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Abstract

Narrative reasoning relies on the understanding of eventualities in story contexts, which requires a wealth of

background world knowledge. To help machines leverage such knowledge, existing solutions can be categorized into

two groups. Some focus on implicitly modeling eventuality knowledge by pretraining language models (LMs) with

eventuality-aware objectives. However, this approach breaks down knowledge structures and lacks interpretability.

Others explicitly collect world knowledge of eventualities into structured eventuality-centric knowledge graphs (KGs).

However, existing research on leveraging these knowledge sources for free-texts is limited. In this work, we propose

an initial comprehensive framework called EventGround, which aims to tackle the problem of grounding free-texts to

eventuality-centric KGs for contextualized narrative reasoning. We identify two critical problems in this direction:

the event representation and sparsity problems. We provide simple yet effective parsing and partial information

extraction methods to tackle these problems. Experimental results demonstrate that our approach consistently

outperforms baseline models when combined with graph neural network (GNN) or large language model (LLM)

based graph reasoning models. Our framework, incorporating grounded knowledge, achieves state-of-the-art

performance while providing interpretable evidence.

Keywords: Knowledge grounding, Eventuality-centric Knowledge Graphs, Reasoning

1. Introduction

Narrative reasoning, such as predicting story

endings and reasoning with scripts, is a funda-

mental task in natural language understanding

(Mostafazadeh et al., 2016; Li et al., 2018; Mori

et al., 2020). Reasoning with narratives depends

on the understanding of eventualities12. Consider

the following story:

“Tom was tired and wanted to have fun.

He bought a movie ticket for Harry Potter.”

It can be broken down into multiple sub-sentences:

(E1) Tom was tired. (E2) Tom wanted to

have fun. (E3) He bought a movie ticket

for Harry Potter.

where each of them can be regarded as an event

with a verb and one to several arguments. These

events, which are considered as basic semantic

units in various NLP research (Zhang et al., 2020;

Yu et al., 2020; Zhong et al., 2022; Zhang et al.,

2022), convey the majority of the meaning within

their respective contexts.

For human beings, the comprehension of these

semantic units is found to heavily rely on our back-

ground world knowledge beyond contexts (Day

1We use the linguistic term “eventuality,” which in-

cludes events, states, and activities (Mourelatos, 1978;

Bach, 1986). For simplicity, we use the terms “event”

and “eventuality” interchangeably.
2Jiayang completed this work while interning at Ama-

zon AWS AI Lab.

Tom was tired and wanted to have fun. He 

bought a movie ticket for Harry Potter.
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Figure 1: Given a piece of story, our goal is to

ground it to eventuality-centric KGs to retrieve con-

textualized background world knowledge for better

narrative understanding.

et al., 1998). For instance, given E1 and E2, we

may infer that Tom might have just finished his

work. Since we know watching movies is a lot of

fun, we find it reasonable that Tom chose to do so

(from E2 to E3). We can also reason from E3 that

Tom would have to arrive at the theater before the

movie started.

To model such world knowledge on machines,

most existing work fall into two paradigms. One is

to implicitly model event knowledge by pretraining

LMs with event-aware objectives (Yu et al., 2020;

Zhou et al., 2021, 2022b,a). This paradigm, how-

ever, sacrifices transparency and explanability of

reasoning in its philosophy of design. In compar-
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ison, another paradigm focuses on modeling the

explicit symbolic event knowledge, usually in the

form of eventuality-centric knowledge graphs (KGs,

such as ASER (Zhang et al., 2022) and ATOMIC

(Sap et al., 2019)). In this direction, how to lever-

age the symbolic event knowledge in these KGs

for reasoning remains under-explored. The hand-

ful research here only work on a restricted format

(subject-verb-object) of texts and could not gener-

alize to free-texts (Li et al., 2018; Lv et al., 2020;

Lee and Goldwasser, 2019; Lee et al., 2020).

In this paper, we make a step forward to examine

the problem of grounding3 free-texts to eventuality-

centric KGs. This problem is non-trivial due to the

distinct characteristics of events, including:

1. Difficulty in representing events. First, events

appear entangled in texts. They tend to share

arguments with other events in the same

context (e.g., E1 and E2). Second, when

separated from the context, events lose co-

reference information in the argument level.

For instance, it is hard to discern whether the

pronoun “he” in event E3 refers to “Tom” in E1

and E2 or not.

2. Sparsity of events. Events are sparse in nat-

ural language. For instance, by adding or re-

moving details, one could paraphrase E3 into

infinite events describing the same scenario,

such as “he purchased a ticket online for the

latest Harry Potter” or “he booked a ticket”.

Given the incomplete nature of eventuality-

centric KGs, matching arbitrary events to KGs

has rather high failure rate.

To tackle the above problems, we propose the

very first framework to explicitly ground free-texts

to eventuality-centric KGs. For the event represen-

tation problem, we equip semantic parsing based

event extraction with an event normalization mod-

ule, which separates events from contexts while

preserving co-reference information. Motivated by

humans’ abstract thinking process, we propose a

partial information extraction approach to tackle

the sparsity problem. This approach conceptu-

alizes events into multiple partial events by omit-

ting argument details. Interestingly, we empirically

demonstrate that these solutions significantly alle-

viate the sparsity problem. Further, we ground the

partial events to KGs to get joint reasoning sub-

graphs. Subsequently, we employ two common

graph reasoning models to leverage this knowl-

edge. In addition to a model based on graph neu-

ral networks (GNN), we also utilize a model based

on a large language model (LLM). Experimental

results on three narrative reasoning tasks show

3Here, the term “grounding” refers to a process similar

to “linking” used in “entity linking”, where the target is the

eventuality-centric KGs.

that our framework consistently outperforms cur-

rent state-of-the-art models. Lastly, we provide a

qualitative study to showcase how our approach

can provide interpretable evidence for model pre-

dictions.

To summarize, the paper’s contributions are4:

1. We develop an initial formulation for the prob-

lem of grounding free-texts to eventuality-

centric KGs.

2. We propose EventGround, a systematic ap-

proach, to solve the event representation and

sparsity problems, and perform narrative rea-

soning based on the grounded information.

3. Experimental results show that our approach

outperforms strong baselines and achieves

new state-of-the-art performance on three

datasets, while providing human-interpretable

evidence.

