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Abstract
Rationales in the form of manually annotated input spans usually serve as ground truth when evaluating explainability
methods in NLP. They are, however, time-consuming and often biased by the annotation process. In this paper,
we debate whether human gaze, in the form of webcam-based eye-tracking recordings, poses a valid alternative
when evaluating importance scores. We evaluate the additional information provided by gaze data, such as
total reading times, gaze entropy, and decoding accuracy with respect to human rationale annotations. We
compare WebQAmGaze, a multilingual dataset for information-seeking QA, with attention and explainability-based
importance scores for 4 different multilingual Transformer-based language models (mBERT, distil-mBERT, XLMR,
and XLMR-L) and 3 languages (English, Spanish, and German). Our pipeline can easily be applied to other
tasks and languages. Our findings suggest that gaze data offers valuable linguistic insights that could be lever-
aged to infer task difficulty and further show a comparable ranking of explainability methods to that of human rationales.
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1. Introduction

In order to build reliable and trustworthy NLP ap-
plications, it is crucial to be able to explain and
interpret a model’s decision. These Explainable AI
(XAI) approaches often rely on human-annotated
rationales for evaluation (DeYoung et al., 2020).
They are usually expensive and biased towards
annotation guidelines (Hansen and Søgaard, 2021;
Parmar et al., 2023) or the annotators’ demographic
(Al Kuwatly et al., 2020). While collecting lab-
recorded human gaze data is at least as expen-
sive as collecting rationales, it provides a more
intuitive annotation process as annotators can nat-
urally solve the task while reading the text, elimi-
nating the need for additional post-processing an-
notations after task completion. Recording human
gaze during annotation tasks has been suggested
in the past (Zaidan et al., 2007; Tokunaga et al.,
2013), while studies in computer vision have shown
promising results when including gaze into mod-
els for attribute prediction (Murrugarra-Llerena and
Kovashka, 2017). Webcam-based eye-tracking
recordings, where data is collected via a standard
webcam, on the other hand, are much more cost-
effective and are catching up in data quality (Ferhat
and Vilariño, 2016).

In this paper, we analyse whether and to what ex-
tent webcam-based eye-tracking can pose a valid
alternative to human rationales when evaluating
XAI methods in NLP. In the first part of this pa-

per, we focus on the eye-tracking dataset itself,
analysing the data quality across languages, look-
ing for indicators of task difficulty, and evaluating to
what extent gold-label rationales can be decoded
directly from the eye-tracking signal. In the second
part, we extend our analysis to attention-based ex-
planations as well as Layer-Wise Relevance Propa-
gation (LRP) (Ali et al., 2022) and Gradient× Input
(Baehrens et al., 2010; Shrikumar et al., 2017). We
perform this analysis for question answering (QA)
in English, Spanish, and German, and 4 multilin-
gual Transformer models.

Contributions. This work is the first analysis of
webcam-based eye-tracking as an alternative for
human-annotated rationales on text. We investi-
gate (i) possible gaze-based indicators for task
difficulty and (ii) factors that influence data qual-
ity in webcam-based eye-tracking. Furthermore,
we (iii) fine-tune 4 multilingual Transformer models
(mBERT, distilMBert, XLMR, and XLMR-L) on ques-
tion answering in English, Spanish, and German to
(iv) evaluate model explanations both in reference
to human rationales and gaze.

We build upon the eye-tracking data and analysis
of Ribeiro et al. (2023) by computing entropy and
decoding accuracy scores of the collected fixation
patterns. We furthermore perform an XAI-based
analysis to investigate gaze data as a possible al-
ternative to human rationales for the evaluation of
model explanations.
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Figure 1: One sample from the WebQAmGaze corpus with ground-truth rationales, average eye-tracking
pattern across participants and model-based relevance scores computed with LRP based on mBERT. The
correct answer is shown in the rationale (upper). We see that both the gaze pattern and the model-based
explanation scores focus on the first part of the answer more than on the second.

Results presented in Section 3 show that
gaze provides valuable additional linguistic in-
formation that can potentially be used to in-
fer task difficulty. Decoding accuracy based
on gaze data varies across languages, result-
ing in promising results, especially for German.
Gaze data further shows a similar ranking for ex-
plainability methods as human rationales, pos-
ing a potential alternative when evaluating XAI
methods as shown in Section 4. Our code is
available at: github.com/stephaniebrandl/
rationales-eyetracking-xai.

