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Abstract
A crucial aspect of a rumor detection model is its ability to generalize, particularly its ability to detect emerging,
previously unknown rumors. Past research has indicated that content-based (i.e., using solely source post as
input) rumor detection models tend to perform less effectively on unseen rumors. At the same time, the potential of
context-based models remains largely untapped. The main contribution of this paper is in the in-depth evaluation
of the performance gap between content and context-based models specifically on detecting new, unseen rumors.
Our empirical findings demonstrate that context-based models are still overly dependent on the information derived
from the rumors’ source post and tend to overlook the significant role that contextual information can play. We also
study the effect of data split strategies on classifier performance. Based on our experimental results, the paper also
offers practical suggestions on how to minimize the effects of temporal concept drift in static datasets during the
training of rumor detection methods.
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1. Introduction

False rumors are claims or stories that are in-
tended to deceive or mislead the public and can
spread faster through social media, causing harm
and confusion (Lazer et al., 2018; Zubiaga et al.,
2018; Vosoughi et al., 2018). Due to their large vol-
ume and high velocity of spread, computational ap-
proaches (e.g., supervised rumor detection mod-
els) are typically employed to detect and analyze
false rumors at an early stage (Bian et al., 2020;
Lin et al., 2022; Tian et al., 2022).

Specifically, the task of rumor detection typically
distinguishes the detection of check-worthy unver-
ified claims (i.e., rumors) from other kinds of posts
in social media (non-rumors) (Zubiaga et al., 2018).
On the other hand, rumor verification1 is typically
the task of classifying a rumor as True, False, Un-
verified, or Non-Rumor (Kochkina et al., 2023).

Current computational rumor detection systems
typically follow a two-step approach: (i) features
are extracted from the textual content of the rumor
(e.g., source post) along with contextual informa-
tion,2 and then (ii) models are trained and evalu-
ated on static datasets using random data splits
(Ma et al., 2016, 2017).

As demonstrated by Mu et al. (2023a); Hu et al.
(2023), the evaluation of rumor detection systems

1In this work, for brevity, we refer to both tasks as
rumor detection.

2In this work, we use the term ‘contextual information’
to refer to different forms of information associated with a
rumor on social media, such as comments, images, and
user profile attributes. The term ’content-based meth-
ods’ refers to the use of only source posts as the model
input.

performed on static datasets using random splits
might not provide an accurate picture of the gener-
alizability of such models to unseen rumors. Note
that the evaluation conducted by Mu et al. (2023a);
Hu et al. (2023) focuses solely on standard text
classifiers (such as logistic regression) using only
features derived from source posts.

However, rumors in social media also come with
a rich amount of contextual information, includ-
ing comments, user profile features and images,
which complement the text of the source posts.
For example, Figure 1 shows two Weibo users
who post the same rumor about the death of a
famous Chinese actor. Despite the source posts
being identical, the remaining contextual informa-
tion (e.g., comments and user profile attributes) is
completely different. Note that the development of
the majority of current rumor detection models re-
lies on context-based features and utilizes random
data splits (Bian et al., 2020; Rao et al., 2021).

The question that emerges is whether rumor de-
tection models trained with contextual information
using random data splits may also exhibit a ten-
dency towards overestimation. Therefore, this pa-
per primarily focuses on a systematic evaluation
of the actual generalization capabilities (i.e., de-
tecting rumors that are not previously known) of
context-based rumor detection models, which is a
hitherto unstudied research question.

The four contributions of this work are:

• Empirical proof (§ 4.1 & 5) that despite having
additional contextual information, rumor de-
tection models still struggle to detect unseen
rumors appearing at a future date, with some
models performing even worse than random
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Figure 1: Two rumor spreaders (in the green box) posted an identical rumor and received different stances
of comments (in the gray box), i.e., denial (on the left) and support (on the right), respectively. ‘[Cry-
ing_Face]’ denotes the Loudly Crying Face emoji.

baselines (see Table 3).

• An ablation study (§ 5.3) that removes source
posts from the inputs, revealed that current
rumor detection approaches rely excessively
on information from the source post, while ne-
glecting the contextual information.