2. Related work

Reasoning on narratives is a fundamental

task (Mostafazadeh et al., 2016; Li et al., 2018;

Mori et al., 2020; Jiayang et al., 2023) and has

attracted much interest in the NLP community. The

most crucial problem in narrative reasoning is mod-

eling the relationship between events, which of-

ten requires background world knowledge (Day

et al., 1998; Mostafazadeh et al., 2016). Many

large scale knowledge graphs (KGs) such as

ATOMIC (Sap et al., 2019), ConceptNet (Speer

et al., 2017), ASER (Zhang et al., 2020, 2022)

and GLUCOSE (Mostafazadeh et al., 2020) have

been constructed in recent years. Current solutions

on leveraging the knowledge in these resources

can be coarsely categorized into the following two

groups. An overview of the two paradigms is pre-

sented in Figure 6.

The knowledge model paradigm leverages exter-

nal KGs by pretraining LMs with carefully designed

objectives. Most existing knowledge enhanced

LMs focused on using entity-centric KGs (Zhang

et al., 2019; Peters et al., 2019; Févry et al.,

2020; Verga et al., 2020; Xiong et al., 2020; Sun

et al., 2019b, 2021; Joshi et al., 2020). As for

using external event knowledge, the knowledge

model paradigm focus on finetuning language mod-

els on event-aware KGs, such as event-pair rela-

tion modeling (Bosselut et al., 2019; West et al.,

2021; Zhou et al., 2021), whole event recover-

ing/masking (Zhou et al., 2022b; Yu et al., 2020),

and correlation-based event ranking (Zhou et al.,

2022a).

4The code and data are available at https://github.

com/HKUST-KnowComp/EventGround.

https://github.com/HKUST-KnowComp/EventGround
https://github.com/HKUST-KnowComp/EventGround
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Figure 2: An overview of EventGround.

The retrieval-and-integration paradigm, in con-

trast, explicitly retrieves triples or subgraphs from

external KGs. Recent work on reasoning with exter-

nal KB and texts have explored grounding entities

to KGs, such as (Sun et al., 2018, 2019a; Xiong

et al., 2019; Min et al., 2019; Lee et al., 2021),

and (Lin et al., 2019; Feng et al., 2020; Yasunaga

et al., 2021) in open-domain QA, commonsense

QA, and narrative reasoning. However, most of

them ground to entity-centric KGs (e.g. the entity

part of ConceptNet (Speer et al., 2017)), which

have little or no event knowledge. Although some

(Lv et al., 2020; Lee and Goldwasser, 2019; Lee

et al., 2020; Li et al., 2018) on script reasoning

have investigated the usage of events, their meth-

ods are restricted to the “subject-verb-object”-like

structured texts in the MCNC task, and have diffi-

culty extending to general free-texts. In compari-

son, we tackle the more difficult problem of ground-

ing events in free-texts to eventuality-centric KGs.

The wide adoption of AI critically needs explain-

ability (Hoffman et al., 2018). Thus, despite the

appeal of a simpler pipeline (aided by the availabil-

ity of large LMs), this work extends the retrieval-

and-integration paradigm for grounding free-texts

to eventuality-centric KGs for narrative reasoning.

As opposed to event grounding, a similar term

“event linking” has been used in the literature,

where they either focus on cross-document event

co-reference (Nothman et al., 2012; Krause et al.,

2016), or event co-reference to Wikipedia pages

(Yu et al., 2021). Moreover, their “event” refers to

specific happenings such as “World War II” rather

than the more general eventualities in this work.

3. EventGround: Grounding
free-texts to eventuality-centric

knowledge graphs

In this section, we present our proposed frame-

work, EventGround. An overview is presented

in Figure 2. To tackle the event representation

problem, we equip semantic parsing based event

extraction (§ 3.1.1) with an event normalization

module (§ 3.1.2) to separate events from contexts

while preserving their arguments’ co-reference in-

formation. We solve the sparsity problem by with

a partial information extraction approach (§ 3.1.3).

We empirically prove that these solutions largely

alleviate the sparsity problem in § 4.5. At the end

of this section, we discuss grounding the partial

events to KGs to obtain joint reasoning subgraphs

in § 3.2, and present both the GNN-based and

LLM-based reasoning models in § 3.3.

3.1. Obtaining events

The proposed event acquisition pipeline includes

event extraction (§ 3.1.1), normalization (§ 3.1.2)

and partial information extraction (§ 3.1.3).

3.1.1. Event extraction

As shown in the previous example, events do not

naturally exist in free texts. Instead, an event may

share arguments with (e.g., E1 and E2) or contain

another event. Therefore, a special extraction step

is needed to separate events from their contexts.

In this work, we consider the semantic parsing

based methods to extract events from their con-

texts. For each piece of text s = [s1, s2, · · · , sn]
with n sentences, we conduct semantic role la-

beling (SRL) on the text to extract a series

of verb-centric events P = {p1, p2, · · · , pm},

where each event pi = (verbi,Ai) has a trigger

verbi and a set of arguments Ai. Each argu-

ment aij ∈ Ai has a semantic role role(aij) ∈

{ARG0, ARG1, · · · , ARGM}5. In addition, we de-

fine the operator text(pi) to obtain the text of pi.

3.1.2. Event normalization

It is noteworthy that the extracted events suffer

from the loss of co-reference information. For in-

stance, here are three events extracted from a

text:6

(1) The general had some wine at a party.

(2) He felt sleepy.

(3) He said goodbye to them.

where “the general” and “he” refer to the same per-

son, while “them” refers to another group of people.

A system would not be aware of this co-reference

5The annotation follows the PropBank (Palmer et al.,

2005) annotation guideline, where the numbered ar-

guments in general correspond to the roles: ARG0-

agent; ARG1-patient; ARG2-instrument, benefactive,

attribute; ARG3-starting point, benefactive, attribute;

ARG4-ending point; ARGM -modifier.
6For simplicity, we do not explicitly show verbs and

arguments of the events. All the words in events are

lemmatized in our pipeline, which is not shown in the

examples.
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relationship without contexts. This makes it difficult

to reason on the extracted events.

Motivated by previous work (Sap et al., 2019;

Fang et al., 2021) in constructing commonsense

KGs, we replace tokens referring to people with

special tokens7 (e.g., “[P0],” “[P0’s],” “[P1],”

where different numbers refer to different peo-

ple). For instance, “the general” and “he” are

replaced by “[P0],” and “them” is replaced by

“[P1].” Through this normalization process, the

co-reference information is preserved:

(1) [P0] had some wine at a party.

