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Abstract

Interest in Astrophysical Natural Language Processing (NLP) has increased recently, fueled by the development
of specialized language models for information extraction. However, the scarcity of annotated resources for this
domain is still a significant challenge. Most existing corpora are limited to Named Entity Recognition (NER) tasks,
leaving a gap in resource diversity. To address this gap and facilitate a broader spectrum of NLP research in
astrophysics, we introduce astroECR, an extension of our previously built Time-Domain Astrophysics Corpus (TDAC).
Our contributions involve expanding it to cover named entities, coreferences, annotations related to astrophysical
relationships, and normalizing celestial object names. We showcase practical utility through baseline models for four
NLP tasks and provide the research community access to our corpus, code, and models.
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1. Introduction

In recent years, the field of Natural Language Pro-
cessing (NLP) has witnessed a significant surge of
interest in astrophysics. The development of pre-
trained language models and generative language
models such as astroBERT (Grezes et al., 2021)
and astroLLaMa (Nguyen et al., 2023) has primarily
fueled this increase. These models are used for de-
tecting entities in the astrophysics literature (Grezes
et al., 2022) and for information extraction purposes
(Sotnikov and Chaikova, 2023). Despite these de-
velopments, a notable challenge persists in the
availability of resources for astrophysical NLP re-
search. Most existing corpora (Becker et al., 2005;
Hachey et al., 2005; Murphy et al., 2006) within
the domain are not accessible and primarily serve
Named Entity Recognition (NER) tasks, leaving a
significant gap in resource diversity. Among acces-
sible corpora, we find the DEAL shared task corpus
(Grezes et al., 2022), and TDAC (Alkan et al., 2022),
a corpus that we previously built for detecting en-
tities in time-domain astrophysics1. Both corpora
share common classes and consist of named en-
tity annotations only. However, corpora often need
more comprehensive annotations for complete in-
formation extraction. To facilitate a broader spec-
trum of research in astrophysical NLP, our work
aims to create a more complete annotated corpus

1Branch of astrophysics that studies supernova explo-
sions and gamma-ray bursts.

encompassing named entities, coreferences, as-
trophysical relationships annotation, and celestial
object names normalization. We aim to provide
the astrophysics and NLP communities with a valu-
able resource that enables the development of ad-
vanced information extraction models. To do so, we
extended our existing TDAC corpus to build a new
one, astroECR, richer in annotations. The main
contributions of this work are:

• We enriched the TDAC corpus size, expanding
from 75 to 300 documents. This augmentation
contains a comprehensive set of annotations
covering astrophysical named entities, celes-
tial object name normalization (entity linking),
coreference annotations, and astrophysical re-
lationships;

• We used the same named entity categories
used on the TDAC corpus, and we defined five
additional named entity categories;

• We demonstrate the practical utility of this cor-
pus by conducting experiments on four distinct
NLP tasks, for which we have developed base-
line models. These models facilitate the auto-
mated annotation of documents, showcasing
the potential of our enriched corpus;

• We make our corpus, annotation guidelines,
associated code, and models accessible on
GitHub2.

2https://github.com/AtillaKaanAlkan/

https://github.com/AtillaKaanAlkan/astroECR
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2. Related Work

This section highlights works dedicated to creat-
ing annotated resources in astrophysics. We have
categorized these existing resources into two dis-
tinct groups: first, corpora annotated for named
entity detection, and second, those annotated for
coreference resolution.

2.1. NER-oriented Astrophysics Corpora
Becker et al. (2005) and Hachey et al. (2005) built
the Astronomy Bootstrapping Corpus (ABC) to ex-
plore named entity recognition. The corpus is com-
posed of 209 abstracts of published radio astro-
nomical papers. The annotation guide comprises
four named entity categories, covering astronom-
ical instrument names (111 instances), celestial
object names (136), types (499), and their spec-
tral features (321). In their joint study, authors ex-
plored an active learning approach for leveraging
the annotation cost. They demonstrated that using
committee-based metrics to quantify disagreement
between classifiers can optimize the selection of
informative data points, resulting in substantial cost
savings compared to random sampling (Hachey
et al., 2005). To our knowledge, the corpus is not
accessible.

Similarly, Murphy et al. (2006) focuses on NER
by building a corpus of 7840 sentences from astro-
nomical papers. Compared to the ABC, the con-
cepts covered in this corpus are broader, with 43
defined named entities, expanding to categories
characterizing celestial objects, such as their co-
ordinates and physical properties (frequency, lumi-
nosity). The authors proposed a system achieving
an F1-score of 0.878. To our knowledge, this cor-
pus is not accessible either.

