
LREC-COLING 2024, pages 6381–6394
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

6381

Evaluating Code-Switching Translation with Large Language
Models

Muhammad Huzaifah∗1, Weihua Zheng∗1, Nattapol Chanpaisit†2, Kui Wu1

1Institute for Infocomm Research (I2R), Agency for Science, Technology and Research, Singapore
2Nanyang Technological University, Singapore

{huzaifah_md_shahrin, zheng_weihua}@i2r.a-star.edu.sg

Abstract
Recent advances in large language models (LLMs) have shown they can match or surpass finetuned models
on many natural language processing tasks. Currently, more studies are being carried out to assess whether
this performance carries over across different languages. In this paper, we present a thorough evaluation of
LLMs for the less well-researched code-switching translation setting, where inputs include a mixture of different
languages. We benchmark the performance of six state-of-the-art LLMs across seven datasets, with GPT-4
and GPT-3.5 displaying strong ability relative to supervised translation models and commercial engines. GPT-4
was also found to be particularly robust against different code-switching conditions. Several methods to further
improve code-switching translation are proposed including leveraging in-context learning and pivot translation.
Through our code-switching experiments, we argue that LLMs show promising ability for cross-lingual understanding.
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1. Introduction

Code-switching, that is the alternation of multiple
languages in an utterance (Poplack, 1978), is a
common phenomenon arising in multilingual com-
munities. Such language use is also prevalent
in online discourse, especially under the informal
context of social media. With the increasing in-
terconnectedness of our world, effective transla-
tion systems for code-switching are of growing im-
portance. Nevertheless, while advances in neural
machine translation (NMT) have led to significant
leaps in translation ability, the code-switch setting
remains a considerable challenge (Winata et al.,
2023).

Historically, NMT systems have struggled with
code-switching because they were typically de-
signed for monolingual text, where the model
learns an alignment between monolingual source
and target data through cross-attention. Conse-
quently, such models are brittle to inputs contain-
ing multiple languages during inference. NMT
training is moreover still largely reliant on huge
amounts of parallel data, which is relatively scarce
for code-switched text. More advanced multilin-
gual models have been proposed but their effec-
tiveness has not proven to be definitive (Winata
et al., 2021).

Recent breakthroughs in decoder-based large
language models (LLMs) have revolutionised the
field of natural language processing (NLP). LLMs
have been shown to not only improve performance
across a wide variety of NLP problems (Gao et al.,
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2021) but also provide a common natural lan-
guage interface to interact with the model. As
opposed to traditional NMT systems, LLMs are
trained for language modelling for which paral-
lel data is unnecessary, and are therefore poten-
tially better suited to handle translation of code-
switched text.

Various studies have evaluated the perfor-
mance of LLMs for the translation task (Jiao et al.,
2023; Hendy et al., 2023), including research on
more effective prompting techniques (Vilar et al.,
2023; Zhang et al., 2023a), and for specific sce-
narios like document-level (Wang et al., 2023) and
multilingual translation (Zhu et al., 2023). There
has been mixed results on the use of LLMs for gen-
eral translation, with some reporting competitive
ability on high-resource languages but lagging be-
hind other supervised NMT models especially on
lower-resource languages. Notwithstanding, we
observe a clear trend of LLMs getting better with
each iteration, notably with the release of GPT-
3.5 (Brown et al., 2020), and subsequently GPT-4
(OpenAI, 2023). With regards to code-switching,
Zhang et al. (2023b) argued that multilingual LLMs
were not necessarily compatible with such inputs
on a variety of tasks. However, we note that their
analysis was mostly carried out on the previous
generation of LLMs, and they found GPT-3.5 to
be much more comparable to finetuned models.
Similarly, Yong et al. (2023) found that ChatGPT
(GPT-3.5) outperformed other multilingual LLMs in
generating code-switched texts for several South
East Asian languages.

In this work, we focus on assessing the trans-
lation ability of state-of-the-art LLMs for code-
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switched text relative to supervised NMT mod-
els and commercial engines. We observe that
GPT-4 and GPT-3.5 are able to handle code-
switching inputs very well and may be consid-
ered on par or better than the commercial engines,
while the other LLMs are far more inconsistent.
Further experiments reveal that GPT-4 is signifi-
cantly more robust than Google Translate against
heavier code-switching and displays evidence of
cross-lingual understanding given different code-
switching distributions. We forward different meth-
ods to enhance translation ability in GPT-4, firstly
via in-context learning for which we propose a new
selection strategy CMS, and secondly through
pivot translation into English and the matrix lan-
guage. We also publicly make available a code-
base and new synthetic code-switching datasets
derived from Flores-2001.

2. Experimental Setup

2.1. Large language models

LLMs belong to a class of decoder architectures
that learn to autoregressively generate the next
token (commonly a subword) given previous to-
kens, following a so-called language modelling ob-
jective. Compared to prior language models, they
are characterised by their large parameter size
containing billions to a trillion weights and vast
amounts of training data amounting to trillions of
tokens. With further instruction finetuning, LLMs
have displayed an uncanny ability to adhere to
human-generated prompts.