(2) [P0] felt sleepy.

(3) [P0] said goodbye to [P1].

In addition, the normalization helps reduce event

sparsity by removing details in the personal words.

For instance, “the general felt sleepy,” “Joe felt

sleepy,” and “he felt sleepy” will all be normalized

to “[P0] felt sleepy.” This increases their probability

of being successfully grounded to KGs.

3.1.3. Partial information extraction

The normalized events retain rich contextual de-

tails from the original texts, which are important

for downstream reasoning processes. However,

the sparsity of events can pose challenges in

event grounding, especially when most knowledge

graphs (KGs) are far from complete (Min et al.,

2013; Xiong et al., 2019). For example, a KG is

more likely to include a general event like “a person

is drinking” than “the general is drinking Sauvignon

Blanc on the balcony,” because the former is more

general and likely to occur frequently.

Humans strongly depend on conceptual abstrac-

tion to identify similarities among seemingly differ-

ent concepts and events, which enables generaliza-

tions to unfamiliar situations (Murphy, 2004). For

instance, we can learn that there is common ab-

straction between “buy a ticket for ‘Avengers’” and

“buy a ticket for ‘Harry Potter’,” and that how the

commonality “buy a ticket” relates to other events

such as we should “arrive at the theater in time”.

With this concept in mind, we use a partial informa-

tion extraction (PIE) phase to obtain partial events

as a method of controllable abstraction.

The partial information extraction is based on the

importance of event arguments in semantic role

labeling (Palmer et al., 2005). For instance, ARG0

and ARG1 have the highest importance as they

usually specify the subject and objects. In contrast,

the modifier argument ARGM express the least

7Specifically, the spans of personal words are de-

tected by syntactic parsing and animacy classification.

We then employ the co-reference information between

these spans to normalize all spans that refer to persons.

information, as it usually defines additional con-

straints of the predicate, such as when and where

the event happens. Specifically, we propose to

drop the event arguments in the descending order

of their importance. For event p = (verb,A) with

|A| = k, we iteratively drop its argument aj ∈ A,

such that the roles of dropped arguments follow

the order: (1) ARGM
8, (2) ARG2, ARG3, ARG4,

(3) ARG1 and (4) ARG0. The partial information

extraction on event set P results in a new set of

partial events Pabs, where Pabs = {p̂1, p̂2, · · · , p̂m}.

Each element p̂i = [p0i , p
1
i , · · · ] is a sequence of

partial events correspond to event pi ∈ P (p0i = pi).

Below is an example of p̂:

p0 ARG0: [P0] V: evacuated ARG2:

to a relative ’s house ARGM: last night.

p1 ARG0: [P0] V: evacuated ARG2:

to a relative ’s house.

p2 ARG0: [P0] V: evacuated.

p3 V: evacuated.

Each time an argument is dropped, the abstract

level of the partial event increases. Meanwhile,

partial events on higher abstract level (e.g. p2,

p3) are more likely to have been recorded in KGs,

which alleviates the sparsity problem. In § 4.5, we

empirically show that the partial information extrac-

tion improves the model performance by drastically

increasing the hit rate of event grounding.

3.2. Grounding to eventuality-centric KG

In this section, we discuss the event grounding

approach. In § 3.2.1, we describe how to map

events to eventuality-centric KGs to get the anchor

events that have the closest semantic meaning.

In § 3.2.2, we describe how to retrieve grounded

subgraphs based on the anchor events.

3.2.1. Event matching

Suppose we have an eventuality-centric KG G =
(V, E). V and E are the node set and the edge

set, respectively. Each node vi ∈ V is an event

with a text attribute text(vi). Then, for each event

p ∈ Pabs, our goal is to find the node v ∈ V (which

we term as “anchor event”) that is the most similar

to p:

v = argmin
v∈V

d(p, v), (1)

where d(·, ·) denotes the distance between events.

8We do not drop the negation (e.g., not, n’t, never )

and modals (e.g., will, may, can) modifier arguments,

since they are crucial building blocks in discourse as

revealed in the linguistics study (Jordan, 1998).
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To define the similarity, previous work have ex-

plored token-level similarity by computing the co-

sine distance for TF-IDF or BM25 vectors (Lv et al.,

2020). However, this method overlooks the seman-

tics of events, and constantly fails by mapping to

events with high inverse document frequency terms

(e.g. “[P0’s] lung gets punched” is matched with

“[P0] has lung cancer ”). Therefore, we turn to use

semantic similarity to match events.

Specifically, we encode event p and v with sen-

tence transformers (Reimers et al., 2019),9 and

compute d(p, v) by the L2 distance:

d(p, v) = ||SBERT(text(p)), SBERT(text(v))||2.
(2)

In practice, not every event can be successfully

matched with the correct ones. We empirically

set a threshold l over d(p, v) to filter out the failed

matches.10 As a result, partial events in Pabs are

matched to their anchor events in G, which we

denote by C. C = {ĉ1, ĉ2, · · · , ĉm}, where each ĉi
is a sequence of anchor events matched from p̂i.

3.2.2. Joint subgraph construction

Knowledge subgraph retrieval Based on the an-

chor events from the matching results in § 3.2.1,

we aim to retrieve a subgraph Gsub = (Vsub, Esub)
from G. Ideally, Gsub should contain the background

world knowledge related to the reasoning, mean-

while cover minimal number of additional eventu-

alities. Finding such a subgraph is essentially try-

ing to solve an NP-complete Steiner tree problem

(Garey and Johnson, 1977; Lin et al., 2019), which

is intractable. As a workaround, we search for the

shortest path within γ-hops between each event

pair in {(va, vb) : va ∈ ĉi, vb ∈ ĉj ; ĉi, ĉj ∈ C}. For

any path obtained, the nodes and edges along the

path are added to Gsub.

Joint subgraph construction Based on Gsub, we

construct a joint knowledge enhanced subgraph

Gjoint = (Vjoint, Ejoint) for reasoning. Specifically,

Gjoint includes all the nodes and edges in Gsub. In

addition, we add the context events in P as nodes

to Gjoint, where their grounding relation to anchor

events in C as well as the context relation (between

the previous and latter events in the order that they

appear in context) are added as edges.

3.3. Graph reasoning models

The retrieved subgraphs are then used for reason-

ing using either a GNN-based reasoning model or

an LLM-based reasoning model.