2. Related Work

XAI for Transformers. Attention modules allow
us to directly interpret attention tensors to under-
stand or visualize the inner model workings (Bah-
danau et al., 2015). However, growing evidence
suggests that raw attention scores may not pro-
vide a faithful explanation of the model prediction
(Jain and Wallace, 2019; Serrano and Smith, 2019;
Ali et al., 2022). Besides the naive aggregation of
raw attention weights, more elaborate explanation
mechanisms have been proposed such as atten-
tion flow and attention rollout (Abnar and Zuidema,
2020) that consider the layered model structure to
assign importance scores.

Alternatively, gradient-based methods such as
Gradient× Input (Voita et al., 2019; Wu and Ong,
2020) and integrated gradients (Wallace et al.,
2019) have been used to explain Transformer
model predictions. However, the naive computation
of model gradients in Transformers suffers from in-
stabilities that can be mitigated via a modified layer-
wise relevance propagation (LRP) scheme guided
by the principle of relevance conservation (Ali et al.,
2022; Eberle, 2022). This approach results in more
faithful model explanations when compared to other
Transformer explanations.

In this work, we consider a variety of meth-
ods and include both attention-based (first and

last-layer attention, attention rollout) and gradient-
based (Gradient×Input, LRP) explanations.

Evaluation XAI. The automated quantitative eval-
uation of Explainable AI approaches has received
growing attention (Zhang et al., 2019; Rosenfeld,
2021; Samek et al., 2021; Zhou et al., 2021; Hed-
ström et al., 2023).

In evaluating explanations, it is useful to distin-
guish between approaches that evaluate how well
a method explains the model prediction process
and approaches that focus on explaining a partic-
ular ground truth. The former is most commonly
assessed using faithfulness, sufficiency, or com-
plexity metrics (Swartout and Moore, 1993), while
the latter typically involves rationale annotations or
measurements to assess human alignment with the
model’s decision strategy (Miller, 2019; DeYoung
et al., 2020).

We here focus on evaluating explanations based
on human-annotated gold label rationales and open
up the question of whether human gaze poses a
valid alternative in this evaluation process.

Evaluation with human signals. Capturing the
model prediction faithfully does not necessarily
align with human annotations, since different task-
solving strategies can emerge in models and
humans (Rudin, 2019; DeYoung et al., 2020;
Atanasova et al., 2020). Previous work has di-
rectly compared human and expert annotations
of input data to model explanations (Schmidt and
Bießmann, 2019; Camburu et al., 2018; DeYoung
et al., 2020), and compared alignment between psy-
chophysical signals during task-solving to model-
based explanations (Das et al., 2016; Klerke et al.,
2016; Barrett et al., 2018; Zhang and Zhang, 2019;
Hollenstein et al., 2021). Another line of work
has analysed the alignment between human gaze
and model explanations. Overall, they found a
clear correlation between first-layer attention, atten-
tion flow (Abnar and Zuidema, 2020) and gradient-

https://github.com/stephaniebrandl/rationales-eyetracking-xai
https://github.com/stephaniebrandl/rationales-eyetracking-xai
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based explanations with human gaze in English
normal reading (Hollenstein and Beinborn, 2021)
as well as task-specific reading (Eberle et al., 2022;
Ikhwantri et al., 2023), and also in multilingual set-
tings (Morger et al., 2022; Brandl and Hollenstein,
2022; Bensemann et al., 2022). It further has been
found that higher alignment between models and
gaze does not necessarily lead to higher task per-
formance (Sood et al., 2020) or higher faithfulness
(Eberle et al., 2022).

Webcam-based eye-tracking. Recording hu-
man gaze via webcams enables the collection of
larger datasets and has been applied in both NLP
and computer vision (Xu et al., 2015; Papoutsaki
et al., 2017; Hutt et al., 2023). While less accurate
than professional eye-tracking devices, results com-
parable to lab studies have been reported (Sem-
melmann and Weigelt, 2018). Results demonstrate
that well-known phenomena can be replicated from
online data, but are slightly less accurate and with
higher variance compared to in-lab recordings.

We will focus our analysis on WebQAmGaze
(Ribeiro et al., 2023), a multilingual dataset for
information-seeking QA. There, we compared a
subset of the recorded data set with respective
lab-recorded counterparts. We report Spearman
correlations of greater than 0.5 for most texts. Here,
we extend this and look into data quality of webcam-
based eye-tracking and how this relates to decoding
accuracies and evaluation in comparison to tradi-
tional XAI methods.

