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Abstract
In recent years, Large Language Models (LLMs) have demonstrated exceptional performance in code-generation
tasks. However, under enterprise scenarios where private APls are pre-built, general LLMs often fail to meet expec-
tations. Existing approaches are confronted with drawbacks of high resource consumption and inadequate handling
of multi-API tasks. To address these challenges, we propose EpiGEN, an Efficient multi-Api code GENeration
framework under enterprise scenario. It consists of three core modules: Task Decomposition Module (TDM),
API Retrieval Module (ARM), and Code Generation Module (CGM), in which Langchain played an important role.
Through a series of experiments, EpiGEN shows good acceptability and readability, compared to fully fine-tuned
LLM with a larger number of parameters. Particularly, in medium and hard level tasks, the performance of EpiGEN
on a single-GPU machine even surpasses that of a fully fine-tuned LLM that requires multi-GPU configuration.
Generally, EpiGEN is model-size agnostic, facilitating a balance between the performance of code generation and

computational requirements.

Keywords: LLM, Code Generation, Private-Library, LangChain

1. Introduction

Code-generation LLMs such as Codex (Chen
etal., 2021), CodeGen (Nijkamp et al., 2022), and
CodeGeex (Zheng et al., 2023) have been trained
on a vast amount of open-source code. Their
sophisticated coding capabilities, comparable to
those of skilled programmers, have not only rev-
olutionized traditional software engineering prac-
tices but also significantly improved development
efficiency. Nonetheless, in enterprise environ-
ments, private API libraries and coding standards
are usually established to ensure code security
and reusability. While training data of LLMs are
primarily sourced from open platforms like GitHub
and Stack Overflow, private libraries are rarely in-
cluded. As a result, LLMs cannot effectively call
private APIs to perform code generation tasks un-
der enterprise scenarios.

(Zan et al., 2023) introduce an innovative so-
lution that divides the code generation task into
two modules: APIFinder and APICoder. |t first
performs vector search to find the corresponding
APIls, and then uses a large amount of private
code to incrementally pre-train a LLM for code gen-
eration. Although this approach has its unique
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advantages, its reliance on resources and data
hinder its adoption under enterprise-level scenar-
ios. Furthermore, when it comes to more than
two API-tasks, the effectiveness of the generated
code decreases significantly. Another prevalent
strategy involves collecting a substantial corpus
of text pairs consisting of requirements and corre-
sponding code snippets. LLMs with a large num-
ber of parameters are then fully fine-tuned to en-
able the model to gain knowledge of when and
how to utilize private APIs. However, this method
is highly dependent on model complexity and GPU
resources, making it challenging to deploy in prac-
tice.

In enterprise environments, complex tasks are
first broken down into subtasks, then assigned to
multiple job roles to accomplish. Inspired by such
collaborative approaches in enterprises, we aim to
resolve the issues in previous methodologies by
introducing EpiGEN, an Efficient multi-Api code
GENeration framework suited for enterprise sce-
narios. EpiGEN comprises three key modules:
Task Decomposition Module, API Retrieval Mod-
ule, and Code Generation Module. Practical re-
quirements are often concise but involve multiple
APls. Therefore, it is crucial to decompose the
requirements into fine-grained subtasks. Further-
more, we establish an API vector library index to
make the full use of enterprise’s APl documen-
tation and then utilize LangChain (langchain ai,

6206

LREC-COLING 2024, pages 62066215
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0



2022) for API retrieval. Lastly, we generate high-
quality code integrating requirements, subtasks,
and APl information.

A series of experiments were conducted to eval-
uate the performance of each module and validate
code quality of the overall framework. The experi-
mental results demonstrate that EpiGEN excels in
task decomposition and code generation across
various models, even with constraints of limited re-
sources and data. Our contributions can be sum-
marized as follows:

» To the best of our knowledge, EpiGEN is
the first enterprise-oriented, highly adaptable
code generation framework.

» EpiGEN effectively handles complex tasks
that involve multiple APls, even with limited re-
sources and data.

» Extensive experiments have verified excellent
performance of EpiGEN on invoking private
APIs and code generation.