While there has been many flavours of LLMs
released recently, we chose several that are well
benchmarked to provide a comprehensive repre-
sentation of the current state-of-the-art. Given
that prior work has shown that performance scales
with parameter size (Kaplan et al., 2020), we only
evaluated the biggest available version for each
model. Furthermore, we opted for the instruction
finetuned versions of the models to maintain a con-
sistent way of prompting them. Additional gen-
eration parameters that may be exposed through
the API, such as temperature, were left at their
defaults. For models hosted online, in particu-
lar GPT-4 and Bard (as well as the commercial
MT engine baselines), there is a possibility of up-
dates to the underlying model over time, which
may alter its behaviour. For full disclosure, we ac-
cessed these models in the period between June-
September 2023 for this study. We consider the
following LLMs in our evaluation:

1https://github.com/muhdhuz/
CodeSwitch_Text_Generator

GPT-4 (OpenAI, 2023) is the latest LLM offered
by OpenAI. It has displayed remarkable capabil-
ities in zero-shot and few-shot scenarios, includ-
ing for general translation (Jiao et al., 2023). Un-
fortunately, OpenAI has not disclosed details on
their model and training strategies, which has ham-
pered the reproducibility of their methodology. We
directly accessed GPT-4 though the ChatGPT web
interface2 via its Plus subscription service.

GPT-3.5 (Brown et al., 2020) is a 175B param-
eter model powering ChatGPT before the roll-out
of GPT-4, and was mostly responsible for the ex-
plosion of interest in such applications by the gen-
eral public. At that time it was the leading LLM in
many NLP benchmarks before being superseded
by the more advanced GPT-4, especially on more
complex reasoning tasks. Our evaluation is con-
ducted on the gpt-3.5-turbo-0613 version through
the chat completions API.

Bard is a conversational chatbot released by
Google in a similar vein to ChatGPT. Its latest it-
eration is based on the PaLM-2 model (Anil et al.,
2023), although further technical details were not
made public. Having been trained on a large
corpora of multilingual text, PaLM-2 is claimed
to excel at multilingual tasks including translation,
for which it outperformed Google Translate and
PaLM on the WMT21 test set. We accessed
Bard through the unofficial Bard-API package3

that pulls responses from Bard4 through cookies.

LLaMA-2 (Touvron et al., 2023b) is a family of
LLMs released by Meta with parameter sizes rang-
ing from 7B to 70B, and is the successor to the
popular LLaMA (Touvron et al., 2023a). The lat-
ter was one of the first open-source LLMs trained
at scale and so was well adopted by the research
community. LLaMA-2 further improved perfor-
mance having been trained on 40% more data
and twice the context length. We adopted the offi-
cial 70B instruction-finetuned version available on
Huggingface5.

Falcon (Almazrouei et al., 2023) is an LLM de-
veloped by the Technology Innovation Institute
(TII) and was the best performing LLM on the
Open LLM leaderboard for a period of time, sur-
passing the original LLaMA model. It was mostly
trained on the open-source RefineWeb dataset

2https://chat.openai.com/
3https://github.com/dsdanielpark/

Bard-API
4https://bard.google.com/
5https://huggingface.co/meta-llama/

Llama-2-70b-chat-hf

https://github.com/muhdhuz/CodeSwitch_Text_Generator
https://github.com/muhdhuz/CodeSwitch_Text_Generator
https://chat.openai.com/
https://github.com/dsdanielpark/Bard-API
https://github.com/dsdanielpark/Bard-API
https://bard.google.com/
https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
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(Penedo et al., 2023), which was curated through
innovative filtering techniques. Here, the Falcon-
40B-instruct6 variant was used. We note that TII
has more recently released a 180B parameter ver-
sion that shows better performance compared to
its predecessors.

Phoenix (Chen et al., 2023) is an LLM that fo-
cuses on multilingual performance, in particular for
Chinese and other non-Latin languages, for which
it was shown to outperform other open-source
models. Phoneix uses BLOOMZ (Muennighoff
et al., 2023) as a base model that is further fine-
tuned on multilingual instruction and conversation
data. We utilised Phoenix-inst-chat-7b, available
on Github7.

2.2. Baselines
We compare the above LLMs against systems
commonly used for translation, namely the com-
mercial MT engines Google Translate8 and DeepL
Translate9, and the massive multilingual transla-
tion model NLLB (NLLB-Team et al., 2022), the
largest of which is comparable in size to the LLMs,
but is instead trained in a supervised fashion.
We consider the nllb-moe-54B10 and the nllb-200-
distilled-1.3B11 variants, available on Huggingface.
Since the traditional MT systems were not built
specifically for code-switching, we were limited to
specifying only a single language as input. In this
case, the matrix language (Myers-Scotton, 1993),
that is the language that occurs with the high-
est frequency within the code-switch, was chosen
as the source language12. The matrix language
can also be referred to as the dominant language,
with the minor language being the embedded lan-
guage.