3. Gaze-based Analysis

In the following, we evaluate gaze data based on
human-annotated rationales in English, Spanish,
and German on a subset of the XQuAD dataset.

3.1. Data
XQUAD. XQuAD (Artetxe et al., 2019) contains
professional translations of question-answer pairs
from a subset of SQuAD v1.1 (Rajpurkar et al.,
2016) into 11 languages. For each context para-
graph, there is a set of questions that is annotated
with the correct answer, i.e., the span of where
it can be found in the text. The correct answers
have been crowdsourced by annotators and se-
lected based on a majority vote, we use those as
ground-truth human-annotated rationales.

WebQamGaze. WebQamGaze (Ribeiro et al.,
2023) is a multilingual webcam-based eye-tracking
dataset collected with WebGazer where partici-
pants read texts from XQuAD. Participants perform
two different tasks, normal reading and information-
seeking, each for 4 and 5 different texts of XQuAD,

Lang. Texts Tokens Age
n min/max avg answer avg

EN 71 31/130 97 2.6 37
ES 42 35/131 96 2.9 33
DE 25 26/112 80 1.6 30

Table 1: Statistics for the IS task in the We-
bQAmGaze dataset. Each row shows the num-
ber of texts, the minimum, maximum, and average
number of tokens per text, followed by the average
number of tokens per answer and the average age
of the participants.

respectively. In the normal reading task, each text
is followed by a comprehension question. In the
information-seeking (IS) task, the question is asked
before showing the text but also while and after
reading the respective paragraph. We focus our
analysis on the information-seeking part of XQuAD
for English (N=126), Spanish (N=51) and German
(N=19), where N represents the number of partic-
ipants. Self-reported language fluency scores in
the respective language were 4.6–4.9 on average
per language. We show further statistics in Table
1. We extract total reading times (TRT) by sum-
ming over all fixations per word and participant, i.e.,
how long someone looks at a specific word includ-
ing regressions. We furthermore compute relative
fixation duration (RFD), i.e., reading patterns, for
individual participants by dividing TRT per word by
the sum over all TRTs in the respective context, sim-
ilar to Hollenstein and Beinborn (2021). Finally, we
average RFD across participants. Figure 1 shows
an example of ground-truth annotations, gaze and
model explanation.

3.2. Analyses
We first carry out an in-depth analysis of We-
bQAmGaze. We therefore look into data qual-
ity, which varies across languages for this dataset
(Ribeiro et al., 2023). We compute entropy across
texts, which is known to be an indicator for task diffi-
culty, and decoding accuracy with respect to human
rationales to find out to what extent we can extract
rationales from fixation patterns. This analysis aims
to assess what kind of additional information the
fixation patterns contain that can be beneficial for
evaluating XAI.

Data quality. In Ribeiro et al. (2023), we report
WebGazer accuracies across languages as an in-
dicator for overall data quality. The WebGazer ac-
curacy is calculated in the calibration phase and
indicates how accurately fixations are recorded on
average, i.e., to what extent fixations on a partic-
ular point on the screen are detected by the soft-
ware. We see that both median and mean across
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Figure 2: Toy example to visualize decoding accuracies (ROC-AUC scores) of ground-truth rationales for
three different eye-tracking patterns (v1-v3). The correct ranking as in v1 leads to a perfect score of 1.
In v2 only one of the correct tokens (Narges) appears in the top-2 of the reading patterns which leads
to a lower ROC-AUC score as shown on the right, similar for v3 where the relevant tokens only appear
within the top-5. For the analysis with real gaze patterns, we only use one pattern per text in each set
after averaging across participants.

Figure 3: Entropy and decoding accuracy sepa-
rated by all languages. Medians are displayed
within the boxplots as a straight line whereas means
are shown as white dots. Data has been filtered
based on the WebGazer accuracy with a thresh-
old of 20% (orange) and additionally we removed
wrong answers (purple).

participants increase from English (23.6%, 30.6%)
to Spanish (34.6%, 38.4%) and German (41.7%,
39.0%). This accuracy is based on individual web-
cams and should not be language-dependent.

