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Abstract
Traditional evaluation methods for Grammatical Error Correction (GEC) fail to fully capture the full range of
system capabilities and objectives. The emergence of large language models (LLMs) has further highlighted the
shortcomings of these evaluation strategies, emphasizing the need for a paradigm shift in evaluation methodology.
In the current study, we perform a comprehensive evaluation of various GEC systems using a recently published
dataset of Swedish learner texts. The evaluation is performed using established evaluation metrics as well as human
judges. We find that GPT-3 in a few-shot setting by far outperforms previous grammatical error correction systems for
Swedish, a language comprising only about 0.1% of its training data. We also found that current evaluation methods
contain undesirable biases that a human evaluation is able to reveal. We suggest using human post-editing of GEC
system outputs to analyze the amount of change required to reach native-level human performance on the task,
and provide a dataset annotated with human post-edits and assessments of grammaticality, fluency and meaning
preservation of GEC system outputs.

Keywords: grammatical error correction, computer-assisted language learning, natural language genera-
tion

1. Introduction

Grammatical Error Correction (GEC) is typically
used in an extended sense of correcting language
at multiple levels, including spelling errors, gram-
matical errors, word choice and idiom usage.

In the literature on evaluating GEC systems, one
is rarely explicit about the purpose of the system.
Following Sakaguchi et al. (2016), we see two
somewhat different objectives:

1. Error detection and correction, where gram-
maticality has priority over fluency. The goal is
to point out individual language errors, which
could ideally be fixed one by one, resulting in
an acceptable text that is as close as possible
to the original.

2. General text improvement, where fluency is
on equal footing with grammaticality. The goal
is to produce a text which is as close as possi-
ble to what a highly proficient writer would have
produced, assuming a perfect understanding
of the intended message of the original text.

The distinction between the two objectives is less
clear for writers at high proficiency levels, where
changing an occasional spelling or grammar mis-
take typically results in a high-quality text. For a
less proficient writer, a text may contain so many
overlapping problems that it is difficult to identify
local changes that together result in a high-quality
text. If a GEC system is allowed to work directly at

the level of general text improvement, its task may
become significantly simpler.

The choice of objective has practical implica-
tions for how to evaluate the result. Traditional
methods for GEC evaluation are reference-based,
where either the GEC system output is compared
to a human-created reference (e.g. Napoles et al.,
2015), or the sets of edit operations produced by
the GEC system is compared to those needed to
transform the original text to the human reference
(Bryant et al., 2017).

One important problem with reference-based
evaluations is that there is typically a large and
varied set of possible ways to express the same
information. It is generally infeasible to approxi-
mate the full set of possibilities, although provid-
ing multiple references is a common approach in
the machine translation community to alleviate this
problem (e.g. Qin and Specia, 2015). Results are
also highly dependent on the way the references
were created. Freitag et al. (2020) show that biases
due to “translationese” effects in the creation of ref-
erences negatively affect the accuracy of the result-
ing evaluations, where interference from the source
language may affect the translation to become less
idiomatic in the target language. They obtained
higher agreement between the automatic reference-
based evaluations and human judgments by first
asking human annotators to maximally paraphrase
the reference sentences, to encourage diversity
among the multiple references.

The references used for GEC evaluations suf-
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fer from the same bias, and often annotators are
explicitly instructed to stay as close to the original
text as possible (Volodina et al., 2019, Section 6.1).
We are aware of no GEC evaluation data which,
in the style of Freitag et al. (2020), aims for a high
amount of diversity in the references. This has
the effect of biasing existing automatic evaluations
against systems that perform paraphrasing rather
than conservatively fixing individual errors.

In the related field of text summarization, Goyal
et al. (2022) found that automatic evaluation metrics
severely underestimate the performance of large
language models, further strengthening our sus-
picion that such powerful models necessitate a
paradigm shift in evaluation methodology. In this
work, we perform a comprehensive manual anal-
ysis of the output of multiple GEC systems, and
point towards analysis of human post-edits as the
most promising way of evaluating really good GEC
systems.

2. Related work

2.1. Reference-free evaluation metrics
Yoshimura et al. (2020), building on earlier work by
Asano et al. (2017), propose a reference-free met-
ric named SOME that learns a weighting of gram-
matically, fluency, and semantic similarity scores
obtained from three separate models. Interestingly,
they find that tuning these weights on a dataset of
human judgements results in 98% of the weight
being put on the fluency score computed as the
difference between language model cross-entropy
for the system output and original text. This result
aligns well with the argument of Sakaguchi et al.
(2016) that fluency is what GEC system ought to
aim for.