• A follow-up similarity analysis (§ 5.4) on con-
tent and context-based features, which eluci-
dates the impact of training/test split strate-
gies on model performance.

• Finally, we focus on the issue of effectively
utilizing static datasets for rumor detection
by providing practical recommendations (§
6), such as implementing additional cleaning
measures for the static dataset and enhanc-
ing the current evaluation metrics.

2. Related Work

2.1. Computational Rumor Detection
Approaches

The increased consumption of news and informa-
tion on social platforms has necessitated large-
scale automated detection of unreliable content
(Shu et al., 2017; Shearer and Gottfried, 2017),
which led to the development of new rumor de-
tection approaches based on state-of-the-art NLP
techniques.

Early studies typically relied on handcrafted fea-
tures extracted from source posts and user profile

attributes using traditional machine learning mod-
els, such as SVM and Random Forest. (Qazvinian
et al., 2011; Takahashi and Igata, 2012; Yang et al.,
2012; Ma et al., 2015). With the emergence of
neural-based NLP models (Mikolov et al., 2013),
rumors started to be modeled with contextual em-
beddings such as Glove (Pennington et al., 2014)
and ELMo (Peters et al., 2018). In addition, graph-
based neural models have been employed to learn
relationships from the propagation network of ru-
mors, which includes retweet and comment chains
(Bian et al., 2020; Lin et al., 2021; Yang et al.,
2021). Other methods adopted multi-modal ap-
proaches to go beyond text and capture informa-
tion from images (Wang et al., 2020; Sun et al.,
2021; Zhou et al., 2022).

Recent hybrid models began including contex-
tual information to improve rumor prediction per-
formance (Lu and Li, 2020; Rao et al., 2021; Tian
et al., 2022). The top-performing rumor detection
systems (e.g., DUCK (Tian et al., 2022)) rely both
on contextual information and user-level attributes,
with 98 F1-measure on widely used datasets such
as Weibo 16 (Ma et al., 2017) and CoAID (Cui and
Lee, 2020).

Most of these rumor detection approaches how-
ever have a major weakness, as they are trained
using random data splits which ignore a key tempo-
ral dimension of rumors and thus tend to overesti-
mate model performance of future unseen rumors
(Huang and Paul, 2018; Søgaard et al., 2021).
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Statistic Twitter 15 Twitter 16 Weibo 16 Weibo 20 Sun-MM
# of source posts 1,490 818 4,664 6,068 2374
# of True rumors 374 205 2,351 3,034 1,688
# of False rumors 370 205 2,313 3,034 686
# of Unverified rumors 374 203 - - -
# of Non-rumors 372 205 - - -
Average length of posts 19 19 105 88 -
Average # of comments 22 16 804 62 -
Average length of comments 242 202 8,484 13,592 -
Contextual Information
Source Posts 3 3 3 3 3

Comments G G G+S S -
User Profile Attributes 3 3 3 3 3

Images - - - - 3

Table 1: Dataset statistics. ‘G’ and ‘S’ denote comment propagation network (Graph) and comment
sequence (S) respectively. We also present contextual-based features obtained from each dataset.

2.2. The Effect of Temporal Concept
Drift in NLP Downstream Tasks

Previous work on legal, abusive language, COVID-
19, and biomedical classification tasks (Huang and
Paul, 2019, 2018; Chalkidis and Søgaard, 2022;
Mu et al., 2023b; Jin et al., 2023) has investigated
the sensitivity of classifiers to temporal concept
drift (i.e., the deterioration of their performance
due to temporal/topic variation) when evaluated on
chronological data splits. However, temporal con-
cept drift mainly affects the rumor text (i.e. new un-
seen topics), as rumors on the same topic posted
by different users have different contextual infor-
mation. Mu et al. (2023a) explore the impact of
temporal concept drift on rumor detection using
standard text classifiers such as logistic regression
and fully fine-tuned BERT.

In contrast, this paper performs an extensive em-
pirical evaluation of the effect of temporal concept
drift on neural rumor detection models which com-
bine textual and contextual information.