9
https://huggingface.co/sentence-transformers/

all-MiniLM-L6-v2
10We sample 100 matching results and empirically set

l=0.65 that filters out the most failed cases.

GNN-based reasoning model. We first encode

the text s and node v ∈ Vjoint using the language

model representation:

v = fLM(text(v)),

s = fLM(s).
(3)

Then, we employ a GNN module to perform reason-

ing on the joint subgraph Gjoint. We choose the

relational graph convolutional networks (RGCN)

(Schlichtkrull et al., 2018) so that the relational

information in Gjoint can be well modeled. Specifi-

cally, for each layer l in an L-layer GNN, the repre-

sentation h
(l)
i of node i ∈ Vjoint is updated by

h
(l+1)
i = σ

(

∑

r∈R

∑

j∈Nr(i)

1

|Nr(i)|
Wr · h

(l)
j

)

, (4)

where R is the set of edge types in Ejoint, Nr(i)
denotes the neighborhood with relation r of node i,

and σ(·) is an non-linear activation. Then, we ob-

tain the vector representation for Gjoint by pooling

the hidden node embeddings from the last layer

g = Pooling({hL
i : i ∈ Vjoint}). (5)

The final prediction comes from

p(s) ∝ MLP(s+ g), (6)

where MLP means a multi-layer perceptron module

to predict the probability of the output.

LLM-based reasoning model. We also explored

fusing the eventuality knowledge subgraph Gjoint

into LLMs. Since LLMs only receive sequence

inputs, we conduct sequentialization on subgraphs

in a format similar to (Madaan and Yang, 2021;

Sakaguchi et al., 2021). Using a transformation

function t(·), a subgraph Gjoint is transformed into

a piece of text sGjoint
(sGjoint

= t(Gjoint)), which

is then fed into LLM as part of the prompts. We

discuss variations of t(·) and other details in § 4.3.

4. Experiments

4.1. Datasets

We conduct experiments on three downstream

tasks on narrative reasoning. The statistics are

presented in Table 1.

• Story Cloze Test v1.0 (SCT-v1.0) was proposed

by Mostafazadeh et al. (2016) to evaluate the un-

derstanding of relations between events. Given

four consecutive sentences, the task is to predict

the correct ending from two possible choices.

• Story Cloze Test v1.5 (SCT-v1.5) Later, Sharma

et al. (2018) introduces a new version to correct the

artifacts in the previous release. For both versions,

we follow the common practice (Li et al., 2019;

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Name Train Valid Test

SCT-v1.0 1,771 100 1,871

SCT-v1.5 1,471 100 1,571

MCNC 140,331 10,000 10,000

Table 1: Statistics of datasets.

Yu et al., 2020) to randomly select 100 validation

samples for validation, and use the rest for training.

• Multiple Choice Narrative Chain (MCNC)

(Granroth-Wilding and Clark, 2016; Li et al., 2018)

is a 5-way multiple choice task that requires a sys-

tem to predict the ending event given its previous

context event sequence.

4.2. Eventuality-centric knowledge
graphs

There are eventuality-centric KGs such as ATOMIC

(Sap et al., 2019), GLUCOSE (Mostafazadeh et al.,

2020) and ASER (Zhang et al., 2020, 2022). In

this paper, we conduct experiments on ASER. The

nodes in ASER are eventualities, and the edges

between them are the discourse relations (e.g.

“Precedence”, “Contrast” and “Reason”) defined

in Penn Discourse Tree Bank (Prasad et al., 2008).

To enable grounding normalized events to KGs,

we normalize and aggregate eventualities in the

ASER-core-100 version11 by detecting and replac-

ing the personal words with aforementioned spe-

cial tokens. The resulting normalized ASER graph

contains 193k nodes and 6.6m edges.

4.3. Experimental Setup

We implement the event extractor with AllenNLP

SRL tools.12 To normalize the events, the syntactic

parser, animacy classifier, and co-reference tools

are from Stanford CoreNLP.13 In our implementa-

tion of the event matching module, due to the large

scale of |V|, we employ Faiss (Johnson et al., 2019)

to accelerate the similarity search. When retrieving

subgraph, we set the shortest path length limit γ to

3, meaning that there are at most 2 intermediate

nodes between any two anchor nodes along the

path.

We implement the GNN-based reasoning model

with Deep Graph Library (Wang et al., 2019) and

Huggingface-Transformers (Wolf et al., 2020). For

finetuning the supervised models, we conduct grid-

search over model hyper-parameters. The num-

ber of convolutional layers L are searched within

{2, 3, 4}, and the hidden size of convolutional layers

11We obtain the core-100 version by filtering out nodes

with frequency lower than 100 from ASER-core: https:

//hkust-knowcomp.github.io/ASER/
12
https://github.com/allenai/allennlp

13
https://stanfordnlp.github.io/CoreNLP/

∈ {64, 128, 256, 512}. For relational convolutional

layers, the number of bases is searched within

{−1, 10, 30}. We use the Adam (Kingma and Ba,

2015) optimizer with cosine learning rate schedule

to optimize the models. The learning rate is set to

1e− 5 for all the “base” models, and 5e− 6 for all

the “large” models. All the experiments are run on

4 NVIDIA Tesla-V100 GPUs.

For the LLM-based reasoning model, we adopt

ChatGPT (OpenAI, 2022). 14 We consider three im-

plementations for the graph sequentialization func-

tion t(·): (1, DOT) using the DOT language to rep-

resent graphs (Gansner et al., 1993; Madaan and

Yang, 2021; Sakaguchi et al., 2021); (2, Node &

Edge) instead of using node indexing as in DOT, we

try directly inputing all the nodes and edges (e.g.,

“[P0] buy a boat –> [P0’s] nearby marina have a

race; [P2] prepare –> [P2] go to sleep; ...”);

(3, Node) only the nodes are fed into ChatGPT

(e.g., “[P0] buy a boat; [P0’s] nearby marina

have a race ...”). The prompt template is: “Event

knowledge on narrative choice A: {t(Gjoint,A)}
\n Event knowledge on narrative choice B:

{t(Gjoint,B)} \n Question:{} \n Answer:”. As

a baseline, we also test ChatGPT without the ad-

ditional knowledge (denoted by “ChatGPTVanilla”).