Islam and Magnani (2021) go one step further
and dispose of the grammaticality and semantic
similarity models, and simple use language model
scores combined with a filter based on string simi-
larity measures to reject “corrections” that look too
different from the original.1 System-level Pearson
correlations with human scores are very high for all
these systems: from about 0.88 (Yoshimura et al.,
2020) to 0.98 (Asano et al., 2017). However, met-
rics that rely heavily on language model scores
do not handle semantic changes well. As Islam
and Magnani (2021) point out, the SOME metric
assigns a very positive score when “He is going
school.” is corrected into “He He He He He He.”

More recent work on reference-free metrics in-
cludes that of Maeda et al. (2022), who generate
partially corrected sentences from parallel data of

1The paper somewhat unusually refers to the string
similarity measures as “syntactic similarity”.

original and corrected sentences, which they then
train a neural scorer on.

2.2. Human evaluation
Grundkiewicz et al. (2015) performed a compre-
hensive ranking-based human evaluation of cur-
rent (at the time) GEC systems, and compared the
human rankings to a number of automatic metrics.
In their study, the edit distance-based MaxMatch
(M2) score (Dahlmeier and Ng, 2012) with a bias
towards precision (β = 0.18) achieved the highest
correlation with the human rankings. Pure machine
translation metrics (BLEU, METEOR) were found
to have negative correlations with human rankings.
Napoles et al. (2015) also performed a ranking-
based human evaluation, and obtained very similar
results to Grundkiewicz et al. (2015). However, in
this case their proposed GLEU metric achieved a
higher correlation with the human rankings than did
the M2 score. In both studies, correlations were
relatively modest, with Spearman ρ and Pearson r
in the order of 0.7–0.75 (Grundkiewicz et al., 2015)
and 0.55 (Napoles et al., 2015) for the highest-
correlated metrics. Náplava et al. (2022) performed
a similar human evaluation of more recent Czech
GEC systems, and found the agreement between
human and GEC rankings to be very high, with
Pearson’s r in the range 0.95–0.98 for GLEU, M2,
I-measure and their Czech adaptation of ERRANT
(Felice et al., 2016; Bryant et al., 2017).

Rather than ranking system outputs akin to ma-
chine translation evaluation, Yoshimura et al. (2020)
applied a range of different GEC systems to the
same set of sentences and obtained human ab-
solute scores in the dimensions of grammaticality,
fluency, and meaning preservation. This allows
GEC systems to be compared using each dimen-
sion individually or in combination.

In work concurrent to ours, Wu et al. (2023) per-
formed a human evaluation of ChatGPT (based at
the time on GPT-3.5) for English GEC. Their evalu-
ation found that ChatGPT had overall better results
than the other systems evaluated, and was charac-
terized by few under-corrected parts (high recall)
but a tendency to rewrite text more often, resulting
in over-corrections (low precision). However, unlike
our work, their evaluation did not investigate what
effect this had on text meaning.

2.3. Co-evolution of systems and metrics
As Yoshimura et al. (2020) demonstrated, it is pos-
sible to obtain a metric with an extremely strong
correlation (up to ρ = 0.98) to human ratings, by op-
timizing the parameters of the metric with respect
to human ratings. However, their best result was
obtained by relying almost exclusively on the flu-
ency score. This indicates that their data does not
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contain enough examples of GEC-“corrected” sen-
tences that are scored high by a language model,
but suffer from problems like a low degree of mean-
ing preservation. Since their data is based on the
outputs of existing GEC systems, it inherits their
biases towards certain types of mistakes. Most
of these systems have been developed against
metrics such as GLEU and ERRANT, who tend
to reward a conservative approach where preci-
sion is prioritized over recall and more substantial
rewriting is discouraged. A GEC system optimized
for high scores according to GLEU, ERRANT, or
similar metrics, is thus less likely to suggest ma-
jor changes that (when incorrect) may significantly
alter the meaning of a text. The main dimension
along which the performance of such systems vary
is to what extent they can find and correct sim-
ple spelling, grammar or word choice errors – the
presence of which correlates strongly with a poor
language model score.