More recently, the DEAL shared task corpus
(Grezes et al., 2022) has been released, estab-
lishing one of the first accessible3 corpus in as-
trophysics. It comprises full-text fragments and
acknowledgment sections extracted from astro-
physics papers and specifically annotated for the
shared task. The corpus consists of three subsets:
a training set with 1753 documents, a development
set with 1366, and a test set with 2505. The au-
thors defined 31 named entity categories. Among
the shared task participants, Ghosh et al. (2022)
proposed a NER system ranked first, achieving an
F1-score of 0.8364 on the test set of this corpus.

In a previous paper, we introduced TDAC Alkan
et al. (2022), the only NER-oriented corpus based
on different astronomical documents. It comprises
75 observation reports (short textual messages),

astroECR
3https://huggingface.co/datasets/

adsabs/WIESP2022-NER/

constituting one of the main ways of information
sharing and communication for time-domain as-
tronomers. The training and test sets comprise 59
and 16 documents. These reports consist of 25
circulars from the GCN Network (Barthelmy et al.,
1995), 25 telegrams from the ATel system (Rut-
ledge, 1998) and 25 astronotes from the Transient
Name Server (Gal-Yam, 2021). Unlike DEAL and
previously cited corpora, this corpus focuses on a
specific branch of astronomy (time-domain astro-
physics), possessing thus a particular vocabulary
and discourse not necessarily found in general as-
trophysics papers. The TDAC corpus is accessi-
ble4.

2.2. Coreference-oriented Corpora
Compared to NER, the task of coreference res-
olution in astrophysics documents has received
less attention. Kim and Webber (2006), dealt with
anaphora resolution in astrophysics literature. More
precisely, their study was restricted to the automatic
linking of pronouns to their corresponding citations.

Brack et al. (2021) built a coreference resolu-
tion corpus comprising ten different scientific dis-
ciplines (including eleven annotated abstracts in
astrophysics). The system proposed by the au-
thors achieved a CoNLL F1-score of 0.611 in as-
trophysics papers.

2.3. Summary
Annotated corpora in astrophysics are limited.
These resources primarily feature NER-oriented
corpora, which limits their utility for broader NLP
tasks within astrophysics. Moreover, the na-
ture of these resources predominantly comprises
scholarly-type papers, restricting the variety of data
sources that researchers can leverage. To fill this
gap, we based our work on the existing TDAC cor-
pus to build a richer corpus and extend it to cover
non-treated NLP tasks such as coreference resolu-
tion, astrophysical relation detection, and celestial
object names normalization (entity linking).

3. Corpus Annotation

In this section, we present text processing we ap-
plied to the TDAC corpus (Alkan et al., 2022), which
we used as a starting point to build our new cor-
pus (3.1). We then present the annotation process
into named entities (3.2), celestial object names
normalization (3.3), coreferences (3.4) and astro-
physical relations annotations (3.5). We finish this
section by presenting the difficulties encountered

4https://github.com/AtillaKaanAlkan/
TDAC
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when annotating our corpus (3.6). We used BRAT
(Stenetorp et al., 2012) as the annotation tool.

3.1. Corpus Pre-Processing
We noticed some persistent noises in the
TDAC corpus coming from the content of
HTML tags that were not entirely removed
(e.g., href="https://url.url" or data-
show-count=’false’). Thus, we first con-
ducted an HTML code cleanup to rectify this and
improve URL text processing. For instance, we
cleaned the following text:

• It is almost identical to href="https://wis-
tns.weizmann.ac.il/object/2010gx"
target="_blank">SN2010gx at +4D af-
ter peak (Pastorello et al. 2010, ApJ, 724,
L16).

into,

• It is almost identical to SN2010gx at +4D after
peak (Pastorello et al. 2010, ApJ, 724, L16).

3.2. Named Entity Annotation
3.2.1. Extending Named Entity Categories

We expanded the annotation guideline of TDAC
with five new categories considered essential by
astronomers.

• Non-numerical-type categories:

– Date: This category includes dates and
temporal expressions referring to a detec-
tion date or the duration of an observation.
Example: We report the discovery of a
probable nova in M31 on a co-added 990-
s R-band CCD frame taken under poor
conditions on 2019 Mar. 12.791 UT[Date]
with the 0.65-m telescope at Ondrejov.