2. Related Work

2.1. Pre-training code model

Codex (Chen et al., 2021), powered by large lan-
guage pre-trained models, has gained robust code
generation capabilities through extensive and high-
quality code corpus training. This achievement
has inspired emergence of models like PaLM-
Coder (Chowdhery et al., 2022), PanGu-Coder
(Christopoulou et al., 2022; Shen et al., 2023), and
AlphaCode (Li et al., 2022), all of which boast
large-scale parameters and have demonstrated
outstanding performance in specific code-related
tasks. Regrettably, none of these models are
open-sourced. Currently, there have been remark-
able open-source models introduced into the field,
such as CodeParrot (Huggingface, 2021), Code-
Gen (Zan et al., 2023), and PolyCoder (Xu et al.,
2022). These models have greatly contributed to
the advancement of code generation. However,
they remain constrained by the architecture of gen-
erative models, limiting them to left-to-right code
generation. In response to this limitation, models
like SantaCoder (Allal et al., 2023), StarCoder (Li
et al., 2023), and WizardCoder (Luo et al., 2023)
have emerged to support code generation at arbi-
trary positions within the code. Additionally, code
generation models are enhancing their versatility,
with models like CodeGeeX (Zheng et al., 2023),
BLOOM (Scao et al.,, 2022), and ERNIE-Code
(Chai et al., 2022) designed to meet multi-lingual
programming demands. DocCoder and APIcoder
(Zan et al., 2023) aim to empower language mod-
els with the ability to call APIs, addressing the re-

quirements of programmers writing code with pri-
vate libraries. In recent times, code-llama (Roziére
etal., 2023) achieved notable results by fine-tuning
llama2 (Touvron et al., 2023) on meticulously cu-
rated high-quality guided code datasets.

2.2. Dense Retrieval

Vector retrieval (Berry et al., 1999) is primarily
based on comparing dense vectors and often in-
volves the use of approximate nearest neighbor
(ANN) techniques, which relax the requirement for
exact search by allowing a small number of er-
rors to enhance retrieval efficiency. Among the
popular ANN methods, such as tree algorithms
(Muja and Lowe, 2014; Houle and Nett, 2014),
locality-sensitive hashing (Andoni et al., 2015; In-
dyk and Motwani, 1998), product quantization
(Wang et al., 2013; Norouzi et al., 2013), Prox-
imity graph (Arya and Mount, 1993), and HNSW
(Malkov and Yashunin, 2018), the index based
on Hierarchical Navigable Small World networks
(HNSW) is widely recognized as the current state-
of-the-art. The Faiss library (Johnson et al., 2019)
offers a widely adopted and implementation of
the HNSW index, which become a standard base-
line. Although conceptually similar (Lin, 2022), it
is evident that top-k retrieval for sparse vectors
and dense vectors require distinct software stacks.
Since it has been demonstrated that hybrid ap-
proaches of dense and sparse representations are
more effective (Ma et al., 2022; Lin and Lin, 2023),
many modern systems integrate separate retrieval
components to achieve mixed retrieval. For exam-
ple, the Pyserini Information Retrieval (IR) toolkit
(Lin and Lin, 2023) incorporates both sparse re-
trieval and dense retrieval, leveraging Lucene (Lin
et al., 2023) and Faiss, respectively.

3. Preliminaries

3.1. Task Definition

Given a requirement, the objective of EpiGEN is
to generate code that fulfills the requirement by uti-
lizing APIs from the private library. Figure 1 illus-
trates an example of the task’s input and output.
Specifically, the input involves a natural language
description of a problem that the end-user aims
to implement, with the corresponding target code
generated as output. In EpiGEN, the processing
steps and API library remain invisible to the user.

3.2. Scenario description

This paper will introduce EpiGEN in detail using
the W scenario of company H as an example. In
order to improve code standards and reusability,
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Determine whether
the file exists, then
encrypt the file, and

trigger corresponding ﬁ
custom events or
delete file operations

based on the
encryption result.

existinMDM()
encryptFile()

Problem Description
API index library

async function encryptFile(filepath) {
ii(.existlnMDM({ﬁlePath: filepath }).then(...}) .catch(error =>

(=
const result = await XX.encryptFile(_filedata)
then(data => {...}).catch(...)

if (result && result.filePath I==") {...}
else{
XX.removeFile({path: _filedata}).then(data => {...})
.catch(error=> {...})
}
}

Target Code

Figure 1: A typical case of using EpiGEN to solve a problem. The input is a string of problem description,
which requires invoking three private APls, and the output is source code that addresses the requirement.

company H has constructed a JavaScript API li-
brary in the W scenario that includes 97 APIs, cov-
ering various practical requirements.