We hypothesize that the co-evolution of GEC sys-
tems and their evaluation metrics has resulted in
reinforcing the bias towards certain types of proper-
ties, namely a conservative approach which avoids
paraphrasing. Traditionally this has not been much
of an issue, since we did not have particularly good
models for paraphrasing non-standard text. With
the advent of large language models that excel at
this task, we argue that it is time to break this circle
of GEC system development and metric develop-
ment.

2.4. Swedish GEC

We now briefly review published GEC systems for
Swedish, focusing on general-coverage methods
that perform automated correction. We do not cover
methods specializing in specific error types, like
spelling or collocations, or those that are not able
to automatically suggest corrections.

Granska (Domeij et al., 2000) is a mostly rule-
based system for grammatical error detection and
correction, which has later been combined with a
probabilistic model (Bigert and Knutsson, 2002)
that uses a language model to score variants of the
input sentence. Another contemporary rule-based
system based on Constraint Grammar (Karlsson
et al., 1995) was developed by Birn (2000). More
recently, Nyberg (2022) implemented Swedish ver-
sions of the following two methods. First, the model
of Bryant and Briscoe (2018), which is based on
generating variants of the input sentence and using
a language model to choose the highest-scoring
one. Second, using a neural machine translation
model trained on artificially corrupted data, gener-
ated in a fashion similar to that of Grundkiewicz
et al. (2019).

3. Purpose and aims

Most previous work on GEC evaluation has been
performed using relatively limited and conservative
systems, and we see a need to extend this line of
work to systems based on large language models
(LLMs) that are able to perform more substantial
corrections than previous methods. Given the prob-
lems pointed out above with both reference-based
and reference-free automated evaluation metrics,
we think it is important to consider manual evalua-
tion methods in addition to automated ones. Finally,
since LLM-based systems are approaching human-
level performance, we also want to include text
versions created by humans in the evaluation, on
equal footing with the automatic GEC systems in
order to ensure a fair comparison.

Our main contributions in this work are the fol-
lowing:

• We evaluate a set of GEC systems, belonging
to diverse paradigms ranging from rule-based
systems to large language models. In addition
to automatic GEC systems, we also include
in the evaluation paraphrases from humans
following two different guidelines.

• We investigate how different evaluation meth-
ods, automatic and manual, compare across
this range of different GEC paradigms, and
point out relative strengths and weaknesses
of each paradigm.

• We use human post-edits of GEC system out-
puts and human paraphrases, both to evalu-
ate the systems and to quantify the differences
between the final versions of each text after
correction/paraphrasing and post-editing.

• We make several new resources publicly
available: Human evaluations and post-edits
of GEC system outputs, detailed annotation
guidelines, a novel annotation tool that was
used to produce the above, and a baseline
GEC system for Swedish.2

4. GEC systems

In this work we compare a total of five Swedish
GEC systems:

1. Granska: the web API version of the rule-
based system Granska (Domeij et al., 2000).
We always accept its top suggestion for
changes, but multiple suggestions that change
the same span are rejected.

2Our code and data is available at: https://
github.com/robertostling/gec-evaluation

https://github.com/robertostling/gec-evaluation
https://github.com/robertostling/gec-evaluation
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2. Nyberg MT: the MT-based method of Nyberg
(2022, Section 3.3), training a neural machine
translation system to translate artificially cor-
rupted text back into its original form.

3. Nyberg LM: the LM-based method of Nyberg
(2022, Section 3.4), using a language model
to iteratively score local edits suggested by a
heuristic procedure, until no further changes
sufficiently improve the score.

4. MT: The MT-based method of Kurfalı and
Östling (2023), which in turn is a develop-
ment of Nyberg MT with more data, a modified
method for introducing synthetic errors and a
different architecture.

5. GPT-3: OpenAI’s (text-davinci-002)
model (Brown et al., 2020) through their public
API. We use a two-shot prompt, with authentic
learner sentences taken from the CrossCheck
corpus3 and manually corrected by us. The
prompt is entirely in Swedish, and is identical
for all processed sentences.