3. Experimental Setup

3.1. Data

For comprehensiveness and reliability, our experi-
ments are carried out on five datasets (see Table 1
for details), which have been widely used in prior
rumor detection research (Bian et al., 2020; Rao
et al., 2021; Sun et al., 2021; Tian et al., 2022; Lin
et al., 2022):

• Twitter 15 & Twitter 16 (Ma et al., 2017) are
two English datasets that include tweets cate-
gorized into one of four categories: True Ru-
mor (T), False Rumor (F), Non-rumor (NR)
and Unverified Rumor (U).

• Weibo 16 (Ma et al., 2017) consists of
4,664 Weibo posts in Chinese. It comprises
2,313 false rumors debunked by the offi-
cial Weibo Fact-checking Platform and 2,351
non-rumors sourced from mainstream news
sources.

• Weibo 20 (Rao et al., 2021) is a Chinese ru-
mor detection dataset similar to Weibo 16. It
provides 3,034 non-rumors and 3,034 false ru-
mors from the same Weibo fact-checking plat-
form as Weibo 16.

• Sun-MM (Sun et al., 2021) comprises 2,374
annotated tweets (i.e., rumor or non-rumor)
that cover both textual (i.e., source post) and
visual (i.e., image) information. It is typically
used for multi-modal rumor detection.

It should be noted that most prior rumor detec-
tion models are typically evaluated on two or three
datasets only, typically from a specific language.

3.2. Models
Following (Kochkina et al., 2023), we evaluate a
number of top-performing rumor detection mod-
els.3. Each dataset is used to train at least three
models, based on the information it provides (see
Table 2 for details).

Weak Baseline For reference, we provide a
weak baseline by randomly generating predictions
compared to the ground truth labels of the test set.

SVM-HF (Source Post + User Profile) Similar
to (Yang et al., 2012; Ma et al., 2015), we use a

3Here, we only consider reproducible models with
publicly available code and full implementation details.
Note that these models have been extensively employed
as baselines in prior research (Rao et al., 2021; Tian
et al., 2022)
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Contextual Information DatasetsModels Post Comment User Image Twitter 15 Twitter 16 Weibo 16 Weibo 20 Sun-MM
SVM-HF 3 - 3 - 3 3 3 3 3

BERT 3 - - - 3 3 3 3 3

H-Trans 3 3 - - - - 3 3 -
Bi-GCN 3 3 - - 3 3 3 - -
Hybrid 3 - - 3 - - - - 3

Table 2: Model details.

linear SVM model using source posts represented
with TF-IDF and various handcrafted features ex-
tracted from user profile attributes e.g., number of
followers, account status (i.e., whether a verified
account or not), number of historical posts, etc.

BERT (Source Post) In line with previous work
(Rao et al., 2021; Tian et al., 2022), we use solely
source posts as input to fine-tune the Bert-base
model4 (Devlin et al., 2019) by adding a linear layer
on top of the 12-layer transformer architecture with
a softmax activation. We consider the special to-
ken ‘[CLS]’ as the post-level representation.

Bi-GCN (Comment Network) To model the
network of comment propagation, we use Bi-
Directional Graph Convolutional Networks (Bi-
GCN) (Bian et al., 2020). Bi-GCN employs two
separate GCNs with (i) a top-down directed graph
representing rumor spread to learn the patterns of
rumor propagation; and (ii) another GCN with an
opposite directed graph of rumor diffusion.

Hierarchical Transformers (Source Post +
Comment Sequence) Similar to prior work (Rao
et al., 2021; Tian et al., 2022), we use a hierar-
chical transformer-based network to encode sep-
arately the source post and its sequence of com-
ments.5 We then add a self-attention and a linear
projection layer with softmax activation to combine
the hidden representation of posts and comments.

Hybrid Vision-and-Language Represen-
tation (Source Post + Image) We use visual
transformer6 (ViT) (Dosovitskiy et al., 2020) and
BERT (Devlin et al., 2019) to represent images
and source posts of rumors for the Sun-MM
dataset. We then combine the two hidden repre-
sentations by adding a fully connected layer with
softmax activation for rumor classification.

3.3. Data Pre-processing
We begin by processing all the source posts and
comments, replacing @mentions and links with

4We use bert-base-uncased and bert-base-chinese
models from Hugging Face (Wolf et al., 2020) for English
and Chinese datasets respectively.