– Reference: This covers references in
the text to other observation reports.
This will be helpful to gather all reports
dealing with the same celestial object.
Example: In comparison to the opti-
cal region (ref: the SALT spectrum in
ATel #3289[Reference]), few strong NI lines
are expected in the JHK bands.

• Equation and numerical-type categories:

– Magnitude: This category includes
equations and numerical values that char-
acterize the brightness of celestial bodies,
a useful property for astronomers to deter-
mine the visibility of celestial objects. Ex-
ample: As reported to CBAT, this nearby-
M31 object was discovered by Koichi Ita-
gaki at 16.5 mag.[Magnitude]

– Flux: A numerical value that charac-
terizes the energy passing through
a unit area per unit time. Ex-
ample: The flux values ranged
from 1.01 +/-0.06 E+11 cgs[Flux] to
1.71 +/- 0.04 E+11 cgs.[Flux]

– Redshift: This category includes equa-
tions and numerical values characteriz-
ing the distance of a celestial body rel-
ative to an observer. Example: The
host KUG 0180+227 is an E+A galaxy
at z=0.022.[Redshift]

For better organization and comprehension, we
proposed a taxonomy (see Table 11 in the Ap-
pendix) that categorizes these named entities into
generic or astrophysics-related classes and sub-
classes.

3.3. Celestial Object Name Normalization
We focus on linking celestial object names like stars,
planets, and galaxies to their specific entries in as-
tronomical catalogs. Due to diverse naming con-
ventions and cataloging systems in astronomy, this
linking is crucial for preventing confusion and mis-
interpretation when integrating data from different
papers and observation reports. For instance, the
Andromeda Galaxy has at least 39 designations5

that all need correct association. This process
would thus avoid misunderstandings and determine
the number of distinct objects mentioned in the
text. For this purpose, we used SIMBAD (Wenger
et al., 2000), NED (Mazzarella et al., 2001), and
TNS (Gal-Yam, 2021) astronomical catalogs to
link/normalize celestial object names in our corpus.

3.4. Coreferences Annotation
The details of our annotation guideline are accessi-
ble in our GitHub repository. Here, we give a broad
overview of the type of coreferences annotated in
our corpus.

3.4.1. Scope of Coreference Annotation

We created a class CorefExp gathering anaphoric
and coreferential relations without distinction for the
annotation process. We annotated mentions ex-
clusively as coreferential relations when linked to
a celestial object (the named entity of type Celes-
tialObject). We also decided to annotate the
cases where a celestial object is designated with
another of its names within the text as a coreferen-
tial relation. However, we excluded mathematical

5http://simbad.cds.unistra.fr/simbad/
sim-id?Ident=Andromeda+Galaxy&NbIdent=
1&Radius=2&Radius.unit=arcmin&submit=
submit+id

http://simbad.cds.unistra.fr/simbad/sim-id?Ident=Andromeda+Galaxy&NbIdent=1&Radius=2&Radius.unit=arcmin&submit=submit+id
http://simbad.cds.unistra.fr/simbad/sim-id?Ident=Andromeda+Galaxy&NbIdent=1&Radius=2&Radius.unit=arcmin&submit=submit+id
http://simbad.cds.unistra.fr/simbad/sim-id?Ident=Andromeda+Galaxy&NbIdent=1&Radius=2&Radius.unit=arcmin&submit=submit+id
http://simbad.cds.unistra.fr/simbad/sim-id?Ident=Andromeda+Galaxy&NbIdent=1&Radius=2&Radius.unit=arcmin&submit=submit+id
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expressions, numerical quantities, and other coref-
erential relationships not associated with a celestial
object from the annotation process. To illustrate
this distinction, consider the following examples:

• In-scope coreferences:

– We discovered PS19did[1] on MJD
58666.31 = 2019-07-02.31, at w=19.9 +/-
0.1 [...] The new transient source[1] is in
the galaxy UGC 11003[2] [...] Adopting the
host galaxy[2] redshift z=0.03566 (NED)
yields an expansion velocity [...] Followup
observations of this intrinsically faint
transient[1] are encouraged.

– We report on the discovery and follow-
up of a very bright and highly magnified
microlensing event Gaia19bld[1]. [...] It[1]
has been detected and announced by the
Gaia Science Alerts program.

– We report on the NIR brightening
of the intermediate redshift quasar
PKS0735+17[1] (z=0.424), also known as
CGRaBSJ04738+1742[1].