We also consider the dummy baseline Uncor-
rected, which simply leaves the text unchanged,
and the following three human-corrected versions:

1. Human minimal: human-normalized sen-
tences from the SweLL project (Volodina et al.,
2019). Annotators were asked to perform min-
imal edits in order to produce a grammatically
correct sentence while trying to preserve the
meaning; for normalization guidelines, see
Rudebeck et al. (2021). The annotators had
access to the full context for each sentence.

2. Human fluent: human-normalized sentences
produced by having a native Swedish annota-
tor, different from the other annotators in the
project, edit the Human minimal sentences
to achieve native-like fluency while staying as
close as possible to the original.

3. Human free: human-normalized sentences
produced by having a native Swedish annota-
tor, different from the other annotators in the
project, edit the Human minimal sentences
to achieve native-like fluency while being en-
couraged to change the sentence as much as
needed to achieve the most idiomatic way of
expressing the given meaning.

5. Data and annotation

We use Swedish data from the SweLL project (Volo-
dina et al., 2019), which consists of 502 learner

3https://www.csc.kth.se/tcs/projects/
xcheck/korpus.html

Gramm. Fluency Meaning
Round 1 0.45 0.69 0.51
Round 2 0.84 0.81 0.71

Table 1: Quadratically weighted kappa (QWK) be-
tween the two annotators during the two-round pi-
lot phase, for grammaticality, fluency and meaning
preservation.

texts collected from different levels of L2 Swedish
education. The texts are annotated with an approxi-
mate CEFR level, and have been manually normal-
ized by minimally editing them into a grammatically
correct version. We use the sentence segmenta-
tions and the division into a test and a development
set from Nyberg (2022). For the systems Nyberg
MT and Nyberg LM, we report evaluation results
from Nyberg (2022).

Two independent annotators, both co-authors
of this paper and native Swedish speakers, were
tasked with performing the following procedure for
each corrected sentence in two pilot datasets, con-
taining ten sentences each:

1. In a text box, read the system’s output and if
necessary modify it to reach the level of a na-
tive writer, considering both fluency and gram-
maticality. The annotators are instructed to per-
form the minimum amount of editing to reach
this goal.

2. When the (possibly) edited system output is
submitted, the existing human-normalized ref-
erence from the SweLL data is shown (Human
minimal), and the annotator is asked to con-
firm whether the meaning of the edited sen-
tence matches the reference. If the annotator
thinks otherwise, the human reference is hid-
den again and the tool returns to step 1.

3. When the edited system output is accepted,
the annotator is shown the learner sentence,
the non-edited system output, and the SweLL
reference. Then the annotator chooses a
score on a 4-level Likert scale (or “other”) for
the three dimensions of grammaticality, flu-
ency and meaning preservation. We follow
Yoshimura et al. (2020) for the definition of the
scales for each of these three dimensions. Our
annotation tool and full guidelines are publicly
available. 4

Sentences were randomized from a pool contain-
ing the outputs of all systems under evaluation, and
a custom-made annotation tool was used for the
task. After discussions between the annotators and

4https://github.com/robertostling/
gec-evaluation/tree/main/annotator

https://www.csc.kth.se/tcs/projects/xcheck/korpus.html
https://www.csc.kth.se/tcs/projects/xcheck/korpus.html
https://github.com/robertostling/gec-evaluation/tree/main/annotator
https://github.com/robertostling/gec-evaluation/tree/main/annotator
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after the two pilot datasets, the level of agreement
was high enough (QWK in the range 0.71–0.84)
to allow one annotator to continue annotating the
full data. Details are presented in Table 1. The
full dataset was subsampled from the development
set of Nyberg (2022) and contains 64 sentences
each from CEFR proficiency levels A, B and C, for
a total of 192 sentences. Each sentence has been
processed by three GEC systems and two human
paraphrasers, for a total of 192 × 5 = 960 output
sentences with post-edits and scores.

As the final result, we have for each sentence
produced by a GEC system: (a) scores for gram-
maticality, fluency, and meaning preservation; (b)
a post-edited version of the output with the mini-
mal edits required to obtain maximum scores on
grammaticality, fluency and meaning preservation.