For SCT-v1.0, we report results on its test set (sam-

pled 500 instances). Since the test set of SCT-v1.5

is no longer publicly available15 at the time we ran

this experiment, we report the results on its vali-

dation set. We do not report the performance on

MCNC because the lengths of most instances in

this set exceed the maximum input length.

4.4. Main results

The main results on the three datasets are pre-

sented in Table 2 and 12. Per-task performance

comparisons are presented in Appendix A.

As shown in Table 2, when coupled with a GNN-

based reasoning model, our proposed framework

achieves consistent performance gain over dif-

ferent backbone models. Moreover, compared

with existing knowledge enhanced models, we

achieve SOTA performance in three narrative rea-

soning tasks. The knowledge also benefits our

LLM-based reasoning model (Table 12), especially

when the subgraphs are transformed using the

“Node & Edge” setting.

4.5. Ablation study

We conduct ablation studies to investigate the con-

tribution of each component in our framework.

14The evaluation is performed in September 2023.
15
https://competitions.codalab.org/

competitions/15333

https://hkust-knowcomp.github.io/ASER/
https://hkust-knowcomp.github.io/ASER/
https://github.com/allenai/allennlp
https://stanfordnlp.github.io/CoreNLP/
https://competitions.codalab.org/competitions/15333
https://competitions.codalab.org/competitions/15333
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Method Size SCT-v1.0 SCT-v1.5 MCNC

(Lv et al., 2020) 125M - - 58.66

(Zhou et al., 2021) 469M - - 63.62

CoCoLM (Yu et al., 2020) 355M 97.70 - -

TransBERT (Li et al., 2019) 355M 91.80 90.30 -

EventBERT (Zhou et al., 2022a) 355M - 91.33 63.50

ClarET (Zhou et al., 2022b) 400M - 91.18 64.61

RoBERTa-base (Liu et al., 2019) 125M 92.75±0.24 87.14±0.39 61.28±0.14

RoBERTa-large (Liu et al., 2019) 355M 96.74±0.08 92.34±0.06 63.01±0.12

DeBERTa-large (He et al., 2021) 354M 98.13±0.34 94.67±0.25 65.67±0.13

EventGround-RoBERTa-base 126M 93.30±0.11 87.65±0.13 62.11±0.07

EventGround-RoBERTa-large 358M 97.10±0.13 92.86±0.05 63.96±0.15

EventGround-DeBERTa-large 358M 98.29±0.16 95.01±0.32 66.05±0.12

Table 2: Main results on the benchmarks. Numbers are mean and standard deviation of accuracy (%)

over three runs. Underlined results are the previous state-of-the-art performance.

Model SCT-v1.0 SCT-v1.5

Random 50.00 50.00

ChatGPTVanilla 77.80 77.00

ChatGPTDOT 67.80 69.00

ChatGPTNode 72.00 78.00

ChatGPTNode & Edge 79.60 78.00

Table 3: ChatGPT evaluation results (accu-

racy %). We report the model performance

when (1) ChatGPTVanilla: no knowledge is pro-

vided; (2) ChatGPTDOT, ChatGPTNode, and

ChatGPTNode & Edge: the knowledge subgraphs are

transformed into sequences as part of the inputs.

EventGround-RB EventGround-BB

w/o know. 92.75±0.24 83.63±1.16

w/o extract. 91.86±0.21 83.74±0.38

w/o norm. 92.43±0.46 83.98±0.87

w/o PIE 92.81±0.32 83.88±1.40

- ARGM 93.17±0.25 84.79±1.37

- ARG2,3,4 93.03±0.49 84.53±0.60

- ARG1 93.30±0.11 85.78±0.74

Table 4: Effect of event extraction, normaliza-

tion and partial information extraction (PIE). The

mean and standard deviation of accuracies on SCT-

v1.0 are reported, where “RB” and “BB” refer to

RoBERTa-base and BERT-base versions.

4.5.1. Effect of event extraction,

normalization, and partial information

extraction

As shown in Table 4, we ablate the event extrac-

tion (“w/o extract.”), the event normalization (“w/o

norm.”) and the partial information extraction (“w/o

PIE” and “- ARGX”) respectively. Specifically, when

ablating the event extraction module, we instead

use the whole sentence for event grounding. When

ablating the event normalization part, we skip the

normalization step, and use the raw events for

grounding. For partial information extraction, we

drop event arguments in the order described in

§ 3.1.3, where the highest level (“- ARG1”) con-

tains all the partial events in the previous levels.

The baseline (“w/o know.”) shows the results of

vanilla language models, which do not leverage

any external knowledge.

We have several observations. First, the event

extraction and normalization steps are necessary.

When removed, the performance relative to the

baseline does not improve, or even drops. Second,

the partial information extraction step is crucial. By

only taking the first level of partial events (removing

modifier arguments), we have seen considerable

performance gain. The model reaches its best

performance after dropping ARG1.

In § 3, we discuss the sparsity of events. Here,

we conduct both automatic and human evaluation

to discuss how our method contribute to the allevi-

ation of sparsity.

• Automatic Evaluation (Figure 3) We analyze by

automatic measures: (1) the average L2 distance d̄

in event matching (§ 3.2.1), and (2) the percentage

of events considered as successful match, i.e. with

L2 distance below l = 0.65 (hit rate).

• Human Evaluation (Table 5, Figure 4) We

evaluate the matching results by human annota-

tion. Three domain experts are asked to annotate

whether event matching is successful for 50 stories

(∼500 events) randomly sampled from the valida-

tion set of SCT v1.0. The Fleiss’s Kappa value is

0.7414. We obtain ground-truth labels by majority

vote, and present the accuracy of different event

matching methods in Table 5. To investigate the

effect of the threshold l used in § 3.2.1, we visual-

ize F1 scores under different threshold values in

Figure 4.

We can observe that: 1) Directly matching sen-

tences to KGs (w/o extract.) has rather low per-

formance, which necessitates the event extraction

stage. 2) The event normalization step drastically

improves the matching performance. Removing

normalization step can decrease the accuracy by

up to 76.7%. 3) In general, the matching perfor-
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Figure 3: A comparison on the event grounding

performance under different settings. The bar plot

(with y-axis on the left) shows the percentage hit

rate of event matching. The lines show the average

L2 distance d̄. We do not conduct normalization

for “w/o extract.”.

w/o norm. w/ norm.

w/o extract. 4.7 -

w/o PIE 7.5 37.5

- ARGM 10.0 56.2

- ARG2,3,4 14.6 73.4

- ARG1 9.9 86.6

Table 5: Human evaluation for the accuracy of

event matching (%).

mance gradually increases as the abstract level

increases. 4) The Pearson’s r between automatic

and human evaluation results is 0.8977, indicating

thresholding on L2 distance is a reasonable way

to automatically filter out poorly matched events.