Entropy. Gaze entropy, i.e., entropy calculated
on fixation patterns, has been found to be an indica-
tor for task difficulty in previous eye-tracking studies
(Di Stasi et al., 2016; Wu et al., 2020; Mejia-Romero
et al., 2021). We calculate entropy across texts, re-
sults are shown in Figure 3 (left), where we see a
decrease in entropy of the relative fixation patterns
from English to Spanish and German based on all
samples, i.e., question-answer pairs. Based on the
previous finding of different data quality, we filter
the dataset based on WebGazer accuracy with a
threshold of 20% and keep the samples above that.
We also remove wrong answers in the IS task. We
find that for all languages, higher data quality and

filtering out wrong answers lead to overall lower
entropy values. This effect is strongest for English.

Error prediction. Based on the aforementioned
literature on gaze entropy and task difficulty and
workload, we look into a possible connection be-
tween error prediction in the QA task and gaze
entropy. In Ribeiro et al. (2023), we show that
TRT in WebQAmGaze differs significantly between
participants who respond correctly vs. incorrectly
which here is the only available proxy for task dif-
ficulty. Our correlation analysis extends on these
findings, and we observe significant negative cor-
relation between TRT on the given text and task
accuracy, i.e., the longer a person reads the text the
more likely the given answer to be wrong. We find
this effect to be significant in all three languages
(p < 0.05) with correlation coefficients ranging from
−0.23 (en) to −0.54 (de). We further find task accu-
racy to correlate with entropy values (p < 0.05) for
individual samples averaged across participants
for Spanish (−0.41) and German (−0.49). This sug-
gests that higher entropy values, i.e., more sparse
reading patterns, correlate with a lower task accu-
racy, i.e., more difficult tasks, which is in line with
Di Stasi et al. (2016); Wu et al. (2020) who find
higher entropy to be an indicator of higher work-
load in surgical tasks. Mejia-Romero et al. (2021)
on the other hand, find a higher workload in driving
to be connected to lower gaze entropy. All men-
tioned studies use 2-dimensional gaze coordinates
whereas we use reading times where gaze has
been allocated to specific words prior to calculating
gaze entropy.

Decoding. We compute decoding accuracies to
quantify how much information about the ground-
truth rationale is contained in eye-tracking and
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Figure 4: ROC-AUC scores for decoding rationales from attention-based and gradient-based model
explanations, i.e., decoding accuracies, across all 3 languages. Results for Gaze are model-agnostic.
Individual samples with an F1-scores below 50 have been filtered out per model and language.

model signal. This approach is related to cognitive
neuroscience, where brain activity is mapped to
the original stimuli (here the ground-truth rationales
from XQuAD) in order to get a better understanding
of human language processing (Huth et al., 2016).

We compute “area under the ROC curve” (ROC-
AUC) to assess the discriminatory ability of the
gaze-based fixation patterns in detecting the cor-
rect rationales (true-positives) compared to the in-
correctly detected tokens (false-positives). A ROC-
AUC score of 0.5 indicates discrimination at chance
level. Our toy example in Figure 2 presents three
reading patterns (eye-tracking v1-3) that lead to
different ROC-AUC scores as shown on the right.
Here, the correct ranking is crucial, i.e., a perfect
score of 1 is reached when the ranking of the top-k
tokens fully agrees with the rationale tokens, here
Narges and Mohammadi.

In Figure 3 (right), we show decoding accuracies
for all languages based on all samples (previously
averaged across participants) and observe that ra-
tionales can indeed be decoded from gaze data
with mean decoding accuracies around 60% for
English and Spanish and around 70% for German.
Here, we only observe a marginal increase after ap-
plying the same filtering with respect to data quality
and task accuracy.

4. XAI-based Analysis

We will further look at the evaluation of XAI methods
based on ground-truth rationales. In a first step, we
extend the decoding analysis from Section 3 to also
analyse if ground truth annotations can be decoded

from model-based explanations. In a second step,
we evaluate model explanations based on their
ranking of tokens in comparison to ground truth
rationales and reading patterns.

We focus our analysis on mBERT, distil-mBERT,
XLMR and XLMR-L, covering a range of widely-
used multilingual encoder-only models. Explana-
tion methods based on BERT-like models have
previously been shown to correlate with human
gaze (Eberle et al., 2022; Brandl and Hollenstein,
2022) as well as human rationale annotations
(Thorn Jakobsen et al., 2023).