In order to achieve comparability with previous
work on Swedish GEC, we adapted the sentence-
level train/test split of Nyberg (2022), and continued
performing all analysis on the sentence level. The
only instance where a wider context is used, is for
the minimal normalization from the SweLL project
data. These normalized versions are used as refer-
ences, but since GEC systems have access to less
context than the reference was based on, models
that are able to take longer contexts into account
are put at a disadvantage during evaluation. In sev-
eral cases, it is even impossible to correctly and
unambiguously interpret the sentence without fur-
ther context. Only the human corrections, which
are directly or indirectly based on the full context,
do not suffer from this problem. We have manually
inspected all cases of “moderate” or “substantial”
differences in meaning for the annotations of the
best-performing GEC system’s (GPT-3) output, and
found that 8 out of 28 (29%) such sentences re-
quire further context. While this is a methodological
problem to be addressed in future work, we see
that the impact of this problem is limited.

An example of this problem can be seen in Ta-
ble 2, which contains all twelve versions of one
specific sentence and also serves to illustrate how
our annotated data looks. The student’s original
sentence could be interpreted in two ways with
regards to the purpose of leaving the house: ei-
ther to be “left alone” or to “be free”. The SweLL
project annotator (Minimal) has access to the full
student text and chose the former interpretation,
so according to our annotation guidelines this is
the interpretation to which meaning preservation
should be compared. In this case, the student’s
ambiguity and lack of context unfairly penalizes
the neural systems (MT, GPT-3) with respect to
meaning preservation, since they both produce the
other interpretation (“be free”), which is perfectly
reasonable. Again, this problem could be remedied
by giving all systems and annotators access to the

same (wide) context, and to the original student sen-
tence. The rule-based Granska system is correctly
penalized for producing a nonsensical version of
this phrase that substantially changes the meaning
of the sentence. The humans (Human free, Human
fluent) follow the interpretation in the Minimal ver-
sion, and so obtain perfect meaning preservation
scores. The fluent version contains a paraphrase
which, according to the annotator, makes the sen-
tence more native-like and this version is the only
one with a perfect score in all dimensions.

6. Results

6.1. Automatic evaluation metrics
Table 3 shows the performance of each system
using the reference-based GLEU metric, while Ta-
ble 4 contains the corresponding evaluation using
the reference-free Scribendi score (Islam and Mag-
nani, 2021).5 Both metrics yield the same ranking
of the systems: GPT-3 scores best, followed by the
NMT systems, followed in turn by the rule-based
system. However, the relative differences between
the systems differ considerably between the met-
rics. In particular, for the Scribendi score (Table 4)
we see a very sharp divide between the neural and
the non-neural systems. For all different levels,
GPT-3 in fact scores higher than the human refer-
ence, even though its output contains a substantial
amount of errors (as shown in the human evalua-
tion, see Table 5). This is not very surprising, since
the Scribendi score mainly represents the number
of sentences where the Swedish GPT-SW3 model
(Ekgren et al., 2022) assigns a higher score to the
system output than to the original sentence, and the
GPT-3 output was obtained from the same family
of language models.

6.2. Human evaluation
The result of the human evaluation is summarized
in Table 5. As for grammaticality and fluency, the
ranking of the GEC systems is identical to that of
the automatic metrics. In both cases, GPT-3 per-
forms at or near human levels. The MT-based sys-
tem follows, at a considerable distance, and the
rule-based system scores last. The trend is iden-
tical across CEFR proficiency levels. For mean-
ing preservation, the situation is different. Here,
there are no major differences between systems,
all of them consistently perform below human lev-
els. The gap to the human paraphrases is highest
for the B level sentences, which contain the most

5Since figures for Nyberg MT and Nyberg LM are
taken from Nyberg (2022), which only reports GLEU, they
are missing from Table 4.
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Version Text G F M
Translation Suddenly I think that I must leave this house in order to be [left

alone/free] and live in peace
Student Plötslig tencke jag måste gå ifrån det har huset jag vill bli fre [unclear

meaning] och leva i fred .
Minimal Plötsligt tänker jag att jag måste lämna det här huset , jag vill vara i

fred [be left alone] och leva i fred .
Granska Plötslig tencke jag måste gå ifrån det har huset jag vill bli före [become

before] och leva i fred .
1 1 0

Granska+post Plötslig tänker jag att jag måste lämna det här huset , jag vill vara i
fred [be left alone] och leva i fred .

MT Plötsligt måste jag tencke gå ifrån det här huset , jag vill bli fri [be
free] och leva i fred .

2 2 1

MT+post Plötsligt tänker jag att jag måste lämna det här huset för jag vara i
fred [be left alone] och leva i fred .