3.3. Vector retrieval with LangChain

LangChain is a framework designed to enhance
application functionality by leveraging LLMs. lIts
primary objective is to enable developers to utilize
LLMs more easily and interact with various data
sources and applications. It also provides various
encapsulated classes to assist users in quickly im-
plementing vector retrieval.

» Document loader: This component loads files
into a list of documents and performs vector-
ization in a unified manner. It supports CSV,
PDF, and JSON data formats.

» Embeddings: This feature represents docu-
ments uniformly.

» Vectorstore: This component stores vector-
ized documents and provides various meth-
ods for calculating similarity in vector retrieval.

3.4. API Document Definition

Common APl documents contain the following
components:

» APl Name: Unique identifier for the API that
represents basic information.

» API Functionality: Detailed explanation of the
functionality that the API can achieve.

» APl Parameter: Parameters required by the
API, including expected data types and for-
mats.

» APl Examples: Examples of how to use the
API.

In the private API library of scenario W, each API
is comprised of two components: AP| Des and API
Exp. 'API Des’ includes API Functionality and API
Parameter, and 'API Exp’ comprises APl Name
and API Examples. Moreover, we define API All,
which encompasses all the components of an API.

4. Methods

The workflow of the EpiGEN, as depicted in Fig-
ure 2, consists of three main components: the
Task Decomposition Module (TDM), the APl Re-
trieval Module (ARM), and the Code Generation
Module (CGM). The meanings represented by dif-
ferent color blocks are illustrated in Figure 3.

4.1. Task Decomposition Module

Task Decomposition Module (TDM) is composed
of an efficiently fine-tuned LLM. When TDM re-
ceives a requirement, its primary task is to under-
stand the requirement and then decompose it into
several fine-grained subtasks that can be imple-
mented by private APIls. Utilizing a foundational
model to directly execute this task may lead to sub-
tasks that have low similarity to the APlIs in the pri-
vate library. Therefore, we have chosen an effi-
cient fine-tuning strategy to effectively inject knowl-
edge of W scenario into the large model.

4.1.1. Training Corpus

Our initial corpus contains only 273 samples, as
shown in Figure 4. This is insufficient to train a
task decomposition model that meets our expec-
tations. This challenge often occurs in enterprise
where high-quality labeled data is lacking. To en-
hance the model’s understanding of user require-
ments, we design a data reconstruction and data
augmentation strategy.
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. Call XX.existinMDM() to determine

Determine whether TDM whether the document exists; ARM
the file exists, then a

encrypt the file, and — Task 2 Invoke the XX.encryptFile() method

trigger m) as to encrypt the document

operations based

corresponding
Decompose Delege the cache record of the
Requirement specified key value

on the encryption

custom events or
Some other detailed sub-task items
result.
for inputting requirements...

delete file

P ﬂ Exp of encryF()
Recall APIs

Exp of remvF()

("] async function encryptFile(filepath) {

CGM XX.existinMDM({filePath: filepath })
Exp of existM()  Des of existM() . jg;fgf;('e'zﬂm )
const result = await
5| XXencryptFile(_filedata)
Des of encryF() g_ then(data => {...}).catch(...)
Generate Code| §| i\t 8& resultfilePath 1==") {..}
with else(

XX.removeFile({path: _filedata})
then(data => {...})
catch(error =>  {...})
}
}

Des of remvF()

Figure 2: The overview of EpiGEN. It consists of three modules: TDM: decompose the requirements into
fine-grained subtasks. ARM: recall APIs from the API library based on subtasks. CGM: generate code
based on the result of TDM, ARM and initial requirements.

Input: problem description

Subtasks after requirements are broken down

API Key consisting of API Functionality and APl Name
API Des

API Exp

Output: Target code with private APls

Figure 3: The meanings represented by different
colored blocks.