4.1. Fine-tuning Models

We fine-tune 4 multilingual pre-trained language
models (mBERT, distil-mBERT, XLMR, XLMR-L)
individually for each of the three languages (en,
es, de) on XQuAD after filtering out the language-
specific text samples that have been used in We-
bQAmGaze. We split the remaining data into train
and validation set (90/10) and use the samples
from WebQAmGaze as the test set. This results
in training datasets of 818–990 samples and eval-
uation datasets of 91–111 samples for the three
languages respectively. For the fine-tuning, we use
a span classification head on top of the encoder
and train with AdamW with a learning rate of 2e-5, a
batch size of 16, weight decay of 0.01 for 7 epochs.
We fine-tune all models for 3 different seeds, eval-
uate all of them, and report average scores. We
further filter out the samples with an F1 score below
0.5 in the QA task.
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Figure 5: Comparison of gaze-based and rationale-
based ranking of explanation methods for English
(EN), Spanish (ES), and German (DE) – top to bot-
tom. Ranks 1 to 5 indicate model explanations most
to least aligned with human importance scores.
Spearman rank correlation rs at p ≤ 0.01 (∗∗),
p ≤ 0.05 (∗), or not significant (ns). Results are
based on text samples filtered by correct human
answers.

4.2. Model Explanations

Attention-based. In order to extract model ex-
planations, we include both attention-based and
gradient-based methods. We compute averages
over first-layer attention, last-layer attention tensors
(Hollenstein and Beinborn, 2021) and attention roll-
out (Abnar and Zuidema, 2020).

Gradient-based. We further compare to
‘Gradient×Input’ (Baehrens et al., 2010; Shrikumar
et al., 2017) and ‘Layer-wise Relevance Propaga-
tion’ (LRP, Bach et al. 2015). To compute faithful
LRP explanations, we apply specific propagation
rules that are designed to reconstitute the con-
servation of relevance (Ali et al., 2022). For the
models considered here, this was implemented by
detaching specific model components that occur in
the self-attention mechanism and the normalization
layers from the gradient computation. We note that
this does not affect the model predictions.

4.3. Analyses and Experiments
Decoding. As presented in Section 3.2, annota-
tions could be recovered from gaze patterns with
averaged ROC-AUC scores ranging from 59% to
73%. In Figure 4, we show results for the same
analysis where we also decode the annotations
with respect to model-based explanation for all 3
languages. We find that human rationales can be
effectively decoded from explanations, in particular
from LRP-based relevance with ROC-AUC scores
ranging from around 67% up to 96% across mod-
els.

Both first-layer and last-layer attention and rollout
scores show mixed decoding abilities with ROC-
AUC scores mostly below 65% where XLMR shows
the highest accuracies across all 3 languages.

Ranking. We now turn to the question of how well
human gaze patterns can be used to evaluate XAI
methods in direct comparison to commonly used
human rationale annotations.

To compare the agreement between annotation
and explanation, we rank tokens according to their
importance scores as assigned by an explanation
method. We then compare the accumulated im-
portance scores against the accumulated evidence
assigned by human rationales or gaze fixations.
By computing the area under the curve (AUC), we
measure how well evidence from human annota-
tions aligns with the most relevant tokens from an
XAI perspective. AUC scores closer to zero indi-
cate that model-based and gaze/rationale-based
importance scores identify different tokens as most
relevant for the task, AUC scores of 0.5 indicate
aligned importance scores. Scores greater than
0.5 signify higher importance attribution by humans
(gaze/rationales) to the most relevant tokens based
on model explanation. Similar approaches have
been used for the evaluation of explanation meth-
ods (Bach et al., 2015; Ancona et al., 2018).

The computed AUC scores are used to rank the
different models, with rank 1 to 5 indicating the
model explanations that are most to least aligned
with human signals.

The ranking across methods is shown in Figure
5 for mBERT, distil-mBERT, XLMR, and XLMR-L.
First focusing on rationales, we find that in line
with previous work, gradient-based approaches
rank favorably in comparison to attention-based
methods (first/last-layer attention, first-layer rollout).
While the respective ranking based on gaze data
is less consistent, we do observe an overall com-
parable ranking of explanation methods, in partic-
ular, for mBERT, distil-mBERT, and XLMR. The
deeper XLMR-L in comparison tends to identify
first-layer-attention as the most human-aligned ex-
planation for both gaze-based attribution and ratio-
nales. Further analysis of AUC scores suggests
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that for XLMR-L, AUC scores are generally lower,
indicating a differently selected set of most relevant
tokens. We show AUC scores in Figure 10 in the
Appendix.