GPT-3 Plötsligt tänkte jag att jag måste gå ifrån det här huset . Jag vill bli fri
[be free] och leva i fred .

4 3 1

GPT-3+post Plötsligt tänkte jag att jag måste lämna det här huset . Jag vill vara i
fred [be left alone] och leva i fred .

Human fluent Plötsligt tänker jag att jag måste lämna det här huset . Jag vill vara i
fred och leva i fred .

4 3 4

Fluent+post Plötsligt tänker jag att jag måste lämna det här huset . Jag vill vara i
fred och leva i fred .

Human free Plötsligt tänker jag att jag måste komma iväg från [get away from] det
här huset , jag vill vara i fred och leva i fred .

4 4 4

Free+post Plötsligt tänker jag att jag måste komma iväg från det här huset , jag
vill vara i fred och leva i fred .

Table 2: Scores for (G)rammatical, (F)luency and (M)eaning preservation for selected examples from the
annotated data. Underlined words in the student sentence contain word-level errors.

CEFR level
System All A B C
Uncorrected 0.44 0.29 0.17 0.53
Granska 0.47 0.35 0.24 0.55
Nyberg MT 0.51 0.42 0.30 0.58
Nyberg LM 0.52 0.42 0.32 0.58
MT 0.57 0.48 0.38 0.63
GPT-3 0.63 0.60 0.52 0.65
Human minimal 1.0 1.0 1.0 1.0

Table 3: Reference based evaluation: GLEU
scores on the test set of Nyberg (2022).

errors and are generally the most difficult to cor-
rect. This is presented in more detail in Table 6,
where the frequency of each individual score is
given. While the human corrections nearly always
are classified as having no or minor differences,
all automatic systems have significant numbers of
moderate and substantial differences. Even given
the fact that about 30% of these divergences are
due to insufficient context (see Section 5), the dif-
ference is large enough to indicate that all GEC
systems have problems producing corrections with
adequate semantics.

CEFR level
System All A B C
Uncorrected 0 0 0 0
Granska 0.03 0.08 0.11 -0.01
MT 0.51 0.57 0.68 0.43
GPT-3 0.69 0.70 0.83 0.65
Human minimal 0.68 0.67 0.77 0.65

Table 4: Reference-free evaluation: normalized
scribendi scores on the test set of Nyberg (2022).

6.3. A tree of corrections

In this project, we have produced a total of ten
different versions of each sentence (three GEC
systems and two humans, each with a post-edit),
in addition to the original and its minimal correc-
tion from the SweLL project data. We visualize
this by computing the normalized character-level
Levenshtein distance between each pair among
the twelve versions of each sentence, then using
multidimensional scaling (Kruskal, 1964) as imple-
mented by Pedregosa et al. (2011).

In Figure 1, we show the result as a tree starting
at the original learner text (“original”), through its
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Figure 1: Multidimensional scaling view of all text versions, using normalized Levenshtein distance. The
resulting graph is a tree, with its root at the “original” node that represents the original text of the learners.
Edges represent transformations made by either computers (solid black lines) or humans (all other line
types). Unlabeled leaf nodes represent human post-edits to their parent nodes in order to achieve full
grammaticality, fluency and meaning preservation. Each human annotator is represented by a different
color. The node "grammatical" represents the human-normalized references from the SweLL data, and
"fluent" and "free" represent the Human fluent and Human free sentences as produced by the annotators,
respectively.

immediate transformations by each of the GEC sys-
tems (solid lines) and the minimal human correction
(“grammatical”), followed by the human rewrites for
fluency (“fluent” and “free”) to the post-edited ver-
sions (dashed lines). This figure complements the
bottom part of Table 5, which gives the distances
of the post-editing edges.

It is clear that GPT-3 by far performs the most
extensive changes to the text among the GEC sys-
tems. Still, the amount of post-editing required is
much higher than the human-corrected versions.
To some extent this can be explained by the fact
that the “fluent” and “free” human corrections indi-
rectly have access to a wider context through the
SweLL “grammatical” correction, but as was shown
in Section 5 the size of this effect is limited.

We can also see in Figure 1 that although the
post-edits (leaf nodes) converge somewhat, they
still produce rather different versions. According to
the human annotator, all of the leaf nodes represent

perfect corrections and none of them should be
penalized in an evaluation. From the figure, we get
an impression of the space of acceptable versions
of the text in relation to the space of unacceptable
versions.