2.3. Data
There is a dearth of high quality parallel code-
switching data in the wild containing both code-
switch text and their translations. We take advan-
tage of prior limited efforts to derive such datasets

6https://huggingface.co/tiiuae/
falcon-40b-instruct

7https://github.com/
FreedomIntelligence/LLMZoo

8https://translate.google.com/
9https://www.deepl.com/translator

10https://huggingface.co/facebook/
nllb-moe-54b

11https://huggingface.co/facebook/
nllb-200-distilled-1.3B

12with the exception of the ID-EN dataset as the
target language and source-side matrix language are
both Indonesian. The embedded language English was
treated as the source language instead.

from speech or social media data where code-
switching is most common, and supplement them
with synthetic data generated from Flores-200
(NLLB-Team et al., 2022). For all evaluation we
only consider a code-switching source made up
of two languages to a single target language.

2.3.1. Real data

The three open-source datasets below were cho-
sen for this evaluation. All datasets were first pre-
processed by deduplication, removing empty lines,
and removing lines where source and target are
identical.

• Hindi-English (HI-EN) to English from the
LinCE code-switching benchmark (Aguilar
et al., 2020). The development set is utilised,
containing 892 lines.

• Spanish-English (SP-EN) to English from the
Bangor Miami speech dataset (Deuchar et al.,
2014). We followed Weller et al. (2022) in
preparing the data, with a final total of 3204
lines for evaluation.

• Indonesian-English (ID-EN) to Indonesian de-
rived from Twitter/X posts (Barik et al., 2019).
This dataset was not ideal since the source
matrix language coincides with the target lan-
guage so there are many overlaps between
the two. We used 815 lines for evaluation.

2.3.2. Synthetic data

For more in-depth investigation of code-switching
properties and better coverage of diverse
language pairs, we constructed pseudo-code-
switching data from the multilingual translation
dataset Flores-200 (NLLB-Team et al., 2022).
Flores-200 contains parallel text in over 200
languages, including very low-resource ones,
sourced primarily from the Wikimedia project and
translated by professional human translators. The
parallel data over a huge number of languages
provides much flexibility in choosing suitable
languages for mixing.

The synthetic code-switching data generation
pipeline is primarily based on the GCM toolkit
(Rizvi et al., 2021). We utilise their implementa-
tion of the Matrix Language theory (Myers-Scotton,
1993) to generate valid code-switching text from
parallel data in two specified languages. The orig-
inal pipeline contains three major stages, namely
a word-level alignment stage between input sen-
tences, an analysis stage with sentence parsing,
and a generation stage where the data from the
prior stages are combined with linguistic theory to
decide on word substitutions. We enhanced sev-
eral aspects of the pipeline, including:

https://huggingface.co/tiiuae/falcon-40b-instruct
https://huggingface.co/tiiuae/falcon-40b-instruct
https://github.com/FreedomIntelligence/LLMZoo
https://github.com/FreedomIntelligence/LLMZoo
https://translate.google.com/
https://www.deepl.com/translator
https://huggingface.co/facebook/nllb-moe-54b
https://huggingface.co/facebook/nllb-moe-54b
https://huggingface.co/facebook/nllb-200-distilled-1.3B
https://huggingface.co/facebook/nllb-200-distilled-1.3B
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1. Replacing the Fast Align tool (Dyer et al.,
2013) with GIZA++ (Och and Ney, 2003) and
custom bilingual dictionaries during the word
alignment phase to improve overall align-
ment.

2. Expanding the analysis phase to include
Named Entity Recognition (NER) and part-of-
speech (POS) tagging for source sentences.

3. Adding new word substitution rules to the
synthesis phase to take into consideration
Named Entities and lexical properties based
on POS from the previous step.

The expanded substitution process is sum-
marised by Algorithm 1. In the pseudo-code, the
bilingual word alignment result is represented by
bwa, input sentence in the matrix language is ms,
while its corresponding parsing tree, POS, and
NER results are pt, pos, and ner respectively. The
input sentence in the embedded language is es.

Algorithm 1: Synthetic code-switching
data generation
Data: bwa, ms, es, pt, pos, ner
Result: Code-switched sentence

1 begin
2 for each Name Entity e in ner do
3 if translation of e exists in es then
4 Replace e in ms with its

translation from es;

5 for each node n in pt do
6 if node n is switchable according to

Matrix Language Theory then
7 Set switch_label(n) to True;
8 else
9 Set switch_label(n) to False;

10 for each node n with switch_label(n) as
True do

11 if lexicality of n is not in {noun,
adjective, verb} based on pos then

12 Set switch_label(n) to False;

13 for each node n with switch_label(n) as
True do

14 if translation of node’s word exists in
bwa and is in es then

15 Replace word of node n in ms
with its translation from es;

16 else
17 Continue without replacement;

18 return Modified ms as code-switched
sentences;