• Out-of-scope coreferences:

– Analysis of the data[1] is ongoing. We re-
mind the community that all Swift data[1]
are public, and encourage their[1] use.

– The observations[1] continued until 2019-
04-26 20:15 UT, when they[1] were
aborted to begin followup of.

– The estimated AB magnitude is 17.6[1].
This magnitude[1] is not corrected for the
host galaxy contribution.

3.5. Astrophysical Relationship
Annotation

3.5.1. Relations Between Celestial Bodies
and Physical Properties

In our annotation scheme, we are not connecting
all named entities. Only CelestialObject-type
mentions can be connected to entity mentions de-
scribing the physical attributes of celestial objects
such as CelestialObjectRegion (coordinates
in the sky), Wavelength, Magnitude, etc. We
defined the related_to relationship to link entity
pairs.

3.5.2. Within and Cross-Sentences
Relationship

The information is spread throughout the observa-
tion report, and the described physical properties
of celestial objects (coordinates, wavelength, mag-
nitude, etc.) are not necessarily within the same

sentence. This, in turn, increases the distance
between entity mentions in the relationship, mak-
ing the relation detection difficult if the sequence
is too long. To mainly address a within-sentence
relationship detection task, we decided to link the
properties described in the text to the closest men-
tion of the celestial object’s coreference in the text.
Therefore, the coreference mentions inheriting the
properties of celestial objects. For instance, as il-
lustrated in Figure 1, named entities of type Celes-
tialRegion are linked to the coreference mention
"the object" as it is the closest, dealing thus with a
within-sentence relation detection.

3.6. Annotation Difficulties
Whether for named entities annotation, corefer-
ences, or semantic relationships annotation, the
nature of astrophysics texts makes the annotator
task challenging.

Areas of Ambiguity surrounding specific terms
complicates the task of annotators. For instance,
"Gaia" may refer to the Mission or the Tele-
scope, as well as "Fermi" may refer to the Tele-
scope or a group of scientists. Additionally, as-
trophysical NER involves dealing with intricately
linked concepts, and this proximity can pose diffi-
culties when deciding how to assign labels to these
entities.

Surface Forms Certain concepts described in
texts can be misleading. For example, the coor-
dinates of celestial objects are often described in
multiple forms, one of which, commonly encoun-
tered, closely looks to a time and date format, pos-
ing a challenge for non-expert annotators. Ex-
ample: We report the discovery of a nova (RA =
00h45m02.36s, Dec (2000)= +41d14’39.8".

Acronyms The domain extensively employs
acronyms to designate celestial bodies, adding
complexity to the annotation process. Deciphering
what these acronyms refer to requires domain ex-
pertise. Annotating coreferential relations is more
complex with these acronyms. For instance, in the
example below, recognizing that "PSN" stands for
"Probable SuperNova" makes the annotator task
challenging to link it with the celestial object name in
the text). The task is even more complicated when
multiple sources are mentioned in the text, and for
which we use distinct acronyms and expressions
(see example below).

• MASTER-SAAO auto-detection system discov-
ered MASTER OT J105440.86-391319.0[1].
[...]. This PSN[1] is in 2.9"E,7"N from the
center of PGC600519[2]. [...] MASTER OT
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Figure 1: Example of an annotated observation report with BRAT. In light blue, the Telescope and
Observatory-type mentions. In dark blue, the mention "ROTSE3 J214850-020622.2" of type Celes-
tialObject indicates the main subject of this observation report. The solid black lines represent
coreference between a referring mention such as "The object" (CorefExp, illustrated in green) to its
antecedent (the celestial object "ROTSE3 J214850-020622.2"). In pink, the coordinates of the celestial
object. In dark orange, the measured magnitudes (Magnitude) of the celestial source. We created a
semantic relation ("related_to") that links these physical properties to mentions of the corresponding
celestial object. The Date-type mentions are in orange.

J155546.00-734455.8[3]. [...]. The OT[3] is
seen in 4 images.

In this example, identifying which celestial object
the mentions "PSN" and "The OT " are referring
can be a non-trivial task for a non-expert due to
the potential for multiple interpretations and asso-
ciations: "The OT " is it referring to "MASTER OT
J105440.86-391319.0", "MASTER OT J155546.00-
734455.8" or to the galaxy "PGC600519" ?