We find that first-layer attention tends to rank
favorably when compared to gaze in contrast to
rationales. This effect is in line with previously ob-
served high correlation between early-layer atten-
tion and gaze-based attention (Morger et al., 2022;
Brandl and Hollenstein, 2022). While the ranking
of explanation methods can differ across models,
we see that for 9/12 models (across all languages)
the rankings based on gaze and rationales corre-
late with Spearman rank correlation scores ranging
from 0.52 to 0.97 (p ≤ 0.05). This suggests that
these gaze signals can be considered as an alter-
native to rationales for the creation of cost-effective
large evaluation datasets for XAI.

5. In-depth Analysis

We look into different factors that potentially drive
WebGazer accuracy (data quality) and decoding
accuracies based on linguistic features in the text.
We also show results on additional recordings for
a subset of the English dataset.

Figure 6: Comparison of WebGazer and decoding
accuracies on sets 02 and 18 for different groups
of workers.

Control setup. Given the lower webcam accu-
racy for English, we further analyse two additional
datasets that were collected for a subset of the
original WebQAmGaze. The first dataset volun-
teers was recorded by 19 collaborators who were
given the link online and were not paid for this study.
The second dataset control has been recorded
at the University of Copenhagen with 10 members
on-site. Those participants were also not paid for
this study. For the control dataset, we used the
same laptop, a MacBook Pro 13-inch (M1, 2020),
across all participants in a controlled setup where
we used artificial light in a relatively dark room
but no further equipment. Figure 6 shows the re-
sults, i.e., WebGazer and decoding accuracies, for

the two new datasets and for the same subset of
the original dataset collected via mturk. We see
that WebGazer accuracy still varies but is on aver-
age higher than in the same subset of the original
dataset (23.8% vs. 40.5% and 43.4%). Regard-
ing decoding accuracy, the median increases for
all groups when we filter based on data quality
(the same holds for the mean except for mturk)
but not the same holds for filtering out wrong an-
swers. We see the highest decoding accuracies
for volunteer with median accuracies of 77–81%,
which is also the group with the highest WebGazer
accuracy. Overall these results suggest that better
webcam accuracy also leads to higher decoding
accuracies.

Vision. As Figure 6 shows, even in a controlled
setup with the same lightning condition and laptop,
the WebGazer accuracy varies between 11% and
70% with an average of 40%. For this dataset, we
collected information about participants wearing
glasses during the experiment. When consider-
ing that factor, we see clear differences between
people with and without glasses. For participants
with glasses (4/10), the average WebGazer ac-
curacy drops to 20% whereas the average accu-
racy for people without glasses is at 54%. We
are not the first to see differences in data quality
with participants wearing glasses, Greenaway et al.
(2021) report that for 7 out of 9 participants, the
webcam-based eye-tracker was not able to suc-
cessfully mesh the participants faces due to lens
reflections. Unfortunately, we do not have any infor-
mation about participants’ vision in the remaining
datasets.

Relative position of answers in text. We hypoth-
esize that in the information-seeking tasks, partici-
pants stop reading after finding the correct answer
which might affect decoding accuracies. We there-
fore split the English part of the original dataset into
4 equally sized bins based on the relative position
of the answer in the text. We then compare the
decoding accuracy for the ground truth rationales
with respect to the eye-tracking data, similar to Fig-
ure 3 (right) for individual bins and show results in
Figure 7. We clearly see a drop in median (and
mostly also mean) accuracy the later in the text
the answer can be found. This might be due to
a more dispersed reading pattern, assuming that
participants stop reading earlier, resulting in more
sparse and presumably easier-to-decode reading
patterns for answers located earlier in the text.

Length of text and answer. We also look into
how the length of both text and answer, measured
by the number of tokens, influences the decoding
accuracy for eye-tracking. For both analyses, we
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Figure 7: Decoding accuracy for the eye-tracking
data with respect to ground-truth rationales based
on the relative position of the answer in the text.
We therefore group the dataset into 4 equally-sized
bins based on where in the text the answer can
be found. The x-axis shows the percentage of the
upper bound of the respective bin.