For each line of corpus, we first query the API
Document to determine the functionalities of each
APl used. Then a prompt formatted with above in-
formation, combined with the code, was submitted
to the LLM. Our aim is to leverage the LLM’s ca-
pabilities to reveal the requirements accomplished
by the given code. Secondly, in order to obtain the
sub-tasks required to solve the problem, we design
an additional prompt. This involves combining the
requirements from the first step, used APls, and
code into a prompt and querying the LLM again.
Finally, we obtain the training corpus shown in Fig-
ure 5, with the results of the first two steps serving
as the input and output for our training corpus. Al-
though 273 data points cover all private APIs under
W scenario, the dataset is still too limited in size to
effectively train a model. Therefore, we implement
data augmentation by leveraging LLM. This strat-
egy involves providing LLMs with descriptions of
requirements and instructing them to generate mul-
tiple variations of these descriptions. The objective
is to maintain the fundamental essence of each re-
quirement while presenting it in different forms. As
a result, we obtain a task decomposition corpus
with a size of (2203, 2).

4.1.2. Task Decomposition Model

The TDM is responsible for breaking down user
requirements, so it must have strong capabilities
of contextual understanding. ChatGLM2-6B, with
its excellent model architecture based on the au-
toregressive masked language model GLM (Zeng

Code APIs

1. XX.getNetworkType();

2. XX.showToast({ msg: 'email:network
connection failed. Please check the network',
type:'n' })

3. XX.fetch(url, { method: 'get, headers:

{ timeout: 6000 } }).then((res) =>
res.json()).then((reply) => { return
reply}).catch((error) => { XX.hideLoading()

} throw Error(error)})

export const handleGetTenantld = async () =>

{
const _net = await XX.getNetworkType()
if (I_net || !_net.status) {
XX.showToast ({
msg: i18n.t('email: network connection failed. Please
check the network.’) , type:'n'.})

Figure 4: An example of original corpus.

Requirement Structured Steps

1. Check the network connection. If the network connection fails, use
the XXX.showToast() interface to display the prompt information.

2. Call getNetworkType to obtain the current network status.

Check the network connection, 3. If the network connection fails, a message is displayed and recorded
initiate a network request, and inlogs.

4. Use the XXX fetch() interface to send a fetch request and transfer
the interface URL and relative path

5. Set the timeout period to 6000 ms.

6. Parse the response and check whether the response is correct.

7. If Tenantld is obtained successfully, the result is returned

8. If an exception occurs, the error log is recorded and null is returned.

obtain the Tenantld result

Figure 5: An example of training corpus of TDM.

et al.,, 2022; Du et al.,, 2022), has an advan-
tage in NLU tasks and demonstrates low resource
consumption with an inference memory usage of
13GB. Its excellent multilingual understanding of
Chinese and English make it our choice as a base-
line for the EpiGEN’s Task Decomposition Mod-
ule. For efficient fine-tuning, we employ P-Tuning
v2, showing significant effectiveness among small-
scale models with fewer than 10 billion parame-
ters.

4.2. API Retrieval Module

The API retrieval module, leveraging the capabili-
ties of LangChain, calculates similarity coefficients
from the vector database for each decomposed
subtask sequentially. When the cosine distance
falls below the threshold, it retrieves the corre-
sponding API Des and API Exp from Redis, as il-
lustrated in the Figure 6.

4.2.1. Construction of API Index

If we directly use API All as the index for the vec-
tor database, we may encounter the following chal-
lenges:

6209



call XX.existinMDM() to determine

whether the document exists

Task 2 Invoke the XX.encryptFile() method
to encrypt the document

Task 3 deleig the cache record of the
specified key value

TR Some oﬂjer detaiAIed sub-task items
for inputting requirements...

Document

— W©
LangChain

1apo Buippaqui3

API Name

API Key

API Functionality

Distance
H H
Check whether the file | H
exists: existihMDM | H
—
H
1 H
1

Encrypted file:
encryptFile

Delete cache:
removeStorage

API Functionality:
API Name

Exp of existM() Des of existM()
ﬂ Exp of encryF()  Des of encryF()
API 3| Exp of remvF() Des of remvF()

Figure 6: Workflow of the ARM. The objective of APIRetriever is to query the corresponding API Des and

API Exp by APl Key in Redis.

You are an outstanding JavaScript expert. Please use the following
APl in the XXX library and follow the implementation steps step by
step to write a JavaScript function to
[ APIs of the XXX library 1 :
1.

[ API Name] :

[ API Description ] :

[ APl Example ] :

[ Implementation steps] :

[ Code requirements 1 :

1. The function code is complete, including function name,
function body, etc.;

2. Only the final code needs to be given without any additional
explanation;

3. Prioritize the above N APIs provided to you to write the
function code;

4, When using the above API, it must start with XXX';

5. It is not allowed to use unprovided APIs starting with XXX';

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
i [ User requirements ] :
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 7: Example of a prompt.