5Given that the total number of tokens of the source
post and all comments exceeds the maximum input
length (i.e., 512 tokens) of most Bert-style models.

6https://huggingface.co/google/
vit-base-patch16-224

Figure 2: An example of using forward and back-
ward chronological data splits on Weibo 20 dataset
(including rumors from 2016 to 2020). There is no
overlap among the three subsets.

special tokens such as ‘@USR’ and ‘URL’ respec-
tively. For the English datasets, we also convert
all tweets to lowercase before feeding them to the
bert-base-uncased model.

3.4. Evaluation Metrics

We run each model three times with different ran-
dom seeds. In accordance with the original set-
tings (Ma et al., 2016, 2017; Rao et al., 2021),
we report the average macro precision, recall, F1-
score, and accuracy for all binary datasets, i.e.,
Weibo 16, Weibo 20, and Sun-MM. Since the Twit-
ter datasets (Twitter 15 & 16) have multi-class la-
bels, we report the average accuracy and F1-score
for each class.

3.5. Hyper-parameters

For linear SVM, we use word-level and character-
level tokenizers for English and Chinese datasets
respectively. We set learn rate as 2e-5 and
batch size as 16 for the Bert-base model. For
all transformer-based models, we set the max in-
put length as 512 covering all posts. The imple-
mentation details of Bi-GCN are available from the
open-source repositories.7 All experiments are
performed using a single Nvidia RTX Titan GPU
with 24GB memory.

7https://github.com/TianBian95/BiGCN

https://huggingface.co/google/vit-base-patch16-224
https://huggingface.co/google/vit-base-patch16-224
https://github.com/TianBian95/BiGCN
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Twitter 15 Twitter 16
NR F T U NR F T UModels & Splits Acc. F1 F1 F1 F1 Acc. F1 F1 F1 F1

Weak Baseline 0.240 0.224 0.246 0.238 0.254 0.248 0.174 0.250 0.300 0.264
Random 0.739 0.727 0.701 0.803 0.728 0.709 0.697 0.602 0.858 0.663
Forward 0.413 0.589 0.366 0.092 0.304 0.373 0.523 0.226 0.297 0.214SVM-HF
Reverse 0.353 0.590 0.462 0.063 0.062 0.380 0.520 0.103 0.411 0.368
Random 0.615 0.561 0.593 0.692 0.599 0.598 0.381 0.615 0.698 0.625
Forward 0.366 0.382 0.226 0.457 0.328 0.380 0.446 0.306 0.110 0.489BERT
Reverse 0.367 0.430 0.256 0.455 0.292 0.428 0.371 0.210 0.662 0.483
Random 0.838 0.785 0.841 0.886 0.785 0.854 0.745 0.861 0.939 0.847
Forward 0.415 0.509 0.386 0.311 0.319 0.489 0.551 0.381 0.401 0.511Bi-GCN
Reverse 0.498 0.584 0.339 0.786 0.118 0.517 0.502 0.413 0.667 0.419

Table 3: Experimental results of Twitter 15 & 16 datasets across three different data split strategies.
Cells in bold indicate the best results from all models. Cells in gray indicate that the model trained
using random splits achieves significantly better performance than using both forward and backward
chronological splits. (p < 0.05, t-test).

Weibo 16 Weibo 20 Sun-MMModels Splits Acc. P R F1 Acc. P R F1 Acc. P R F1
Weak Baseline 0.493 0.493 0.492 0.493 0.501 0.501 0.501 0.501 0.514 0.512 0.514 0.512