Moreover, from Figure 4, we learn that event ex-

traction, normalization, and partial information ex-

traction improve not only performance but also ro-

bustness of event matching. Notably, our main

model (w/ norm. -ARG1) has much higher success

rate than the other models, and it is meanwhile

insensitive to the tuning of threshold l.

Figure 4: The F1-score to threshold curves. They

reflect the event matching performance under dif-

ferent threshold l.

Model Type w/o know. w/ know.

BERT
base 83.63±1.16 85.78±0.74

large 88.85±0.23 90.49±0.41

RoBERTa
base 92.75±0.24 93.30±0.11

large 96.74±0.08 97.10±0.13

DeBERTa
base 96.03±0.17 96.38±0.14

large 98.13±0.24 98.29±0.16

Table 6: Effect of different text encoders. Three

backbone language models BERT (Devlin et al.,

2018), RoBERTa (Liu et al., 2019), and DeBERTa

(He et al., 2021) are tested on SCT-v1.0.

L-layer

n-hidden conv. 2 3

128

RGCN 93.30±0.11 92.97±0.17

GIN 92.93±0.37 92.57±0.24

GCN 92.95±0.10 93.16±0.22

256

RGCN 93.14±0.20 93.12±0.17

GIN 93.05±0.42 92.41±0.31

GCN 92.94±0.13 92.86±0.21

Table 7: Effect of different GNN settings on SCT-

v1.0.

4.5.2. Effect of model structure

We test the GNN-based reasoning model perfor-

mance with different backbone text encoders (Ta-

ble 6). Compared with the baselines (“w/o know.”),

our framework consistently improves performance

across different versions of LMs.

We also investigate the effect of different GNN

configurations in Table 7. Apart from the relational

convolutional layers (RGCN (Schlichtkrull et al.,

2018)), we additionally test GIN (Xu et al., 2018)

and GCN (Kipf and Welling, 2016), which do not

model the edge type information. We can observe

that RGCN outperforms GIN and GCN under the

same settings. This indicates the discourse rela-

tion knowledge in ASER is beneficial for narrative

reasoning.

We evaluate the LLM-based reasoning model

under different graph sequentialization settings (Ta-

ble 12). It is noteworthy that ChatGPT faces difficul-

ties in understanding the knowledge represented

in DOT language, resulting in a performance drop

of approximately 10%. One possible reason for this

is that the model was not trained to comprehend

such structured representations. Additionally, pro-

viding only node information to the model does not

yield significant benefits. The model demonstrates

improved performance when using the "Node &

Edge" representation of graphs.

4.6. Case study

A running example is presented in Figure 5. The

top three nodes that our model focuses on are

“[P0] study,” “[P0] pass the test,” and “[P0] believe.”
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They are highly related to the correct candidate

ending 1. Also note the path (“[P0] study,” Reason,

“it go well,” Conjunction, “[P0] pass the test”) could

be explained as the causal story: Someone studies

hard, so it (the learning, or the exam) goes well,

and he/she passes the test.

Context:
s1: Caroline was a student in medical school. 
s2: Caroline worked very hard to get good grades. 
s3: One day Caroline failed a test by one point. 

s4: Caroline was very frustrated but she continued to study hard.

Candidate endings:
0. But she gave up. 🤔
1. Later, she passed the test. ✅

[P0] be a student 

in medical school

[P0] work very hard 

to get good grade

[P0] get good grade

One day [P0] fail a 

test by one point

[P0] be very 

frustrated

[P0] continue to 

study hard

[P0] study hard

Later [P0] pass the 

test

[P0] be a student 

in medical school

[P0] be

[P0] fail

[P0] continue

[P0] study 

[P0] be sorry

It go well [P0] believe

[P0] pass the test

[P0] leave

[P0] pass

[P0] get good grade

[P0] work

[P0] study hard

[P0] get

[P0] fail the test

[P0] be very frustrated

Synchronous

Su
cc

es
si

on

Contrast

Contra
st

C
o

n
ju

n
ct

io
n

Condition

Condition

Reason

Conjunction

ASER nodes

Context nodes

Context edge

Grounding edge

ASER edge 

(discourse relation)

Context events KG events

Top-10 node attention weights

Figure 5: An example from SCT-v1.0. The top-10

node attention weights are shown in the barplot.

The top-3 nodes are bolded and underlined .

5. Conclusion
We point out two critical problems on grounding

free-texts to eventuality-centric KGs, namely the

event representation and event sparsity problems.

We propose a simple while effective approach,

EventGround, to address these problems and to

leverage the retrieved graph knowledge for nar-

rative reasoning. Empirical results demonstrate

its consistent performance improvement. Further

investigation reveals that the normalization and par-

tial information extraction components drastically

improve the grounding performance by alleviating

event sparsity.

Limitations

In event normalization, we only normalize personal

words in event as it is the most common spans that

worth normalization, normalization of other type

of information are not considered, which we leave

for future work. When grounding to event-centric

KGs, we consider finding the shortest paths to

retrieve the knowledge subgraph due to high com-

putational complexity of solving the Steiner tree

problem. Other retrieval methods (e.g. reinforce-

ment learning based) could also be considered.
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A. Detailed experimental results

We present the detail performance comparison for

SCT-v1.0 and SCT-v1.5 (in Table 8), as well as

MCNC (in Table 9). Performance of the significant

baselines in the corresponding tasks is presented.

Method SCT-v1.0 SCT-v1.5

Random 50.00 50.00

(Chaturvedi et al., 2017) 77.60 -

(Mostafazadeh et al., 2016) 58.50 -

(Srinivasan et al., 2018) 76.50 -

(Yu et al., 2020) 97.70 -

(Zhou et al., 2022a) - 91.33

(Zhou et al., 2022b) - 91.18

(Li et al., 2019) 91.80 90.30

RoBERTa-base 92.75±0.24 87.14±0.39

RoBERTa-large 96.74±0.08 92.34±0.06

DeBERTa-large 98.13±0.34 94.67±0.25

EventGround-RB 93.30±0.11 87.65±0.13

EventGround-RL 97.10±0.13 92.86±0.05

EventGround-DL 98.29±0.16 95.01±0.32

Table 8: Results on SCT v1.0 and v1.5. Numbers

are the mean and standard deviation of accuracy

(%) over three runs.