» Current open-sourced vector models do not
effectively represent code.

« Different APls may possess identical parame-
ter or descriptions, potentially causing unnec-
essary interference in similarity calculations.

To address these issues, we extract the most de-
tailed and easily retrievable information from each
API, focusing specifically on API Functionality and
API Name (as mentioned in Section 3.4), ensuring
no inclusion of code, and then store them in FAISS
after embedding processing. To extract APl Func-
tionality from API Des and API Name from API Exp,
we designed the following two regular expression

rules: 1) Extract the API Functionality before the
first message terminator in API Des; 2) Extract the
API Name located between H(prefix of the private
APl library) and ()’ in API Exp. After combining the
extracted API Name and API Functionality with “; 7,
we define it as the API Key. In order to preserve all
information of the API, we store the corresponding
API| Des and API Exp as the value associated with
the API Key in the Redis.

4.2.2. Fine-Tuning of Embedding model

Considering the specific requirements of W sce-
narios and custom API coding specifications, we
experiment with a fine-tuned embedding model.
In this scenario, the amount of available labeled
data does not meet the requirements for super-
vised training. Therefore, we adopt TSDAE (Wang
et al., 2021) to perform unsupervised fine-tuning
on the vector model. During the training process,
the encoder and pooling layers first encode noisy
sentences into fixed-size vectors and require the
decoder to reconstruct the original sentences from
these sentence representations.

4.3. Code Generation Module

We generate code by combining user require-
ments, subtasks, corresponding API descriptions,
and AP| examples into a single prompt (as shown
in Figure 7) and query it with LLM. Following the
Chain of Thought approach, we guide the model to
generate the desired code step by step according
to the provided instructions. In this module, we em-
ploy ChatGLM2-6B as the code generation model.

5. Experiments

In this section, a comprehensive series of experi-
ments is designed to evaluate the EpiGEN. Specif-
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ically, we start by discussing computational re-
sources and parameter settings, and then provide
a detailed overview of some experiments from the
perspectives of objectives, details, and results. Fi-
nally, we conduct an intensive analysis of our ex-
perimental findings.

5.1.
5.1.1.

Experimental Setup
Experimental Details

All of the training and inference tasks of our frame-
work are conducted on a single NVIDIA V100
32GB GPU.

For the task decomposition model, we use a
training-validation split ratio of 4:1 and a batch size
of 1, train for 1500 steps, select a prefix length of
128, and the total training time is approximately 10
hours.

Regarding the vector model, we use an unsuper-
vised fine-tuning approach with a batch size of 16
and a learning rate set to 3e-5, training it for 50
epochs, and the total training time is 45 minutes.

While developing the EpiGEN, we conduct full-
parameter fine-tuning on PanGu-38B model using
a combination of original W scenario corpus and
20,000 pieces of open-source data. The model is
trained for 10 hours using 8 Ascend GPUs. The
fine-tuned model is named PanGu-38B-FT and is
tested in conjunction with EpiGEN.

5.1.2. Test set

To simulate actual task requirements, we ask do-
main experts of the private library to manually cre-
ate a test set with a size of (310, 2), based on their
daily job tasks in an enterprise environment, which
is covering all APIs in the private library. This set
is subsequently divided into two parts. The first
part is the APl-only task, which requires correctly
providing the APIs needed to address the require-
ment. The second part is the Content task, which
requires providing the complete function code in-
volving private APIs. Both parts of the test set are
divided into three levels of difficulty. Level 1 con-
sists of solely one API, with a simple and straight-
forward requirement. Level 2 encompasses 1-2
APls, with an equally apparent requirement. Level
3 involves two or more APIs, and the requirement
description becomes more obscure.

5.1.3. Evaluation Metrics

For the task decomposition module, we use BLEU
to measure similarity between the framework’s out-
put and the reference subtask items, and ROUGE
to evaluate whether the framework captures the
information in the original task. Both are com-
mon metrics in natural language processing, with

the former tending to measure the accuracy and
precise matching degree of task decomposition,
similar to Precision, and the latter focusing on
measuring the completeness of the decomposed
tasks, similar to Recall. For the API retrieval
module, we use API recall rate to measure its
performance. For the code generation module,
we rely on domain experts to score from three
aspects: API-Integrity, Content-readability, and
Content-acceptability. API-Integrity evaluates the
completeness of APls provided for APl-only tasks.
Content-readability focuses on the implementation
logic and code style of the generated code for Con-
tent tasks. Content-acceptability mainly focuses
on the completeness of function implementation,
APl usage, and the correctness of APl parameters
and other issues related to actual operation.