Random 0.906 0.907 0.906 0.906 0.870 0.870 0.868 0.870 0.783 0.742 0.758 0.749
Forward 0.823 0.855 0.822 0.819 0.680 0.691 0.680 0.676 0.689 0.635 0.630 0.635SVM-HF
Backward 0.752 0.757 0.752 0.752 0.801 0.802 0.801 0.801 0.771 0.740 0.676 0.692
Random 0.918 0.918 0.917 0.918 0.920 0.921 0.920 0.920 0.839 0.807 0.806 0.806
Forward 0.889 0.892 0.888 0.888 0.738 0.756 0.738 0.732 0.708 0.682 0.708 0.680BERT
Backward 0.809 0.812 0.809 0.808 0.898 0.899 0.898 0.898 0.807 0.783 0.735 0.748
Random 0.892 0.893 0.885 0.887 - - - - - - - -
Forward 0.843 0.843 0.834 0.835 - - - - - - - -Bi-GCN
Backward 0.762 0.783 0.762 0.747 - - - - - - - -
Random 0.955 0.956 0.955 0.955 0.959 0.960 0.959 0.959 0.853 0.818 0.829 0.823
Forward 0.946 0.949 0.946 0.946 0.850 0.860 0.849 0.850 0.707 0.687 0.725 0.685H-Trans / Hybrid
Backward 0.792 0.833 0.785 0.793 0.940 0.938 0.935 0.938 0.821 0.782 0.805 0.791

Table 4: Experimental results of Weibo 16 & 20 and Sun-MM across three different data split strategies.
Cells in bold indicate the best results from all models. Cells in gray indicate that the model trained
using random splits achieves significantly better performance than using both forward and backward
chronological splits. (p < 0.05, t-test).

4. Evaluation Strategies

4.1. Data Splits
To examine the effect of data splitting strategies on
the models’ predictive performance, we compare
three strategies: the widely used random data split
against two types of chronological data splits (see
Figure 2).

• Forward Chronological Splits For each
dataset, we initially sort all rumors chronolog-
ically, from the oldest to the newest. We then
divide them into three subsets: a training set
(containing 70% of the oldest rumors), a de-
velopment set (10% of the rumors that were
posted after those in the training set but before
those in the test set), and a test set (contain-
ing the 20% most recent rumors). This data
split strategy allows the model to be trained
and fine-tuned on older rumors and then be
evaluated on the most recent ones.

• Backward Chronological Splits In contrast,

here all rumors are sorted starting from the
most recent ones to the oldest ones, and
then are split in the same way as the forward
chronological splits. This allows the model to
be trained on the newest rumors and evalu-
ated on the oldest ones.

• Random Splits This is the most commonly
adopted data split strategy in prior work. All
datasets are divided into three subsets using
a stratified random split approach8.

These two different temporal split strategies en-
able the evaluation of temporal concept drift ef-
fects on model performance.

Some prior rumor detection research has used
a leave-a-rumor-out strategy (Lukasik et al., 2015,
2016), where each dataset is divided into N folds,
where N denotes the the number of unique rumor

8We use a data split tool from sklearn:
https://scikit-learn.org/stable/modules/generated/
sklearn.model_selection.train_test_split.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
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events in the given dataset. In this case, rumor
detection models are evaluated using N-fold cross
validation, i.e., using N − 1 unique rumors and all
associated posts as the training set and the posts
about the last remaining rumor as the test set. In
this way, it is possible to evaluate model perfor-
mance on new unseen rumors. However, it has
not been possible to experiment with this data split
protocol as none of the datases used in this paper
cluster posts into individual events which give rise
to a unique rumor, with associated multiple social
media posts about it.

5. Results and Discussion

5.1. Model Performance on Random
Splits

The experimental results for all rumor detection ap-
proaches and data split strategies are shown in Ta-
bles 3 and 4. We can observe that training on ran-
dom splits always leads to significant overestima-
tion (t-test, p < 0.01) of model accuracy as com-
pared to training on both forward and backward
chronological splits.

Taking the best performing Bi-GCN model on
Twitter 15 as an example, we observe a decrease
in model accuracy of at least 39.4% when com-
paring test results on random splits against the
two chronological splits. Furthermore, we find that
some models (e.g., SVM-HF and Bi-GCN on Twit-
ter 15) perform even worse than a weak base-
line (e.g., the F1-measure results for the false ru-
mor category (F ) across two chronological splits
in comparison with the weak baseline) that uses
random predictions. As expected, our empirical
findings align with previous studies of temporal
impact in other downstream NLP tasks (Huang
and Paul, 2019; Chalkidis and Søgaard, 2022; Mu
et al., 2023b).