4. Statistics of the Resulting
Annotated Corpus

In this section, we describe the main characteristics
of the resulting annotated corpus (inter-annotator
agreement and statistics), and we provide compar-
ative tables between TDAC and astroECR corpora.

4.1. Inter-Annotator Agreement and
Adjudication

To establish an Inter-Annotator Agreement (IAA),
we selected a subset of 30 documents (6499 to-
kens). These documents were provided to two
annotators (one astrophysicist and one NLP ex-
pert) for their independent annotations. Annotation
errors have been tracked and solved by a consen-
sus/adjudication phase, allowing errors to be han-
dled and thus producing the reference/gold anno-
tation. In addition, we compared both annotators’
annotations with the produced reference set using
precision, recall, and F1 scores as previously done
by Galibert et al. (2012). Results in Table 1 show

that the astrophysics expert achieved a higher F1
score (0.94) than the NLP (0.91) compared to the
consensus, that is why the astrophysics expert con-
ducted the remaining annotations (270 documents)
to ensure the annotated concepts’ correctness.

4.2. Statistics

Source Data Statistics TDAC comprises three
types of observation reports: telegrams (ATels), cir-
culars (GCN) and AstroNotes, equally represented
in the corpus. However, when building astroECR,
we included more ATels because we realized that
the latter contained a greater diversity of astrophys-
ical concepts during annotation. Table 2 shows the
compositions of the two corpora.

Training and Test Sets Annotation Statistics
For our corpus’s train/test split, we based it on the
distribution of coreferential and astrophysical rela-
tions (to have enough relations in each set). We
ensured we had around 80% of relations in the
training set and 20% in the test set. Table 3 shows
the number of annotated documents and the num-
ber of annotated tokens (in named entities) in each
set of both corpora.

Since coreferences and semantic relations are
not annotated in the TDAC corpus, we only report
in Table 4 and Table 5 statistics on our corpus.

Table 5 shows the overall number of annotated
semantic relations in each set of our corpus. Our
choice of annotating astrophysical relations be-
tween celestial objects’ coreferential mentions and
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Annotation Task Annotation Comparison Exact-Match Inexact-Match

Named Entities
P R F1 P R F1

Astro vs. NLP 0,65 0,59 0,62 0,84 0,92 0.88
Astro vs. consensus 0,83 0,86 0,84 0,93 0,96 0,94
NLP vs. consensus 0,73 0,69 0,71 0,94 0,89 0,91

Coreferences Astro vs. TAL 0,77 0,88 0,82 0,78 0,89 0,83
Astro vs. consensus 0,97 1,00 0,98 0,97 1,00 0,98
TAL vs. consensus 0,74 0,89 0,81 0,75 0,90 0,82

Table 1: Inter-annotator agreement for the annotation of named entities, mentions of coreferences between
the two annotators, and comparison with the consensus. The astrophysicist annotator is called "Astro",
and the NLP expert is called "NLP". The metrics used are Precision (P), Recall (R), and F-measure (F1).
We applied two evaluation modes : exact match and inexact match. In the exact-match, the extracted
entity is considered as a true positive if both entity type and boundaries are correctly extracted, as a
false positive if it was wrongly labeled, and as a false negative if it was not annotated. The inexact-match
evaluation setting, allows entities to match if their boundaries overlap: an extracted entity is counted as a
true positive if it shares half of the tokens with the gold entity.

Source Data TDAC astroECR
ATels 25 175
GCN 25 100
AstroNotes 25 25

Table 2: Composition of TDAC and astroECR cor-
pora, with details of the data sources used.

Parameters TDAC astroECR
Train Test Train Test

# documents 59 16 210 90
# tokens 15374 3638 43481 10578
# ann. tokens 4338 1014 17392 3173

Table 3: Number of annotated documents and num-
ber of annotated tokens in each set of both corpora.

Parameters astroECR
Train Test

# coref. ment. 412 101
# coref. clust. 257 65
avg. clust. len. 3.5 (+/- 2.26) 3.4 (+/- 1.61)

Table 4: Number of coreferent mentions, number
of clusters including singleton clusters, and the av-
erage cluster length (with standard deviation).

their physical properties shows that most relations
are within sentences.

Parameters astroECR
Train Test

# within-sent rel. 490 143
# cross-sent rel. 154 26
overall ann. sem. rel. 644 169

Table 5: Number of annotated semantic relations
in the train and test sets of our astroECR corpus
with details by type of relations (within and cross-
sentences).