One of our main considerations while creat-

ing the synthetic dataset was to divest from the
English-centric code-switch pairs in the real data.
As such, we chose a translation direction con-
taining no English in the code-switching source
side and another with no English in both source
and target. However, we were still constrained
by the algorithm requiring word-level alignments
between constituent languages, which made gen-
erating code-switch sentences with low-resource
languages and with more than two languages dif-
ficult. We added the following four translation di-
rections, including Tamil-English to Czech, where
both Tamil and Czech may be considered low-
resource. Each contains 1012 lines derived from
the “devtest” split of Flores-200:

• English-Chinese (EN-ZH) to Chinese (ZH)

• German-Turkish (DE-TR) to English (EN)

• French-Italian (FR-IT) to Japanese (JA)

• Tamil-English (TA-EN) to Czech (CS)

Language Version
Sub Ratio
(NOUN/
ADJ+VERB)

CMI

EN-ZH
V1 0.437 / 0.563 19.7
V2 0.333 / 0.667 18.8
V3 0.408 / 0.592 30.3

DE-TR
V1 0.335 / 0.665 32.7
V2 0.234 / 0.766 33.0
V3 0.407 / 0.593 40.4

FR-IT V1 0.373 / 0.627 19.4

TA-EN V1 0.291 / 0.709 8.05

Table 1: Synthetic dataset properties by version.

By incorporating the additional POS data in the
substitution, different versions of the EN-ZH and
DE-TR data were generated. V1 is our standard
dataset used for the overall benchmarking. Com-
pared to V1, the POS distribution of the code-
switching constituents for V2 is altered by reducing
noun substitutions and increasing adjective and
verb substitutions, while maintaining overall inci-
dence of code-switching. In V3, the degree of
code-switching is increased in comparison to V1
and V2. These differences are quantified with the
code-mixing index (CMI) metric (Das and Gam-
bäck, 2014) and the lexical substitution ratio be-
tween nouns and adjectives/verbs (Table 1). We
utilised the different versions for further experi-
ments with GPT-4. All derived data and the com-
panion code will be made available1.
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Prompts

P1 Translate the following code-switched [SRC] sentences to pure [TGT] line by line.
Do not output any additional text other than the translations: \n [SRC1] \n [SRC2] ...

P2 Translate the following [SRC] sentences to pure [TGT] line by line. Do not output any
additional text other than the translations: \n [SRC1] \n [SRC2] ...

P3 Please provide the [TGT] translation for these sentences line by line. Do not output
any additional text other than the translations: \n [SRC1] \n [SRC2] ...

Table 2: Candidate prompts. \n denotes a newline while [SRC1] and [SRC2] are source sentences.

2.4. Evaluation metrics
We use BLEU (Papineni et al., 2002) as the pri-
mary metric for translation quality, and compli-
ment it with ChrF++ (Popović, 2017) and TER
(Snover et al., 2006) which may be more repre-
sentative for character-based languages like Chi-
nese. Higher BLEU and ChrF++ scores are indica-
tive of better translations while lower TER scores
show the same. All metrics were calculated us-
ing SacreBLEU (Post, 2018) with lowercase set-
tings, SacreBLEU’s language-specific tokenizers
and “ter-asian-support” flag for Japanese and Chi-
nese.

2.5. Prompting strategy
To narrow down several candidate prompts for
code-switching translation, we modified the initial
prompt used by Jiao et al. (2023) for monolingual
translation with the following: “Provide ten concise
prompts or templates that can make you trans-
late code-switched sentences.”. We then identi-
fied the similarities between the candidates pro-
vided by GPT-3.5 and GPT-4, namely certain im-
portant keywords like the task “translate” together
with the auxiliary “code-switched”, and the source
and target languages denoted by [SRC] and [TGT]
respectively. The [SRC] is a composite of the
languages in the code-switch with the matrix lan-
guage coming first, for example “Spanish-English”.
This process guided us in narrowing the candidate
prompts to the three in Table 7 by discarding those
that were similar. In addition, we found that certain
LLMs tended to append extra commentary to the
translation so prompts were extended with instruc-
tions to mitigate this behaviour.

Notably, there were failure cases where the LLM
would not output in the target language, merely re-
state the prompt, or state that it is unable to carry
out the task. This behaviour was usually not con-
sistent across repeated attempts, a likely effect of
the stochastic sampling during generation. To han-
dle such cases we retry the prompt up to a maxi-
mum of four attempts. Outputs that were still con-
sidered irregular after the retries were replaced
with “-” before calculation of the translation met-
rics. Therefore, a low BLEU score in our overall

benchmarking may be indicative of not only poor
translation ability but also a failure to carry out the
given task.

Prompts BLEU ChrF++ TER

P1 37.70 56.18 52.53
P2 37.50 56.22 51.86
P3 36.98 55.61 54.98

Table 3: Aggregated scores over three datasets
and six models for the three candidate prompts
considered.