The results indicate that models learn to classify
accurately rumor posts in the test set only when
they are highly similar to posts in the training data,
even though the remaining contextual information
(such as user profile attributes, comments, and
sometimes images) are different. To further inves-
tigate the impact of this semantic overlap, we con-
duct an ablation study (Section 5.3) and a similarity
analysis (Section 5.4).

5.2. Forward v.s. Backward
Chronological Splits

Our experimental results show that models
trained using backward chronological splits
achieve higher accuracy on all datasets (except
Weibo 16) as compared to those on forward
chronological splits. This suggests that the mod-

els have the tendency to learn recurrent rumors.
This observation is consistent across datasets.
For instance, the accuracy of all models on the
Twitter 16 dataset is higher when random splits
are used for training as compared to forward splits,
but lower when compared to backward splits. This
may be attributed to similarities between the
training and test sets. This is investigated further
in Section 5.4.

5.3. Ablation Study
In order to evaluate the impact of the source post’s
text on rumor detection performance, we perform
a source post removal ablation study9. Our hypoth-
esis is that after removing the source posts, there
will be no significant difference in the performance
of the rumor detection models trained according to
the different data split strategies. We conduct ex-
periments using (i) SVM-HF on all datasets, (ii) the
Hier-Transformer model on Weibo 16 and Weibo
20, and (iii) visual transformer (ViT) on Sun-MM
dataset.

The results of the ablation study are reported in
Table 6 and Table 5. We demonstrate that when
the source posts are removed from the input, all
models except for ViT model (see Section 5.4 for
further analysis) no longer exhibit consistent su-
periority over forward and backward chronological
splits as compared to using random splits. As we
have shown, two identical rumors can have differ-
ent contextual information. This indicates that tem-
poralities are not commonly reflected in the ma-
jority of contextual information associated with ru-
mors in social media. Notably, even without the
source post, the H-Trans model can achieve com-
petitive performance using chronological splits.
For instance, it achieves up to 93.8% and 94.4%
accuracy on Weibo 16 and Weibo 20, respectively,
which is comparable to the performance of the Bi-
GCN and original H-Trans models (which take the
source post as input). We hypothesize that rumor
debunking information may be present in the com-
ments (for example, see Figure 1), which can as-
sist in the decision-making process of the rumor
classifier. Next we conduct linguistic analysis to
elucidate the distinctions between comments from
rumors and non-rumors in Weibo 16 & 20.

5.4. Similarity Analysis
This section explores the impact of data split strate-
gies on the content and contextual information in
the respective training and test sets. We investi-
gate whether a decrease in model predictive per-

9Previous ablation studies have focused primarily on
removing new features rather than source posts (Sun
et al., 2021; Tian et al., 2022)
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Twitter 15 Twitter 16Models Splits Acc. NR F T U Acc. NR F T U
Random 0.383 0.609 0.050 0.356 0.132 0.343 0.494 0.140 0.273 0.229
Forward 0.375 0.635 0.039 0.374 0.086 0.417 0.689 0.333 0.046 0.158SVM-HF

w/o SP Reverse 0.361 0.590 0.133 0.359 0.050 0.328 0.499 0.178 0.170 0.021

Table 5: Ablation study of Twitter 15 & 16 datasets across three different data split strategies. Cells in
bold indicate the best results from all models.

Weibo 16 Weibo 20 Sun-MMModels Splits Acc. P R F1 Acc. P R F1 Acc. P R F1
Random 0.887 0.889 0.887 0.887 0.773 0.801 0.773 0.768 0.707 0.663 0.510 0.439
Forward 0.936 0.944 0.936 0.936 0.699 0.753 0.699 0.681 0.701 0.602 0.507 0.434SVM-TS

w/o SP Reverse 0.683 0.698 0.684 0.678 0.831 0.837 0.831 0.830 0.713 0.655 0.52 0.453
Random 0.929 0.930 0.929 0.929 0.925 0.926 0.925 0.925 0.726 0.674 0.691 0.681
Forward 0.938 0.935 0.934 0.935 0.851 0.856 0.851 0.851 0.655 0.521 0.514 0.505H-Trans / Hybrid

w/o SP Reverse 0.730 0.795 0.732 0.715 0.944 0.945 0.944 0.944 0.623 0.516 0.514 0.514

Table 6: Ablation study of Weibo 16 & 20 and Sun-MM datasets across three different data split strategies.
Cells in bold indicate the best results from all models.