5.2. Main Result

5.2.1. Performance of EpiGEN

The performance of EpiGEN and PanGu-38B-FT
on the test set is shown in Figure 8. The results
indicate the following:

For the API-only tasks. PanGu-38B-FT demon-
strates strong API provision capabilities, accu-
rately providing the private APIs based on require-
ments. Despite limited resources and training
data, EpiGEN also demonstrates impressive per-
formance in this section, with its API provision met-
rics comparable to those of PanGu-38B-FT. The
performance of both approaches remains unaf-
fected by different task difficulties.

For the Content tasks. PanGu-38B-FT performs
well at level 1. However, both readability and ac-
ceptability tend to decrease as task difficulty in-
creases. In contrast, EpiGEN maintains relatively
consistent performance across various difficulty
levels, achieving a content-readability of 63.75%
and a content-acceptability of 56.25% even in the
complex tasks of level 3. This can be attributed
to our task decomposition module, which demon-
strates robust generalization abilities following fine-
tuning on a wide range of high-quality data. Com-
plex tasks are comprehensively comprehended
and subsequently decompose them into subtasks
that can be implemented using the private APlIs.

We can draw a valid conclusion from our exper-
iments: in terms of private API invocation capa-
bilities, EpiGEN is comparable to models with a
larger number of parameters; in terms of complex
tasks, EpiGEN shows better performance. More-
over, EpiGEN consumes much lower resources
and less data.
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Figure 8: Performance of EpiGEN and PanGu-38B-FT on different tasks

API-Integrity(%)

Content-Readability(%)

Content-Acceptability (%)

TDM CGM
level1 level2 level 3 level 1 level2 level 3 level1 level2 level 3
None GLM 7850 23.11 15.75 57.34  10.50 3.82 55.75 9.87 2.00
GLM GLM 93.00 93.46 92.50 65.15 59.42 63.75 59.25 5257 56.25
BChuan BChuan 93.15 93.75 93.00 67.28 59.70 64.36 61.45 55.72 56.36
Llama Llama 95.20 94.08 93.50 69.06 61.21 60.10 65.41 57.95 5855
PanGu PanGu 97.50 97.28 96.75 75.70 70.82 71.63 7252 69.35 68.85

Table 1: The result of different models in different levels, difficulty increases from level 1 to 3. GLM
represents ChatGLM2-6B, BChuan represents BaiChuan2-7B, Llama represents Llama2-7B, and PanGu

represents PanGu-38B.

5.2.2. Generalization of EpiGEN

To demonstrate the strong generalization capa-
bilities of our framework, we select ChatGLM2-
6B, BaiChuan2-7B (Baichuan, 2023), Llama2-7B,
and PanGu-38B as task decomposition models or
code generation models and evaluate their perfor-
mance in pairs. The results are displayed in Table
1. Experimental results indicate that EpiGEN per-
forms impressively across various task decompo-
sition models and code generation models. In API-
only tasks of different difficulty levels, EpiGEN con-
sistently achieves a minimum API-Integrity score
of 93.00%. Similarly, in content-only tasks with in-
creasing difficulty, EpiGEN maintains stable per-
formance without a sharp decline as the number
of required APIs increases. Moreover, as the
model’'s parameter size increases from 6B to 7B,
and ultimately to 38B, EpiGEN’s performance fol-
lows an upward trend. Therefore, it is inferred that,
given sufficient resources, the capabilities of Epi-
GEN would improve along with the enhancement
of the model’s capacity.

5.3. Intensive Analysis

We are curious about the effectiveness of certain
components and tricks in EpiGEN. Therefore, we
design some experiments to address the following

questions.

Q1: Is the task decomposition module essen-
tial? We design experiments to compare the per-
formance with and without the task decomposition
module. The results, presented in Table 1, show a
substantial decrease in performance metrics, both
in the APl-only and Content tasks across all levels,
when the framework operates without the TDM.
It concludes that the Task Decomposition Mod-
ule (TDM) significantly improves EpiGEN’s capa-
bility in private APl invocation. Furthermore, TDM
plays a critical role in effectively handling multi-API
tasks.