5. First Experiments on the Resulting
Annotated Corpus

In this section, we present the use cases of our
corpus following the annotations we made. We
provide initial methods to demonstrate how to use
this corpus and its annotations for four different
NLP tasks: named entity recognition (5.1), celes-
tial object-named entity linking (5.2), coreference
resolution (5.3), and relation detection (5.4).

5.1. Named Entity Recognition

Named Entity Recognition (NER) identifies men-
tions of entities from text belonging to predefined
semantic types: person, location, or organization
(Yadav and Bethard, 2018). This task has proven
to be useful for information retrieval (Banerjee et al.,
2019) and also for building question-answering sys-
tems (Mollá Aliod et al., 2006).

Experimental Setup We fine-tuned two trans-
former models on the training set of our corpus,
astroBERT (Grezes et al., 2021), and SciBERT
(Beltagy et al., 2019), and evaluated them on the
test set. We fine-tuned them using the same hyper-
parameters used by Alkan et al. (2022), i.e., on 20
epochs, with a learning rate α = 2.10−5, and a
training batch size of 4.

5.2. Celestial Object Name Linking

Named Entity Linking (NEL) is a task that involves
linking named entities mentioned in the text to spe-
cific entries or entities in a knowledge base or ref-
erence dataset (Sevgili et al., 2020). The primary
objective of NEL is to disambiguate named entities
and connect them to their corresponding real-world
entities or concepts. In our case, celestial objects
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have multiple designations. These different desig-
nations are often used in the same documents or
others, making entity linking a challenging task.

Querying Knowledge Bases The baseline sys-
tem we propose solely relies on external knowl-
edge querying. We implemented a system that
first queries the SIMBAD (Wenger et al., 2000)
database, utilizing ADQL queries (similar to SQL)
to identify celestial sources by their names. For
each source identified within the SIMBAD catalog,
we extract its unique identifier and compile an ex-
haustive list of all its designations and canonical
names. In cases where the source remains elu-
sive within SIMBAD, our system further extends
its search to the NED database (Mazzarella et al.,
2001) and, if necessary, the TNS (Gal-Yam, 2021).
These three catalogs collectively encompass many
events observed in time-domain astrophysics, sub-
stantially augmenting our probability of identifying
the source. Notably, NED specializes in extragalac-
tic sources, while TNS is mainly used for identify-
ing supernovae, making each database a valuable
complement to the others in our celestial object
identification endeavor.

5.3. Coreference Resolution
Coreference resolution is an information extraction
task aiming to identify all the mentions in a text that
refer to the same entity (Zheng et al., 2011).

Performance of Existing System We have
tested an existing coreference system, F-coref (Ot-
mazgin et al., 2022), on the test set of our corpus.
F-coref is based on the LingMess architecture (Ot-
mazgin et al., 2023). We opted for F-coref because
the model is easily callable through its Python pack-
age fastcoref6. We first evaluated the model with-
out fine-tuning by comparing its predictions with
our annotations. Then, we fine-tuned the model
on 50 epochs using the train set of our corpus and
evaluated it on the test set. Each experiment has
been run five times with different random seeds.

5.4. Relation Detection
Relation Detection (or extraction) is a task that aims
to identify and classify the relationships between
pairs of entities (Bassignana and Plank, 2022). In
the case of binary relation detection, the objective is
to determine whether a relationship exists between
two entities in a given sequence. Researchers com-
monly model the task as a classification problem. In
our study, we aim to detect whether a relation exists
between celestial objects and physical properties
and to accurately link those physical properties to

6https://pypi.org/project/fastcoref/

Sentences Label
The median magnitude of
@@FO Aqr[CelestialObject]$$ in 498
ASAS-SN observations from 2012-
2015 was @@V=13.54[Magnitude]$$.

1

A spectrum was obtained using
the SPRAT spectrograph on the
@@Liverpool Telescope[Telescope]$$.
Classification indicates it is a type
Ia supernova with estimated redshift
@@z=0.078[Redshift]$$

0

Table 6: Examples of positive (denoted by the label
1) and negative (label 0) relations. For the training
process, entities in sentences are marked with the
symbols @@ and $$.

their respective celestial objects, even when a text
describes multiple objects.