Dataset Splits IOU DICE Acc.
Random 19.6 23.2 0.615
Forward 11.2 13.8 0.366Twitter 15
Backward 11.7 14.5 0.367
Random 17.1 20.3 0.598
Forward 9.9 12.3 0.380Twitter 16
Backward 10.6 13.1 0.428
Random 28.4 32.8 0.918
Forward 23.5 28.4 0.892

Weibo 16
Source

Post Backward 22.3 27.2 0.812
Random 26.2 30.2 0.920
Forward 20.9 24.6 0.738

Weibo 20
Source

Post Backward 21.8 26.2 0.898
Random 23.5 27.2 0.839
Forward 14.0 16.6 0.708Sun-MM
Backward 13.4 17.3 0.807
Random 26.7 31.3 0.929
Forward 26.2 31.2 0.938Weibo 16

Comment Backward 25.4 30.0 0.730
Random 26.0 30.3 0.925
Forward 25.5 30.1 0.851Weibo 20

Comment Backward 24.8 28.5 0.944

Table 7: Textual similarity betweet training and test
sets using random and temporal data splits.

formance occurs due to variations between the
two subsets used for training and testing, and
whether the difference in performance lessens as
the datasets become more similar to each other.
Source Post Similar to Kochkina et al. (2023);
Mu et al. (2023b), we first measure the difference
in textual similarity between training and test sets
generated using random and chronological data
splits using two standard matrices with ranges
from 0 to 1.

Intersection over Union (IoU) (Tanimoto, 1958)

IoU =
|V Train ∩ V Test|
|V Train ∪ V Test|

(1)

DICE coefficient (DICE) (Dice, 1945)

DICE =
2× |V Train ∩ V Test|
|V Train|+ |V Test|

(2)

where V Train and V Test refer to the set of unique
words from training and test sets; and |V Train ∩
V Test| and |V Train∪V Test| indicate the number of
unique words that appear in the intersection and
union of training and test sets respectively. When
the two sets have no shared vocabulary list, the
IoU and DICE values will be 0, while if they are
identical, the IoU and DICE values will be 1.

We display the similarity of the source posts be-
tween training and test sets using different data
split strategies in Table 7. Additionally, we provide
the accuracy of the BERT model (which takes only
the source post as input) for each dataset as a ref-
erence.

We demonstrate that using random splits leads
to significantly higher IoU and DICE values (t-test,
p < 0.001), indicating greater similarities between
the training and test sets compared to both forward
and backward chronological splits. This suggests
that rumors with similar content, resulting from tem-
poral concept drift, appear in both training and test
sets when employing random data splits. Addition-
ally, we discover a positive correlation (using Pear-
son’s Test) between model accuracy and the sim-
ilarity distance of training and test sets, as mea-
sured by both IOU (Pearsons’ r = 0.865, p < 0.05)
and DICE (Pearsons’ r = 0.879, p < 0.001) val-
ues. In other words, higher textual similarities cor-
respond to better classifier performance.
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Figure 3: Two rumors from the Sun-MM Dataset related to the ’plane crash’ event contain similar images
and were published during a comparable time period. More examples are displayed in the Appendix (see
Figure 4).

User Profile Attributes We use cosine similarity
to assess the difference between the mean values
of user profile attributes from the training and test
sets. However, we do not observe a significant dif-
ference in cosine similarity values when using both
random and chronological data splits, as all rumor
speaders are unique across all datasets.

Comments Considering the comparable model
performance, with accuracy of up to 93.8% and
94.4% on Weibo 16 and Weibo 20, when using
only comments as input, we hypothesize that the
comments from the two classes are significantly
different. To identify the difference in comments
that distinguish between rumors and non-rumors
in Weibo 16 and Weibo 20, we employ the uni-
variate Pearson’s correlation test (Schwartz et al.,
2013). We observe that there is a large amount
of words related to debunking rumors (e.g., ‘false’,
‘really?’, and ‘truth’) in the comments associated
with false rumors on both Weibo 16 and Weibo
20. On the other hand, comments associated with
non-rumors are more words related to the daily
life of the public. Note that non-rumors in Weibo
datasets are collected from mainstream media ac-
counts.