Using a subset of 100 random lines each from
the three real datasets, we evaluated the transla-
tion performance with the candidate prompts. Ta-
ble 3 shows the results averaged across all six
models. Results were fairly close between the
prompts, with P2 slightly edging out the others on
two out of three metrics. We subsequently adopt
P2 for all other experiments, with slight variations
when using the more advanced prompting tech-
niques introduced later on13. The benchmarking
was carried out in a zero-shot manner.

3. Results and Discussion

3.1. Overall benchmarking
Relative LLM performance The overall perfor-
mance of various LLMs across the real and syn-
thetic datasets is summarised in Table 4. Among
the LLMs, GPT-4 clearly outperforms the others,
followed by GPT-3.5 which lags behind GPT-4
by a minimum of 1.5 BLEU on FR-IT→JA to
a maximum of 12.3 BLEU on TA-EN→CS. We
found GPT-4’s overall translation better than GPT-
3.5 in terms of accuracy. However, GPT-3.5
may at times generate more natural translations
in terms of sentence structure. Bard’s perfor-
mance showed significant variation across differ-
ent datasets. It appeared to be comparable to
GPT-3.5 on SP-EN, EN-ZH, DE-TR, and FR-IT
translations, while outperforming on TA-EN but
performing worse on HI-EN and ID-EN transla-

13Additional prompts are shown in Appendix A
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Model HI-EN→EN SP-EN→EN ID-EN→ID EN-ZH→ZH DE-TR→EN FR-IT→JA TA-EN→CS
BLEU ChrF++ BLEU ChrF++ BLEU ChrF++ BLEU ChrF++ BLEU ChrF++ BLEU ChrF++ BLEU ChrF++

GPT-4 37.8 60.4 53.9 71.2 57.3 74.1 44.9 30.2 45.4 67.6 25.9 26.1 19.1 45.2
GPT-3.5 30.5 54.9 48.6 69.1 48.7 66.6 41.1 27.1 43.1 66.5 24.4 25.0 6.8 29.5
Bard-PaLM2 23.9 42.1 45.6 61.6 28.9 49.8 44.0 30.3 43.1 66.6 24.9 24.6 15.8 38.5
LLaMA-2-70B 25.7 49.4 40.2 61.2 34.3 50.4 34.4 23.6 37.2 60.8 19.9 20.5 0.9 16.6
Falcon-40B 5.9 25.0 15.4 34.4 N/A N/A 20.8 15.3 25.6 52.1 1.3 4.7 N/A N/A
Phoenix-7B 7.0 30.2 31.9 51.9 28.2 40.2 39.4 27.3 17.8 40.6 6.1 9.2 1.5 16.2

Google T 28.5 51.6 49.1 69.4 54.6 70.0 47.5 35.0 27.7 50.3 26.5 25.5 22.4 48.0
DeepL T N/A N/A 47.6 68.1 52.7 69.1 46.4 34.6 28.0 50.6 25.4 26.2 N/A N/A
NLLB-1.3B 8.0 30.6 46.7 67.0 53.5 69.4 28.2 19.7 32.8 55.6 15.8 19.6 15.6 40.5
NLLB-54B 10.4 29.9 47.1 66.7 54.3 68.4 28.7 20.8 34.9 57.2 16.6 19.9 18.8 43.9

Copy 5.1 28.8 27.6 42.1 49.5 65.0 12.9 10.6 2.3 20.4 0.2 1.4 0.7 4.9

Table 4: BLEU and ChrF++ across various code-switching datasets for a collection of LLMs. They
are evaluated against baselines containing commercial MT engines (Google and DeepL translate) and
massive multilingual MT models (NLLB). “Copy” baseline are scores between untranslated source and
reference target. Synthetic datasets are italicized.

tions. It also has a higher tendency for miss-
ing and mistranslations. Similarly, LLaMA-2’s out-
put contained frequent incidences of untranslated
words from the source sentence. Comparatively,
Falcon and Phoenix significantly underperformed
the others. Falcon had a particularly high fail-
ure rate (see section 2.5) for several language di-
rections but especially for ID-EN and TA-EN, for
which we consider it unable to handle. Phoenix’s
translation may sometimes sound unnatural as
it may not have been exposed to much code-
switching data. However, its emphasis on multilin-
gual training data, particularly for Chinese, helped
it outperform Falcon on several directions even
with a much smaller parameter size.

Most LLMs struggled with the low resource lan-
guage pair TA-EN→CS. We observed a tendency
for models like Phoenix, GPT-3.5, and Llama-2 to
translate TA-EN code-switch into English, a mix of
English and Czech, or English followed by Czech,
using the former as an intermediary pivot prior to
the final translation. It is evident that despite ex-
posure to diverse monolingual data during train-
ing, typical LLM training still lacks coverage of low-
resource languages, resulting in weak comprehen-
sion.

