41 83.26
Syn I Nucl (0.95) 64.44 77.15 71.92 83.53
Syn I Nucl+TopK 64.17 76.47 72.08 83.71
Syn I DiverseDec. 65.21 77.37 71.87 83.66

Syn E WH Prompt 67.25 79.60 72.97 84.46
Syn E POS Prompt 69.62 81.49 72.74 84.25
Syn E ENT Prompt 69.31 81.80 72.59 84.21

Syn POS->WH 71.77 83.30 - -
Syn EL ENT->WH 70.46 81.78 - -
Syn Combined - - 73.29 84.76

H+Syn SQdev+WH 74.30 85.62 75.11 86.42
H+Syn SQdev+POS 74.53 85.61 75.76 87.15
H+Syn SQdev+ENT 73.17 85.01 75.59 87.06

H SQdev EM=74.08 F1=85.19

Table 1: Downstream QA performance on the QG-bench SQuAD DU
test dataset. We use topp=0.95 and topK=30.The third-row block settings
refer to the learned combination of diversity conditions (§3.2) where the
first prompt predicts the second potential diversity prompt (separated
by ->). I, E, and EL in the 2nd column stand for implicit, explicit, and
learned explicit conditons respectively. SQ refers to SQuADDU dev split.
Nucl and DiverseDec are short form for Nucleus and DiverseDecoding.
The Orig Size indicates that the synthetic data size matches the original
training size of SQuAD DU dataset of 10570 QA pairs. The eval dataset
for all the rows is the SQuAD DU test split which contains 11877 QA
pairs. H and Syn refers to human annotated and synthetic QA dataset.

Data Eval Hum BART-QAG
NS POS WH ENT

Books EM 6.3 7.9 14.7 11.6 20.0
T,E=92,191 F1 20.3 25.9 29.4 30.1 37.9
Electronics EM 15.2 16.4 23.6 27.9 25.7
T,E=99,238 F1 34.3 33.6 44.4 47.5 47.5
Grocery EM 14.6 16.5 16.2 0.0 15.4
T,E=101,379 F1 31.9 32.0 31.2 16.1 31.1
Movies EM 13.6 15.6 23.4 27.9 25.3
T,E=101,154 F1 30.2 30.2 36.9 41.3 39.3
Restaurant EM 8.2 0.0 6.7 12.7 26.1
T,E=129,136 F1 23.9 7.1 20.3 25.9 40.3

Table 2: Downstream QA performance on the SubjQA test dataset
of QG-bench. NS refers to nucleus sampling. Numbers in bold represent
the best performance in each column. T and E under each domain refer
to the number of QA pairs in training and evaluation split respectively.
Please note that BART-QAG model geenrates the same number of QA
pairs as annotated in Human (Hum) sets in each domain.

the improvements are smaller from explicit condi-
tions in LLaMa-QAG because of their extensive
pretraining leading to more qualitative generations.
LLaMa-QAG synthetic QA data from explicit condi-
tions almost matches performance from human an-
notated SQuADDU dataset (within 0.4% F1). Inter-
estingly, just appending QA pairs from explicit condi-
tioned LLaMa-QAG to human annotated SQuADDU
leads to 2% F1 improvement (row block 4), result-
ing in best performance of 87.2% F1 in downstream
QA task. This highlights the benefits of combin-
ing high-quality diverse synthetic data to existing
human annotated QA pairs. Although average im-
provements in downstream QA tasks from explicit
diversity prompts are smaller in LLaMa-QAG, the
generated QA pairs still have higher coverage and
diversity compared to implicit sampling techniques
(discussed in §5).
(3) Low resource QAG - In table 2, we observed
substantially higher performance improvements
with our explicit diversity-conditioned BART-QAG
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Analysis Overlap Coverage Time
POS WH ENT (ms)

Greedy 63.07 36.84 31.33 32.18 223.1
Nucl (0.95) 57.44 57.15 45.59 29.80 372.1
Nucl+TopK 59.93 58.62 48.23 30.21 451.4
DiverseDec 46.85 49.83 42.76 35.38 388.2
POS Prompt 36.10 77.56 34.62 50.62 231.5
WH Prompt 30.67 60.41 97.81 48.06 218.7
ENT Prompt 34.59 75.89 55.34 63.90 227.9

Human 28.04 65.82 56.32 44.96 -

Table 3: Pairwise lexical overlap between generated QA tokens, their
coverage, and average generation time for 5 QA pairs from SQuADDU.

on the SubjQA datasets. Particularly, synthetic
data from explicit diversity-conditioned BART-QAG
resulted in a 7% EM and 10% F1 improvement over
implicit nucleus sampling based QA data. Interest-
ingly, explicit-conditioned QA pairs lead to on-par or
higher performance when compared to small-sized
human annotated data of SubjQA. Thus, empha-
sizing the importance of explicit diversity conditions
even more in low-resourced domains.