Images Ablation study results (see Table 6)
show that only the ViT model, which uses images
alone as input, is affected by the temporal data
splits (i.e., the deterioration of model performance).
We further explore the Sun-MM dataset and un-
cover that rumors with similar content are usually
posted with similar images. We show examples in
Figure 3 . Note that similar semantic objects (e.g.,
entitles (Sun et al., 2021)) can be extracted from
similar images, which can impact the accuracy of
the model.

6. How do we properly use static
datasets?

Apart from prioritizing skewed methodologies
solely for achieving high accuracy on rumor detec-
tion datasets, it is essential to develop a deeper
comprehension of the protocol we employ and gen-
erate significant insights. Given the limitations
raised by our experiments, we make the following
practical suggestions for developing new rumor de-
tection systems on static datasets:

• For practical applications that aim to detect
unseen rumors, it is essential to consider
chronological splits when evaluating all rumor
detection approaches on static datasets, in
addition to standard random splits. By using
forward and backward chronological splits, we
can assess the ability of the rumor classifiers
to handle both earlier and older unseen ru-
mors.

• Considering that temporalities (i.e., the tem-
poral concentration of rumor topics) typically
occur in widely used rumor detection datasets
(e.g., Twitter 15&16 and Weibo 16 (Ma et al.,
2016, 2017)), one can apply an additional
data pre-processing measure to filter out ru-
mor events with multiple posts. For instance,
using out-of-the-box methods such as Leven-
shtein distance (Levenshtein et al., 1966) and
BERTopic (Grootendorst, 2022), we identified
a total of 9 similar rumors that resemble the
false rumor depicted in Figure 1. After con-
ducting a more in-depth error analysis on the
predictions generated by the H-Trans model,
which has demonstrated the highest predic-
tive performance on Weibo 16, we discovered
that the models can accurately classify all of
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these rumors in the test set when employing
random data splits.

• Current evaluation metrics, such as accuracy
and F1-measure, are unable to accurately as-
sess the true capability of rumor classifiers in
detecting unseen rumors. Therefore, there is
a need for new measures to evaluate the ac-
curacy of model predictions for unknown ru-
mors. For example, one can calculate the ac-
curacy of a rumor detection system by exclud-
ing known rumors (i.e., similar rumors appear-
ing in the training set) from the test set.

• Given the limitations of the current pipeline
that relies solely on static datasets, we ar-
gue that evaluation models should not be re-
stricted to such datasets. By leveraging the
consistent format of datasets collected from
the same platform (as shown in Table 1), for
example, one can explore broader temporal-
ities by training a rumor classifier on Twitter
15 and evaluating its performance on Twitter
16. This protocol enables a more compre-
hensive examination of the generalizability of
rumor detection systems, which is crucial for
their practical applications in the real world
(Moore and Rayson, 2018; Yin and Zubiaga,
2021; Kochkina et al., 2023).

7. Conclusion

In this paper, we evaluate the limitations of exist-
ing widely used rumor detection models trained on
static datasets. Through empirical analysis, we
demonstrate that the use of chronological splits
significantly diminishes the predictive performance
of widely-used rumor detection models. To bet-
ter understand the causes behind these limitations,
we conduct a fine-grained similarity analysis and
an ablations study. Finally, we provide practical
recommendations for future research in the ad-
vancement of new rumor detection systems.

Limitations and Future Work We conducted an
empirical study on current rumor detection mod-
els, utilizing both the source post and standard
contextual information (such as comments, im-
ages, and user profile attributes) as input. How-
ever, previous research has employed hidden fea-
tures, such as sentiment and entities, which can
be extracted from the source post and contextual
information (Rao et al., 2021; Sun et al., 2021). We
consider this as future work and aim to explore ad-
ditional feature settings. Besides, the current work
is limited to English and Chinese, and we acknowl-
edge that further research into more multilingual
datasets should be considered in the future.
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Figure 4: Four pairs of rumors related to the ’plane crash’ event (from the Sun-MM Dataset) contain
similar images and were published during a comparable time period.
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