Q2: How does the TDM perform in terms

of adaptability? We efficiently fine-tuned
BaiChuan2-7B, Llama2-7B, and PanGu-38B
as our task decomposition models. BLEU and

ROUGE are employed as evaluation metrics,
as shown in Table 2. All four models achieve a
BLEU-4 score of 51% and an ROUGE-L score
of 60%. Notably, PanGu-38B performs the best
as the LLM with largest number of parameters.
This design pattern is observed to exhibit strong
adaptability because the requirements are fulfilled
using smaller-parameter models.
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Model BLEU-4 ROUGE-L
PanGu-38B 58.2543  69.2712
ChatGLM2-6B | 51.2987  60.2304
BaiChuan2-7B | 53.8426  62.9987
Llama2-7B 55.7658  65.3381

Table 2: Performance of TDM with different mod-
els.

Q3: Which information from the API docu-
mentation is most suitable as a vector index?
Based on the analysis in the previous section, the
combination of APl Name and API Functionality is
employed as the index for storing. Alternative in-
dexing schemes, such as API All, API Des, and
API Exp, are also explored. Experiments are de-
signed using the API recall rate as the evaluation
metric, and the results are shown in Table 3. The
experimental results align with the hypothesis that
current open-source embedding models lack the
ability to effectively represent code vectors. There-
fore, it is necessary to extract the most critical and
concise information from the APl document as an
index to ensure a balance between representation
quality and retrieval accuracy.

APl Index Recall(%)
API Al 36.85
APIDes  42.39
APIExp  23.61
APIKey  70.68

Table 3: Results of different APl index construction
methods.

Q4: How to select open-source vector mod-
els? In ARM, unsupervised fine-tuning of open-
source vector models is conducted, and the choice
of the base model is crucial. The selection cri-
teria are as follows: For API indices containing
both Chinese and English, we aim to choose a
multi-lingual open-source vector model with strong
contextual understanding abilities. Multiple open-
source models are considered for experimentation.
The experimental results, as presented in Table 4,
lead to the selection of m3e-base as the embed-
ding base model. Due to its inclusion of mixed Chi-
nese and English corpora during pretraining and
the use of ReBerta as the base model, as it ex-
hibits excellent Chinese and English representa-
tion capabilities.

Embedding Model Recall(%)
text2vec-base-multilingual 64.51
text2vec-base-zh 47.67
text2vec-large-chinese 56.12
m3e-base 70.68
m3e-base-finetune 76.47

Table 4: Performance of different embedding mod-
els.

6. Discussion and Limitations

In this section, some limitations of EpiGEN are dis-
cussed: i) In CGM, all the detailed information of
the required APls is provided to the code genera-
tion model, to allow the LLMs to invoke them au-
tonomously. However, it is observed in the experi-
ments that this approach does not perform well in
handling details such as parameter assignments.
ii) It is found that when there is a certain depen-
dency relationship between APlIs, such as the out-
put of the previous API being used as a parameter
of the next API, the results tend to deviate. This
issue might be alleviated as the LLM capabilities
improve or larger parameters.

7. Conclusion

In this paper, EpiGEN is introduced as a resource-
efficient code generation framework designed for
enterprise private APls. EpiGEN excels at han-
dling complex tasks involving multiple API calls. To
achieve these functionalities, the entire framework
is decomposed into three modules: the Task De-
composition Module, API Retrieval Module, and
Code Generation Module. The Task Decomposi-
tion Module is responsible for breaking down re-
quirements into fine-grained subtasks that can be
accomplished by APIs in the private library. The
API Retrieval Module leverages LangChain’s ca-
pabilities and employs vector retrieval to fetch the
APls corresponding to each subtask. Finally, the
Code Generation Module uses prompt engineer-
ing to guide the LLM in generating code that meets
the requirements. Experiments show that, even
with low resource consumption and limited train-
ing data, EpiGEN performs on par with fully fine-
tuned large number of parameter LLMs and ex-
cels in multi-API tasks. Furthermore, we design
extensive experiments to demonstrate the general-
ization of EpiGEN, proving its effectiveness across
different large language models.
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