5. Overlap and Coverage Analyses

We compute the lexical token overlap between the
generated QA pairs for each document. For this
analysis, we generated 5 questions with each ap-
proach and report the average pairwise token lexi-
cal overlap between all

(
5
2

)
QA pairs over SQuADDU

dev split. As shown in table 3, there is a substan-
tially higher average token overlap of 63.1% be-
tween QA pairs generated by greedy beam search
clearly highlighting the diversity problem. Nucleus
sampling and diverse decoding have comparatively
lower overlap ratios (57.4 and 49.8) but are still sub-
stantially higher than our techniques suggesting the
need of explicit diversity conditioning. WH explicit
prompting results in the lowest average token over-
lap of just 30.7 indicating its effectiveness in diverse
QAG. It is worth noting that the overlap of human
annotated QA pairs were low because there were
≤ 2 QA pairs annotated for majority of the input
documents.

We also compute the average lexical coverage
of the 5 generated QA pairs by assessing answer
text position (POS), entity and wh in question text
(denoted by ENT and WH in §5). For example, we
compute answer position coverage of the gener-
ated QA pairs from position 1 to 5. If generated
QA pairs have answers only in 4 of the 5 splits,
POS coverage will be 80%. QA pairs generated by
our explicit diversity-conditioned methods have sub-
stantially higher coverage compared to all the im-
plicit sampling baselines. Unsurprisingly, BARTPOS,
BARTWH, and BARTENT have the highest average
lexical coverage of spatial, wh question type, and
named entity in the input document respectively.
We also calculate the average generation time of
5 QA pairs per input document (last column of Ta-
ble 3) highlighting explicit diversity prompts are

also much faster than selecting multiple beams
and other diverse decoding techniques.

Conclusion: We presented a detailed study of
implicit versus explicit conditioning techniques for
diverse QA generation, highlighting lack of diver-
sity in generations from implicit techniques. Our
work empirically shows the clear benefits of explicit
diversity conditions with substantial improvements
in diverse generations, downstream QA task, and
information coverage from the input document. We
also show that the concatenation of explicit condi-
tioned based diverse synthetic QA pairs to human
annotated datasets leads to further improvement
in downstream QA performance. Overall, our pre-
sented findings suggest the need of utilizing more
of explicit diversity conditions over the existing pop-
ular diversity sampling techniques, especially in low
resource settings.

6. Future Work

We focus on the standard and more mainstream
QAG task from QGBench but our proposed tech-
niques can be easily extended to other complex QA
tasks such as multi-hop QA (Yadav et al., 2020).
Similarly, our explicit diversity techniques can be
extended to other text generation tasks such as con-
versational QA, dialogue, answer summarization
etc (Reddy et al., 2019; Wu et al., 2022).

In case of position diversity of generated QA
pairs, input documents can be longer (or shorter).
Although we had tried splits ∈ {2,5,10}, the number
of position splits can be variably selected depend-
ing on its length in future works. In §5, we studied
diversity in terms of overlap and coverage of in-
formation via simple lexical matching. As future
work, the embedding representations of the gener-
ated questions throughout QAG model layers can
also be evaluated to further understand the effects
of training with explicit diversity conditions (Yadav
et al., 2021).

7. Ethical consideration

We simply utilize benchmark datasets from QG-
bench and existing PLM and LLM models like BART
and LLaMa-7B. Our presented methodologies and
comparitive studies do not induce any biased or
harmful content. We believe, similar to the other
LLM and PLM based systems, risks depends on
the underlying LLM from its pretraining. A careful
selection of input documents for QAG and unbiased
LLMs or PLMs would ensure safe QA generations
from either explicit or implicit techniques. To the
best of our knowledge and review of nearly 200
generated QA pairs, we did not find any harmful or
biased QA generations.
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