Generating Negative Examples Table 5 shows
that our training and test sets comprise 644 and 169
annotated relations, respectively. To build a binary
relation detection system to categorize whether a re-
lation exists between two entities, we must include
negative sequences in both sets (i.e., examples
where no relations appear in the sequence). To
ensure a balanced class distribution during training
and evaluation, we maintained an approximately
equal number of negative examples to positive
ones. We leveraged the annotated named enti-
ties to create these negative example sequences
for both sets. Specifically, we randomly selected
sequences marked by two named entities lacking
semantic relationships (e.g., we paired a mention
of type Redshift, characterizing the distance of
an object, with a Telescope). In some instances,
we selected documents involving multiple celestial
objects to establish connections between an object
and the physical properties of another object de-
scribed in the text. The training set comprises 644
positive samples and 712 negative examples for
the relationship detection task, while the test set
includes 169 positive and 180 negative examples.
Table 6 illustrates examples from the training set.

Model Setup As the first experiments on astro-
physical relation detection between celestial ob-
jects and physical properties, we fine-tuned a bidi-
rectional Long Short-Term Memory (biLSTM) neural
network. We fine-tuned our system on the train set
of our corpus during 20 epochs with a learning rate
α = 10−3 and a training batch size set to 128. We
evaluated the system performance on the test set.

https://pypi.org/project/fastcoref/
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6. Results and Error Analysis

This section presents and analyzes our results on
the four NLP tasks.

6.1. Named Entity Recognition

Results are presented in Table 7 below.

Model Precision Recall F1
SciBERT 0.85 0.75 0.79
astroBERT 0.83 0.81 0.82

Table 7: Performance of a SciBERT-based and an
astroBERT-based NER system fine-tuned and eval-
uated on our corpus. Metrics used are Precision,
Recall, and F1-score.

The results of our fine-tuned NER systems, SciB-
ERT and astroBERT, for astrophysical named entity
recognition show satisfying performance in identi-
fying key domain-specific concepts. Notably, as-
troBERT exhibits high F1 scores for recognizing
the names of celestial objects (F1 score of 0.84)
and their associated physical properties (e.g., an
F1 score of 0.74 for wavelength) as well as for
detecting astronomical facilities (F1 score of 0.79
for observatories). However, there is still room for
improvement in detecting references to other ob-
servation reports, a class specifically created for
our task, as the F1 score in this category stands
at 0.64. This suggests that further refinements are
needed to enhance the recognition of such refer-
ences within the astrophysical context.

6.2. Linking Celestial Object Names

Table 8 shows that catalogs significantly enhance
the accuracy of linking celestial object names.

Catalogue Accuracy
SIMBAD 60.39
SIMBAD + NED 71.28
SIMBAD + NED + TNS 80.19

Table 8: Celestial object linking accuracy.

The three catalogs, namely SIMBAD, NED, and
TNS, show a cumulative effect in improving accu-
racy, indicating that they are complementary in their
contributions. Our system achieves 80.19% accu-
racy in linking celestial object names in the corpus.
Our system encounters challenges with certain
types of objects, such as Gravitational Waves (e.g.,
"S190426c") and objects with non-standard nam-
ing schemes (e.g., with punctuation in the name
"GRB210303.42").

6.3. Coreference Resolution
Table 9 reports the results we achieved when ap-
plying the F-coref (Otmazgin et al., 2022) corefer-
ence resolution system on our test set. We made
two evaluations: first, using the existing tool, and
second, fine-tuning the tool on our training set (as-
troFastCoref).

Model CoNLL
Precision Recall F1

F-coref 0.09 0.26 0.13
(0) (0) (0)

astroFastCoref 0.67 0.44 0.53
(0.01) (0.01) (0.01)

Table 9: Mean precision, recall, and F1-score (with
standard deviation) of the F-coref system evaluated
on the test set of our corpus with and without fine-
tuning. Each experiment has been run five times
(on 50 epochs when fine-tuning) with different ran-
dom seeds.

Our evaluation shows that F-coref has a very
low precision (0.09) and a high recall (0.26), re-
sulting in a low F1 score (0.13). The model lacks
the domain-specific knowledge to resolve corefer-
ences in this context accurately. However, fine-
tuning the model (astroFastCoref) allowed us to
learn astrophysics-specific patterns, making it more
efficient in resolving coreferences related to celes-
tial objects by reaching a CoNLL F1-score of 0.53.

6.4. Relation Detection
Table 10 presents the results we obtained by apply-
ing a biLSTM neural network for relation detection.
The performance of our baseline system is satis-
fying. Our system can detect whether a relation
exists or not in almost 80% of the cases.