Comparative performance against baselines
In terms of the quantitative metrics, GPT-4 ex-
celled in four out of seven datasets, particu-
larly those involving high-resource languages (e.g.
EN, SP, HI, DE) and when translating into En-
glish. Google Translate topped the remaining
three datasets: EN-ZH, FR-IT, and TA-EN. Qual-
itatively, it matched GPT-4 for EN-ZH and FR-
IT, and slightly surpassed it for TA-EN. Notably,
despite lagging behind GPT-4 for high-resource
languages, NLLB-54B showed comparable ca-
pabilities for the low-resource TA-EN→CS direc-
tion. We find commercial engines perform rela-
tively well on examples with low code-mixing index

(CMI), showing a smaller gap compared to LLMs
for code-switching than for monolingual transla-
tion. We believe some naturally occurring exam-
ples of code-switching in the training data helps re-
inforce this ability in the supervised models. Nev-
ertheless, as will be shown in the following section,
performance greatly deteriorates as the degree of
code-switching increases.

Overall, GPT-4 and GPT-3.5 exhibit robust code-
switching translation abilities, comparable to or
better than current commercial engines and large
multilingual MT models like NLLB, particularly for
high-resource language pairs. However, the per-
formance gap narrows in low-resource settings,
as language modelling proves less efficient than
directly learning from paired data for translation.
Our analysis underscores the significance of a lan-
guage’s coverage in the training data, as it directly
correlates with the overall performance of an LLM
in that language.

Some caveats Unlike for monolingual transla-
tion, a certain language may appear both in the
source as part of the code-switch, and also in the
target. Hence, it may be possible to achieve a rel-
atively high score, as measured by BLEU/ChrF++,
by merely copying the source. The scores be-
tween the untranslated code-switch source and
the reference target is provided in Table 4 under
the “Copy” row. SP-EN→EN and ID-EN→ID di-
rections were particularly problematic with a high
overlap between source and target. Notably, only
GPT-4 achieved a better score than “Copy” for ID-
EN→ID among the LLMs.

3.2. Effect of code-switching
composition

To further understand the impact of the composi-
tion of code-switching entities within an utterance
on translation, we compared results across vari-
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ants of the synthetic datasets (see Table 1) to-
gether with monolingual translation baselines on
GPT-4 and Google Translate, shown in Figure 1.

Increasing degree of code-switching Both
GPT-4 and Google Translate display a similar de-
terioration in performance as code-switching in-
creases from the monolingual baseline to V3, al-
though the effect is much more extreme for the
latter. We observe that Google Translate actually
performs better than GPT-4 for all three monolin-
gual baselines (EN→ZH, EN→DE, DE→EN), but
BLEU significantly drops as code-switching is in-
troduced. Given their speculated large training
data, we expect both models to have been ex-
posed to some instances of naturally occurring
code-switching text, although V3’s mixing propor-
tion may have been higher than what the models
have seen, resulting in reduced performance.

Figure 1: Trend in BLEU for GPT-4 (dashed line)
and Google Translate (solid line) over different
versions of the code-switching source, with fully
monolingual versions on the far left.

As a traditional MT engine, Google Translate
is limited to only supplying a single language as
source, so mixing different languages may be per-
ceived as added noise to the underlying model,
resulting in sub-optimal utilisation of those parts
of the input. While there was an attempt to trans-
late the matrix language, a significant portion of
the embedded sections were found to be untrans-
lated. Conversely, the ability of LLMs (especially
GPT-4) to understand they are being given code-
switched inputs results in greater robustness to-
wards higher occurrences of code-switching. Par-
ticularly, EN-ZH→ZH saw a gradual improvement
for GPT-4. We attribute this to there being pro-
portionally more of the target words in the source
itself, allowing GPT-4 to use more of the refer-
ence vocabulary in its translations, thus achieving
higher BLEU scores. This behaviour is different

from Google Translate, which tended to restate the
code-switched parts using different vocabulary.

POS distribution of code-switching elements
Comparing V1 and V2 shows no significant im-
pact of the POS distribution on translation perfor-
mance across all three directions. This is also
reflected in our qualitative evaluation, where the
output retains similar translation quality and nat-
uralness, and only displays slight differences in
word choice and sentence structure, particularly
for GPT-4. The exception was DE-TR→EN for
Google Translate, for which we found a higher oc-
currence of untranslated words in V1 than V2 that
may explain the gap in BLEU. Maintaining trans-
lation ability regardless of the actual distribution
of language mixing is highly indicative of inherent
cross-lingual ability and shows LLMs have the po-
tential to improve even further with more explicit
training procedures or data in this regard.

3.3. Improving code-switching
translation ability

To better leverage the power of LLMs requires
careful engineering of the input prompts. From
the above investigation, it is evident that the per-
formance of GPT-4 far surpasses that of other
LLMs. Below we investigate more advanced
prompting techniques with GPT-4 to explore the
upper bounds on the translation capabilities of
LLMs. Note that the following experiments were
conducted on a random subset of 100 lines for
each dataset, and so results might differ slightly
to the overall benchmarking.