Method MCNC

Random 20.00

(Chambers and Jurafsky, 2008) 30.52

(Granroth-Wilding and Clark, 2016) 49.57

(Li et al., 2018) 52.45

(Ding et al., 2019) 56.03

(Lv et al., 2020) 58.66

(Zhou et al., 2021) 63.62

(Zhou et al., 2022a) 63.50

(Lee et al., 2020) 63.59

(Lee and Goldwasser, 2019) 63.67

(Zhou et al., 2022b) 64.61

RoBERTa-base 61.28±0.14

RoBERTa-large 63.01±0.12

DeBERTa-large 65.67±0.13

EventGround-RB 62.11±0.07

EventGround-RL 63.96±0.15

EventGround-DL 66.05±0.12

Table 9: Results on MCNC. Numbers are the mean

and standard deviation of accuracy (%) over three

runs.

B. Results and statistics of event
extraction and grounding

Table 11 shows the detailed statistics of the event

grounding and subgraph retrieval stage. It is clear

that our proposed event extraction, normalization

and multi-level extraction method help alleviate the

event sparsity to a large extent. This not only re-

flects on the hit rate and mean L-2 distance during

event grounding stage, but also in their retrieved

graphs statistics.

Table 10 shows the performance comparison be-

tween semantic similarity based matching (which

we used) and the token-level similarity matching. It

is clear from the table that the token-level based

similarity matching, such as tf-idf, fails to perform

as good as the semantic based matching.

Note that, the information extraction here is fun-

damentally different from the entity-centric line of

work (Cui et al., 2021b,a; Chen et al., 2022), as

our setting involves decomposition and semantic

similarity computations over text snippets.

RoBERTa BERT

Baseline (w/o know.) 92.75±0.24 83.63±1.16

Token-level similarity (tf-idf) 92.84±0.27 84.27±0.73

Semantic similarity (SBERT) 93.30±0.11 85.78±0.74

Table 10: Performance comparison between base-

line, token-level similarity based event matching,

and semantic similarity based event matching.

C. Supplementary case studies

Apart from the case study provided in Section 4.6,

we additionally provide another two examples in

Figure 10 and 11.

D. Annotation details

We show the annotation interface presented to

the expert annotators in 12. Users are prompted

to compare the event and its matched anchor,

and then to give an evaluation of the quality

(Successful-1 or Not-0). Since the annotation re-

quires domain-specific knowledge, we recruited

3 student researchers within our area who volun-

teered to help us conduct the evaluation. The pay-

ment to annotators is higher than the local mini-

mum wage.

E. Obtaining ChatGPT Performance

In addition to GNNs (Kipf and Welling, 2016; Xu

et al., 2018; Schlichtkrull et al., 2018; Liu et al.,

2022), we also evaluated large language models

as graph reasoning modules. Recently, large lan-

guage models (e.g., ChatGPT (OpenAI, 2022) and

GPT-4 (OpenAI, 2023)) have shown promising per-

formance on various tasks, and have raised con-

cerns and discussions on topics such as factual-

ity and privacy (Wang et al., 2023; Bubeck et al.,

2023; Kocon et al., 2023; Chan et al., 2023a; Jiang

et al., 2023; Li et al., 2023a,b). In this paper, we
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Eventuality

Knowledge

Graphs

Knowledge
Models

Prediction
Models

Knowledge Model Paradigm Retrieval-and-Integration Paradigm

1. Caroline was a student in medical school.

2. Caroline worked very hard to get good grades.

3. One day Caroline failed a test by one point.

4. Caroline was very frustrated but she continued    

to study hard.

✅ Later, she passed the test.

❌ But she gave up.
:...

PLMs

Story context

Story ending candidates

Eventuality

Knowledge

Fine-tuning

InputPrediction

Subgraph

Retrieval

Input Prediction

Queries

I study hard

Reason

Conjunction

I pass the test

Retrieved Subgraph

It goes well

Figure 6: Overview of the knowledge model paradigm (left) and the retrieval-and-integration paradigm

(right). The knowledge model paradigm pretrains LMs with specially designed objectives, and then further

finetunes them to adapt to downstream tasks for prediction. The retrieval-and-integration paradigm

retrieves relevant subgraphs of the story context and then makes predictions according to the retrieved

subgraphs.

Event grounding Subgraph retrieval

hit rate (%) mean L2 distance d̄ |Vsub| |Esub| |Vjoint| |Ejoint|

w/o extract. 1.43 0.9566 0.1235 0.1951 5.12 8.35

w/o PIE
88.28 0.3853 13.37 36.33 21.60 67.17

12.50 0.8351

- ARGM
93.22 0.2819 22.34 74.12 30.53 109.64

21.43 0.7801

- ARG2,3,4
94.38 0.1818 28.03 93.94 36.20 134.09

45.44 0.6477

- ARG1
97.12 0.1150 63.27 281.32 71.41 330.73

41.97 0.6968

Table 11: Results and statistics of event grounding and subgraph retrieval. The gray numbers are the

statistics for “w/o norm.” experiments.

Figure 7: The Precision to threshold curves.

test ChatGPT 16 in narrative reasoning tasks with

additional grounded knowledge. The zero-shot

performance of large language models, which re-

lies on the sophisticated design of templates, has

shown variance across various tasks (Ma et al.,

2022; Chan et al., 2023b,c; Chan and Chan, 2023).

To obtain replicable and representative results, we

follow Robinson and Wingate (2023); Cheng et al.

16The evaluation is performed in September 2023 by

calling ChatGPT Model (gpt-3.5-turbo) API .

Figure 8: The Recall to threshold curves.

(2021) to formulate the task as a multiple choice

question answering problem.
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Figure 9: The Precision-Recall curve.