7. Discussion

We have compared a diverse set of GEC sys-
tems (rule-based, MT-based, LLM-based, hu-
man), using a diverse set of metrics (reference-
based, reference-free, human scoring, human post-
editing). This allows us to make some general ob-
servations on the problem of GEC evaluation.

7.1. Metrics
The reference-free metric (Table 4) shows that the
neural methods (MT, GPT-3) achieve very high
scores, with GPT-3 scoring above or on par with
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CEFR level
System All A B C

Grammaticality
Granska 3.0 3.1 2.5 3.3
MT 3.3 3.4 3.0 3.5
GPT-3 3.7 3.8 3.6 3.8
Human fluent 3.9 3.9 3.8 3.9
Human free 3.9 3.9 3.9 3.8

Fluency
Granska 2.8 3.0 2.3 3.2
MT 3.1 3.2 2.7 3.3
GPT-3 3.6 3.7 3.4 3.7
Human fluent 3.8 3.8 3.7 3.8
Human free 3.8 3.8 3.9 3.8

Meaning preservation
Granska 3.5 3.5 3.2 3.7
MT 3.4 3.5 3.1 3.6
GPT-3 3.4 3.6 3.1 3.6
Human fluent 3.9 4.0 3.9 3.8
Human free 3.8 3.8 3.8 3.8

Normalized Levenshtein distance (NLD)
Granska 0.126 0.119 0.180 0.079
MT 0.113 0.095 0.158 0.087
GPT-3 0.076 0.068 0.112 0.050
Human fluent 0.034 0.034 0.045 0.022
Human free 0.029 0.030 0.034 0.025

Table 5: Human evaluation: mean score per system
and assessment dimension. Higher is better for all
assessments (range: 1–4), while lower is better for
NLD.

the minimal human correction. The rule-based
Granska system, however, achieves scores compa-
rable to the baseline of leaving the text uncorrected.
By comparing with the human evaluation (Table 5),
we see considerable differences. To begin with, the
human evaluation demonstrates that all GEC sys-
tems are clearly below human-level preformance.
We also see that while MT is clearly better than
Granska with respect to grammaticality, fluency
and post-edit distance, the gap is by no means as
large as suggested by the Scribendi score.

As seen in Table 3, the reference-based GLEU
suffers from ceiling effects, in particular for data
from the most proficient (level C) learner group.
The GLEU scores are nearly identical (0.63 and
0.65) for the MT and GPT-3 systems, but in terms
of grammaticality, fluency and post-edit distance
there is a clear difference.

A further illustration of this is found in Table 7,
which shows system-level correlations for GLEU,
Scribendi score, and the human assessments with
respect to each of the human assessment dimen-

sions. Here, the only negative correlations are pre-
cisely between the GLEU and Scribendi scores with
respect to meaning preservation.

We argue that post-edit distance, when afford-
able, is perhaps the fairest single-dimensional GEC
evaluation metric. In this work we quantify the edit
distance using normalized character-level Leven-
shtein distance, but other edit distances that bet-
ter model moved text segments may be more ap-
propriate. Table 7 shows that NLD has the over-
all strongest correlation with other assessment di-
mensions, whereas there is a split between gram-
maticality and fluency on one hand, and meaning
preservation on the other hand, which are only mod-
erately correlated.

7.2. System objectives

As we discussed in the introduction, GEC systems
can roughly be divided those that focus on providing
error detection and correction, and those that aim
to perform overall improvement of the text. Figure 1
clearly shows how this divide is reflected in post-edit
distance. The Granska system is based on rules for
specific error types, and provides human-readable
feedback and suggested corrections for the error
types covered, but overall makes very small ed-
its. Although GPT-3 has no explicit objective in its
design, due to its language model foundation it is
particularly well-suited for holistic text normaliza-
tion. This reflected in much larger edit distances.
The neural MT model falls somewhere in between,
as a neural model that is much smaller and less ca-
pable of language modeling than GPT-3, as well as
being trained on normalizing synthetic errors. It is
difficult to classify which objective this model really
has. For the human versions, we see that the free
version (with a general text improvement objective)
brings the grammatical version (with a correction
objective) further from the original learner text.