3.3.1. In-context learning

In-context learning augments the prompts to in-
clude demonstrations of the task of interest. It has
been shown to boost performance over zero-shot
prompting in lieu of finetuning the model. Previous
work have demonstrated the benefits of in-context
learning for monolingual translation (Agrawal et al.,
2023; Hendy et al., 2023; Zhu et al., 2023), and
we demonstrate below that it is similarly advan-
tageous for code-switching inputs. We approach
this experiment with a view that the test set is not
known beforehand, a situation common in MT de-
velopment, so selecting examples that are seman-
tically similar to members of the test set like was
carried out in previous work was not pursued. In-
stead, we investigated different strategies for in-
context example selection that only considers the
properties of the test set as a whole, without re-
quiring information on specific sentences.

Potential examples were selected from the dis-
joint of the subset of test data employed, referred
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Figure 2: Trend in BLEU across different in-
context learning methodologies. The translation
baseline without in-context learning (TWI) is high-
lighted in red.

to as the candidate set. Following Zhang et al.
(2023a), 10 samples were chosen following each
selection strategy and appended to prompt P2.
We compare the efficacy of each method in Figure
2. TWI, highlighted in red, is our baseline of zero-
shot translation, that is without in-context learning.

Task-related examples Task-related examples
contain code-switched sentences and their trans-
lation but with languages distinct from those in the
test set. This is similar to the cross-lingual ex-
emplars used by Zhu et al. (2023) who found to
negatively impact monolingual DE to EN perfor-
mance but enhance low-resource ZH to EN. We
similarly found a detrimental effect on SP-EN→EN
relative to the baseline. Moreover, the degree
of linguistic divergence from the test language
may affect results. For instance, samples from
FR-IT→EN (TRFI), also Romance languages like
Spanish, resulted in a BLEU score 1.5 points lower
than the baseline compared to the more distant
ZH-JA→EN (TRZJ) that lowered BLEU by 4.9, as
depicted in Figure 2.

In-domain examples In-domain examples are
sourced from the same type of data as the test set,
thus sharing both the task and the translation direc-
tion. From Figure 2, these examples were benefi-
cial with even randomly chosen ones (RC) result-
ing in significant improvements over the baseline,
averaging a 2.85 BLEU increase, consistent with
prior monolingual translation findings.

Given the challenges in acquiring code-

switching sentence pairs for examples, we
explored using monolingual translations from
the matrix language of the code-switch instead
(RCD). Here, RC samples were converted to
their corresponding monolingual counterparts
on the source side while keeping the target
translations intact. This was done only on the
synthetic datasets where such data was available.
Based on the RCD results, providing in-context
sentence pairs from the dominant language to the
target language yields comparable or superior
translations to using the code-switching examples
directly. This may be attributed to monolingual
translation being more familiar to the LLM, thereby
enhancing its understanding of the task.

Criterion-based examples Inspired by the crite-
ria for data selection in domain adaptation for ma-
chine translation, we introduce a novel example
selection strategy based on diversity and exem-
plarity. To enhance sample diversity, we initially
use the multilingual RoBERTa model (Liu et al.,
2019) to embed source sentences from the candi-
date set. HI-EN was omitted due to RoBERTa only
recognising Devanagari instead of the Latin script
for Hindi. Employing the Affinity Propagation clus-
tering algorithm (Frey and Dueck, 2007), we clus-
ter sentence embeddings into approximately 10
classes, ensuring intra-class similarity and inter-
class diversity.

Drawing on evaluative metrics employed to char-
acterise code-switching data like CMI and others
in Srivastava and Singh (2021), we contend that
source sentences featuring a higher number of
“switch points”, defined as a token in the text that is
preceded by a token in a different language, serve
as more informative exemplars for the model. Util-
ising this insight, we select samples with the max-
imum switch points from each of the preceding
clusters to be used as in-context learning ex-
amples. We term this method Clustering-Max
Switching (CMS). Results (see Figure 2) demon-
strate its effectiveness in choosing examples for
code-switching translation, generally outperform-
ing other strategies.

Ablation study of CMS An ablation study was
carried out to investigate the relative importance
of the two main steps in the CMS strategy. The re-
sults in Table 5 highlight that selecting sentences
based on the maximum switch points across the
entire candidate set (MS) without pre-clustering
broadly improves BLEU compared to a purely ran-
dom selection (RC) – from a modest 0.1 to a sub-
stantial 3.1 across all five language pairs. Mean-
while, sampling from clustered sentence embed-
dings randomly (CL) instead of choosing ones with
the maximum switch points boosts BLEU scores
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Language RC MS CL CMS

SP-EN 55.4 56.7 55.6 57
(+1.3) (+0.2) (+1.6)

ID-EN 61.0 64.1 61.9 65.8
(+3.1) (+0.9) (+4.8)

ZH-EN 46.0 47.0 46.1 47.2
(+1.0) (+0.1) (+1.2)

DE-TR 39.8 40.3 40.2 41.5
(+0.5) (+0.4) (+1.7)

FR-IT 28.7 28.8 28.0 29.1
(+0.1) (-0.7) (+0.4)

Table 5: Ablation study of CMS utilising only maxi-
mum switch points (MS), only clustering (CL) and
the full method combining both (CMS). BLEU is re-
ported relative to a baseline of randomly chosen
examples (RC).

by 0.1 to 0.9 relative to RC for four language pairs,
excepting FR-IT. When merging the two method-
ologies (CMS), the combined effect leads to an
uplift of 0.4 to 4.8 BLEU across the five language
pairs.