Model SCT-v1.0 (%) SCT-v1.5 (%)

Random 50.00 50.00

ChatGPTPrompt 77.80 77.00

ChatGPTw/ proscript DOT 67.80 69.00

ChatGPTw/ node 72.00 78.00

ChatGPTw/ node & edge 79.60 78.00

Table 12: The performance of ChatGPT

performs on the SCT-v1.0 test set (sam-

pled 500 instances) and the SCT-v1.5 vali-

dation set. The submission upload for the

SCT-v1.5 leaderboard (https://competitions.

codalab.org/competitions/15333) is no longer

available. Therefore, we test ChatGPT perfor-

mance on the validation set. The ChatGPT tem-

plate is displayed in Figure 13.

https://competitions.codalab.org/competitions/15333
https://competitions.codalab.org/competitions/15333
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Context:
s1: Ava needed to go shopping with her two-year old.
s2: But she couldn’t find his shoes even after looking everywhere!
s3: She decided she had no choice but to buy him new shoes.

s4: She carried him into the store in order to select a new pair.

Candidate endings:
0. Ava was a neglectful mother. !
1. Ava took good care of her son. ✅

[P0] need to go 

shopping with 

[P0’s] two-year old

[P0] go shopping 

with [P0’s] two-

year old

[P0] shopping

But [P0] could not 

find [P1’s] shoe 

even after look 

everywhere

[P0] look everywhere

[P0] have no choice but 

to buy [P1] new shoe

[P0] buy [P1] new shoe

[P0] take good care 

of [P0’s] son

[P0’s] go to shop

[P0] look everywhere

[P0] like

[P0] will buy [P1] a new one

[P0] leave

[P0] take good care

[P0] carry [P1]

[P0] look

ASER nodes

Context nodes

Context edge

Grounding edge

ASER edge 

(discourse relation)

Context events KG events

[P0] carry [P1] into the store 

in order to select a new pair

Select a new pair

[P0] be glad

[P0] go shopping

[P0] could not find it

[P0] go back

[P0] have to buy [P1]

[P0] could not find [P1] anywhere

Conjunction

Conjunction

Synchronous

Contra
st

Precedence

Result

Conjunction

Result

PrecedenceContra
st

Figure 10: Supplementary case 1.
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Context:
s1: The children were inside playing when they heard music.
s2: They ran to their mother and begged for change.
s3: She handed them a couple of dollars.

s4: They took off running outside.

Candidate endings:
0. The children threw the money in the street. !
1. The children excitedly bought ice cream cones. ✅

[P0] be inside playing 

when [P0] hear music

[P0] playing when 

[P0] hear music

When [P0] hear music

[P0] run to [P0’s] mother

[P0] beg for change

[P1] hand [P0] a couple of dollars

[P0] take run outside, catch 

up to the ice cream truck

[P0] excitedly buy 

ice cream cone

[P0] love

[P0] take

[P0] love ice cream

[P1] have a dollar

ASER nodes

Context nodes

Context edge

Grounding edge

ASER edge 

(discourse relation)Context events KG events

[P0] run outside

[P0] catch to the 

ice cream truck

[P0] be glad

[P0] run

[P0] hear music

* In this case, we omitted some KG nodes since the original graph is very dense

[P0] have ice cream

[P0] make some change

[P0] run outside

[P0] be with [P0’s] mother

[P0] beg

[P0] hear music

[P0] can not make

Synchronous

Contrast

Conjunction

Conjunction

C
o

n
ju

n
ctio

n

Conjunction

Contrast

[P0] play

[P0] be inside

[P0] come out
Succession

Figure 11: Supplementary case 2.
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Figure 12: Annotation interface in command line.
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Templates

ChatGPTPrompt

Question: Which choice of narrative is more reasonable? Only answer \"A\" or \"B\"

only without any other words or explanations.\nA. Danny bought a boat. His nearby marina

was having a race. He decided to enter. Danny and his best friend manned the boat. Danny

decided to go to sleep.\nB. Danny bought a boat. His nearby marina was having a race. He

decided to enter. Danny and his best friend manned the boat. They prepared for the start of the

race.\nAnswer:

ChatGPTProscript DOT

Event knowledge on narrative choice A: 0: \'[P0] buy a boat\’; … \n 12: \'[P0] go\'\nEvent

knowledge Edges for narrative choice A: 0-->1; … 12-->6; \nEvent knowledge on

narrative choice B: 0: \'[P0] buy a boat\’; … \n 12: \'[P2] prepare\'Event knowledge Edges

for narrative choice B: 0-->1; … 12-->5; \nQuestion: Which choice of narrative is more

reasonable based on the event knowledge, knowledge edge and the choices? Only answer

"A" or "B" only without any other words or explanations. All [P0], [P1]...etc are the

people mentioned in the passage.\nA. Danny bought a boat. His nearby marina was having a

race. He decided to enter. Danny and his best friend manned the boat. Danny decided to go to

sleep.\nB. Danny bought a boat. His nearby marina was having a race. He decided to enter.

Danny and his best friend manned the boat. They prepared for the start of the race.\nAnswer:

ChatGPTNode

Event knowledge on narrative choice A: [P0] buy a boat. … \n [P0] go\nEvent knowledge

on narrative choice B: [P0] buy a boat. … \n [P2] prepare\n\nQuestion: Which choice of

narrative is more reasonable based on the event knowledge and the choices? Only answer

"A" or "B" only without any other words or explanations. All [P0], [P1]...etc are the

people mentioned in the passage.\nA. Danny bought a boat. His nearby marina was having a

race. He decided to enter. Danny and his best friend manned the boat. Danny decided to go to

sleep.\nB. Danny bought a boat. His nearby marina was having a race. He decided to enter.

Danny and his best friend manned the boat. They prepared for the start of the race.\nAnswer:

ChatGPTNode & Edge

Event knowledge on narrative choice A: [P0] buy a boat-->[P0\'s] nearby marina have a

race; … [P0] go-->[P0] go to sleep; \nEvent knowledge on narrative choice B: [P0] buy a

boat-->[P0\'s] nearby marina have a race; … [P2] prepare-->[P2] prepare for the start of the

race; \n\nQuestion: Which choice of narrative is more reasonable based on the event

knowledge and the choices? Only answer "A" or "B" only without any other words or

explanations. All [P0], [P1]...etc are the people mentioned in the passage.\nA. Danny

bought a boat. His nearby marina was having a race. He decided to enter. Danny and his best

friend manned the boat. Danny decided to go to sleep.\nB. Danny bought a boat. His nearby

marina was having a race. He decided to enter. Danny and his best friend manned the boat.

They prepared for the start of the race.\nAnswer:

Figure 13: ChatGPT Template
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