Label Precision Recall F1
0 0.82 0.79 0.81
1 0.77 0.80 0.79

Table 10: Performance of a biLSTM binary relation
detection system on our corpus. We assigned La-
bel 1 to sequences containing a relation between a
celestial object and a physical property and Label 0
otherwise.

The results of our biLSTM binary relation detec-
tion system on astrophysical relation detection are
encouraging, especially considering that this is a
baseline model. The overall F1 score suggests a
strong performance in identifying the presence and
absence of relations between celestial objects and
physical properties. Notably, our model achieves
high precision and recall for both Label 0 and La-
bel 1, indicating its proficiency in distinguishing
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between sentences with and without such relations.
However, the model faces challenges when dealing
with longer sequences, particularly in the context
of cross-sentence relation detection. Additionally,
there is room for improvement in cases where mul-
tiple celestial objects are described in the text, as
the system still needs to enhance its ability to cor-
rectly associate the relevant properties with the
corresponding celestial objects. These observa-
tions provide valuable insights for further refining
and optimizing our relation detection system in as-
trophysical contexts.

7. Conclusion and Outlook

The scarcity of annotated resources and the need
for more diversity in existing corpora have been
significant challenges in astrophysical NLP. Our
primary objective was to bridge this data and diver-
sity gap by expanding and enhancing the TDAC
corpus (Alkan et al., 2022). Based on the 75 doc-
uments of TDAC, we introduced astroECR, a new
corpus of 300 astrophysical observation reports.
We annotated each text with named entities, coref-
erences, and astrophysical relations between celes-
tial objects and their physical properties. Addition-
ally, we normalized celestial object names of our
corpus by linking them to astronomical databases.
Through this endeavour, we conducted initial ex-
periments across four NLP tasks to showcase the
potential utility of our corpus. While these prelimi-
nary results show promising outcomes, areas still
need refinement and improvement. With our cor-
pus, we aim to provide the NLP community with
a resource that can facilitate complementary stud-
ies on scientific coreference resolution or relation
detection. Indeed, this corpus may represent an
additional resource to complement and extend pre-
vious scientific corpora, such as Chaimongkol et al.
(2014) and Brack et al. (2021). Our initial models
could also be used to reduce the annotation cost for
additional documents. From an astrophysical per-
spective, models trained on our corpus can be used
for information extraction, as proposed by Sotnikov
and Chaikova (2023). Specifically, we propose
integrating these models into the Astro-COLIBRI
platform, which processes real-time alerts from ob-
servers regarding transient sources (Reichherzer
et al., 2021, 2023). By deploying our NLP models
within Astro-COLIBRI, we enable astrophysicists to
rapidly access pertinent information in observation
reports. We make our corpus, annotation guide-
lines, associated code, and models accessible to
both communities.
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Category Definition
Generic Classes
- Archive (Arc) A curated collection of the literature or data.
- Organization (Org) A named organization that is not an observatory.
- Person (Per) A named person or their initials.
- Location (Loc) A geographical location (city, country).
- Software (Sof) Software, IT tool.
- URL (URL) A link to a website.
- Date Dates and temporal expressions referring to a detection

date or the duration of an observation.
Astrophysics-Domain Specific Classes
- Celestial Bodies:

- CelestialObject (COb) A named object in the sky.
- CelestialObjectRegion (COR) Named area on/in a celestial body.

- Physical Properties:
- CelestialRegion (CeR) A defined region projected onto the sky, or celestial coor-

dinates.
- Wavelength (Wav) Portion of the electromagnetic spectrum.
- Flux (Wav) A numerical value that characterizes the energy passing

through a unit area per unit time.
- Magnitude (Wav) Equations and numerical values that characterize the

brightness of celestial bodies.
- Redshift (Wav) Equations and numerical values characterizing the dis-

tance of a celestial body relative to an observer.
- Observation Instruments:

- Observatory (Obs) A, often similarly located, group of telescopes.
- Telescope (Tel) A "bucket" to catch light.
- Instrument (Ins) A device, often, but not always, placed on a telescope,

to make a measurement.
- ObservationalTechniques (ObT) A method used to observe celestial objects.

- References and Collaborations:
- Citation (Cit) A reference to previous work in the literature.
- Reference (Cit) References in the text to other observation reports.
- Collaboration (Col) Name of collaboration.
- Grant (Gra) An allocation of money and/or time for a research project.
- Survey An organized search of the sky often dedicated to large

scale science projects.

Table 11: Proposed taxonomy of astrophysical named entities used in the astroECR corpus.
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