Figure 8: Results for short and long texts. English
data was split into equally sized bins based on the
length of the text.

split the English part of the original dataset into
two equally sized bins. For the text length, we
set the threshold at 87 tokens, i.e., the median
length and show results for decoding accuracies
with respect to gaze in Figure 8. We see a slightly
higher decoding accuracy for longer texts (median:
57.1% vs. 62.1%). Similarly, we apply the median
length of all answers (2 tokens) as a threshold to
split the data and look at decoding accuracies for
both gaze and models in Figure 9. We find that
models overall show slightly higher accuracies for
shorter than for longer answers, while the effect
for gaze is even stronger with a gap of 10%. This
effect also holds when we split the data into 4 bins.

Figure 9: Results for short and long answers. En-
glish data was split into equally sized bins based
on the length of the gold label answer.

6. Discussion

This work presents a first look into the possibilities
of low-cost gaze data as an alternative to human
rationale annotations. We have compared human
gaze in an information-seeking QA task with model-
based explanations in 3 languages (English, Span-
ish, German) for 4 multilingual Transformer-based
language models.

We see that data quality, measured with the
WebGazer accuracy, largely varies between record-
ings, even when data is collected with the same
camera and lighting conditions. One reason for
this might be the use of glasses, which have been
shown to affect the accuracy in webcam-based eye-
tracking due to lens reflections. Unfortunately, this
information is typically not available. We recom-
mend to include it to the questionnaire for future
data collection.

We use the error rate across participants as a
proxy for task difficulty and look into possible indica-
tors. We find TRT (all languages) and gaze entropy
(Spanish and German) to strongly correlate with
the error rate with negative coefficients. Spatial
gaze entropy has been found to be an indicator for
workload in surgical and driving tasks before.

Rationales and gaze provide complementary in-
formation to assess if human signals and model
explanations are well-aligned. By decoding ratio-
nales from model explanations, we could clearly
see that some explanations contain relevant signal
to achieve high accuracies. We find that explana-
tion methods that were found to be more faithful,
in particular gradient-based explanations, are able
to reach higher ROC-AUC scores than attention-
based explanations. This clearly shows how the
alignment of rationales and model explanations de-
pends on the choice of appropriate XAI methods.

We see various factors that might influence de-
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coding accuracies both for models and gaze. The
relative position of the answer in the text as well as
the text length and the number of tokens in the cor-
rect answer seem to potentially influence the abil-
ity to decode the gold label answer where longer
texts and shorter answers lead to higher accura-
cies. This might be due to the fact that it takes
more time, and thus more fixations are collected,
to detect a shorter answer in a longer text which
might lead to more accurate gaze patterns.

We further have explored the potential use of
webcam-based gaze patterns as a more accessible
alternative to rationale annotations. While rankings
of XAI methods that result from a comparison to
(i) rationales and (ii) gaze-based attention show
comparable rankings, we observe that the agree-
ment between rankings can depend on the specific
model and data. Although evaluating and aligning
models using webcam-data can currently not yet
fully replace high-quality rationale annotations, we
argue that they do provide useful information, in
particular, when collecting rationales is not feasible.

7. Conclusion

We showed that eye-tracking, even in lower quality
than lab-quality recordings, provides useful linguis-
tic information, e.g., in the form of reading times
and entropy values in English, Spanish, and Ger-
man. Thus, although webcam-based eye-trackers
are still catching up in data quality, we do not need
lab-quality to benefit from the additional signals in
gaze. Further research is needed to investigate
entropy as a possible indicator for task difficulty in
reading patterns, similar to prior work on spatial
gaze patterns in workload tasks. This integrated
approach of recording both human gaze and ratio-
nales could readily be extended to other tasks and
languages, which may vary not only in linguistic but
also in computational characteristics.

8. Limitations

This work focuses on analysing gaze data as an
alternative for human rationale annotations when
evaluating explainability methods. We apply our
analysis to a subset of the dataset including three
Indo-European languages: English, Spanish, and
German. Thus, this analysis does not cover a wide
variety of languages and, furthermore, we have only
a small sample size for German (19 participants).
We focus on one dataset/task and on multilingual
BERT-like language models. To draw more general
conclusions this analysis needs to be extended to
more language families, datasets, and language
models.
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Appendix A. Ranking Analysis
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Figure 10: Comparison of gaze-based and
rationale-based AUC scores for different explana-
tion methods for English (EN), Spanish (ES), and
German (DE) – top to bottom. Spearman rank cor-
relation rs at p ≤ 0.01 (∗∗), p ≤ 0.05 (∗), or not
significant (ns). Results are based on text samples
filtered by correct human answers.
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