3.3.2. Pivot translation

The pivot strategy breaks the translation task into
two steps: initially re-writing the source utterance
in the pivot language, then translating it into the tar-
get language. For monolingual translation, pivot-
ing may improve performance between languages
with limited parallel data by linking them through
a third high-resource language (Kim et al., 2019).
Research has demonstrated significant improve-
ment in LLM-based translation results by pivoting
to English (Jiao et al., 2023; Zhang et al., 2023a).
For LLMs, merging the pivot and final translations
using a single prompt allows for extra context be-
fore the final translation. Apart from English, we
adapt the pivot strategy for code-switching by in-
vestigating pivoting to the matrix language, es-
sentially converting the code-switching input to its
monolingual counterpart.

Comparing direct and pivot translation results
(Table 6) confirms the effectiveness of pivoting,
aligning with prior research. Generally, pivoting
via English proves more effective than using the
matrix language, as observed in both FR-IT→JA
and TA-EN→CS cases, likely due to English’s
prevalence in LLM training data. Pivoting to the
matrix language can still be effective if it is high-
resource, as seen in DE, FR, and EN cases, but
may instead deteriorate results for low-resource
languages like TA. Double pivoting, i.e. via the
matrix language first and then English, yields in-

termediate results. The pivoting technique is par-
ticularly beneficial for low-resource languages like
TA and distant translation pairs like FR-IT to JA,
where parallel data is limited. However, when the
target is already high-resource like English, pivot-
ing to the matrix language first may not be as ef-
fective, exemplified by the marginal improvement
in BLEU observed in the DE-TR pivot by 0.1.

Pivot Result
Direction Matrix EN BLEU ChrF++ TER

DE-TR→EN (direct) 45.1 67.6 36.5
✓ 45.2 67.9 36.7

FR-IT→JA

(direct) 25.1 27.7 62.9
✓ 26.2 27.8 63.0

✓ 28.5 26.2 60.2
✓ ✓ 27.4 29.0 61.3

TA-EN→CS

(direct) 16.3 41.0 69.5
✓ 15.6 41.2 69.4

✓ 17.5 43.2 66.4
✓ ✓ 16.7 41.6 71.7

EN-ZH→ZH (direct) 44.4 28.7 42.3
✓ ✓ 45.1 29.0 41.0

Table 6: Results for matrix and English language
pivot translation strategies. Note that for EN-
ZH→ZH the two strategies are equivalent.

4. Conclusion

This study offers a thorough evaluation of LLMs’
performance in code-switching translation, as-
sessing six models across seven datasets, in-
cluding non-English-centric ones, for a compre-
hensive overview of their capabilities. GPT-4 ex-
hibited superior performance across both high
and low-resource language pairs, while other
models showed varying ability depending on the
translation direction. Commercial engines like
Google and DeepL Translate performed well on
select datasets, particularly when code-switching
was minimal. GPT-3.5’s performance closely fol-
lowed GPT-4 in high-resource languages but was
surpassed by supervised MT engines for low-
resource language pairs. We demonstrated GPT-
4’s robustness in handling heavier code-switching
text and variations in POS distribution of code-
switching elements. Additionally, we showed
that translation capabilities could be enhanced
through careful prompt engineering utilising in-
context learning, in particular with our proposed
CMS selection strategy, and pivot translation, es-
pecially to English. We anticipate this study will
encourage greater efforts to incorporate cross-
lingual abilities in LLMs, given their considerable
potential for growth in this domain.
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A. Prompt templates

Experiment Prompts

In-context learning Translate the following [SRC] sentences to pure [TGT] line by line.
(sec 3.3.1) Here are some translation examples for your reference. \n

[SRC]: [sample_source_sentence1]; [TGT]:[sample_target_sentence1] \n ...
Do not output any additional text other than the translations: \n
[SRC1] \n [SRC2] \n ...

Pivot translation Translate the following [SRC] sentences to pure [SRC_matrix] first
(sec 3.3.2) and then to [TGT] line by line. Do not output any additional text other

than the translations including bullet points. \n [SRC1] \n [SRC2] \n ...

Translate the following [SRC] sentences to pure English first
and then to [TGT] line by line. Do not output any additional text other
than the translations including bullet points. \n [SRC1] \n [SRC2] \n ...

Translate the following [SRC] sentences to pure [SRC_matrix] first
then to English, and finally to [TGT] line by line. Do not output
any additional text other than the translations
including bullet points. \n [SRC1] \n [SRC2] \n ...

Table 7: Modified prompt templates used in section 3.3. \n denotes a newline, [SRC] and [TGT] are
source (matrix-embedded) and target language respectively, [SRC_matrix] is the matrix language of
the source codeswitch, and [SRC1] and [SRC2] are source sentences.
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