We note in Figure 1 that after the human post-
edits, all systems end up in different locations in the
space of possible corrections, regardless of what
the objective of the system is. The systems with
pure correction objectives (primarily Granska and
grammatical) end up in a somewhat tighter region
after post-editing, compared to those with a writing
improvement objectives (GPT-3 and free) that span
a larger area.

7.3. Methodological limitations

An important lesson for future work concerns the im-
portance of producing test sets with sufficiently long
context, preferably whole documents. This would
allow models with long context windows to demon-
strate their full potential, and give a fair comparison
to humans and to other computational models.
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System Identical Minor Moderate Substantial Other
Granska 125 34 11 13 9
MT 122 35 19 13 3
GPT-3 126 36 14 14 2
Human fluent 176 11 3 1 1
Human free 160 26 5 0 1

Table 6: Human evaluation: actual distribution of meaning preservation scores. The mean over each row
in this table is summarized in the All column under Meaning preservation in Table 5.

Gram. Fluency Meaning −NLD
GLEU 0.97 0.96 -0.93 0.92
Scribendi 0.94 0.92 -0.96 0.86
Gram. — 1.00 0.67 0.96
Fluency 1.00 — 0.66 0.96
Meaning 0.67 0.66 — 0.83
−NLD 0.96 0.96 0.83 —

Table 7: System-level Pearson correlation between
each metric (automatic as well as human asses-
ment dimensions) and each human assesment di-
mensions. Note that −NLD (higher is better) is
used instead of NLD (lower is better) to make the
correlations more intuitively interpretable. Uncer-
tainty is very high due to the small number of sys-
tems (3), and any attempt to quantify this uncer-
tainty would depend heavily on the prior distribu-
tion. We have chosen to present only maximum-
likelihood estimates here.

We also note that our choice of relying on the
minimal corrections from the SweLL data as gold
standard is sometimes problematic, since multiple
corrections with different semantics can be plausi-
ble. In our work, we used these minimal corrections
as a basis for the other (“fluent” and “free”) human
corrections, which has the effect of reducing the
diversity among the human corrections. If multiple
human corrections from the original text were to
be performed, we would also recommend anno-
tating which cases are truly ambiguous even to a
human. In addition, it would be helpful to include
annotations of the grammaticality and fluency of
the original sentence, for reference.

7.4. Advances in large language models
Since the initial annotations performed in this
work, the state of the art in LLMs has advanced
very rapidly. Compared to the GPT-3.5 text-
davinci-002 model used here, numerous very
capable models have been published. Penteado
and Perez (2023) evaluate one of the most capable,
GPT-4, for Brazilian Portuguese GEC and finds that
it is superior to GPT-3.5 in correcting the mostly or-
thographic and word choice errors present in their

evaluation data. Yancey et al. (2023) similarly com-
pare GPT-3.5 and GPT-4 in the more complex task
of automatic writing evaluation, and again find that
GPT-4 shows higher agreement with human raters.
It is reasonable to expect that GPT-4 would have
performed better than GPT-3.5 in our case as well.
An important question for future work is to what ex-
tent GPT-4 and other recent models close the gap
between GPT-3.5 and human performance that we
identified.

7.5. Summary and future work

In conclusion, we show that with the advent of large
language models, Swedish GEC has made enor-
mous progress compared to early work. One of
these models, GPT-3, produces corrections with
human-like grammaticality and fluency. However,
in the critical aspect of semantic accuracy, we see
little improvment compared to other types of mod-
els.

For evaluating GEC systems, we demonstrate
that different types of automatic evaluation met-
rics display different biases with respect to different
types of GEC systems. Reference-free metrics fa-
vor neural systems, even over human corrections,
while reference-based metrics struggle to differen-
tiate systems at high proficiency levels.

In this work, we used simple Normalized Lev-
enshtein distance to quantify the differences be-
tween post-edited corrections. For future work, we
believe that a more thorough analysis of these dif-
ferences would provide valuable insights into the
weaknesses remaining even in very strong GEC
systems. This could be done manually, or in some
cases automatically similar to Felice et al. (2016).

Given the strong and rapidly improving ability of
LLMs to handle extended contexts, we also see a
need to perform future evaluations on longer seg-
ments of texts, including entire documents. How-
ever, working at the document level requires con-
siderable adaptations of most existing evaluation
methods, which would be another interesting direc-
tion of future work.
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