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Abstract

When creating a new dataset for evaluation, one of the first considerations is the size of the dataset. If our evaluation
data is too small, we risk making unsupported claims based on the results on such data. If, on the other hand, the
data is too large, we waste valuable annotation time and costs that could have been used to widen the scope of our
evaluation (i.e. annotate for more domains/languages). Hence, we investigate the effect of the size, and a variety of
sampling strategies of evaluation data to optimize annotation efforts, using dependency parsing as a test case. We
show that for in-language, in-domain datasets, 5,000 tokens is enough to obtain a reliable ranking of different parsers;
especially if the data is distant enough from the training split (otherwise, we recommend 10,000). In cross-domain
setups, the same amounts are required, but in cross-lingual setups much less (2,000 tokens) is enough.
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1. Introduction

When creating a new dataset, it is standard proce-
dure in Natural Language Processing (NLP), and
more widely machine learning, to split your data
into a training, development (also called validation
or evaluation split), and test split to avoid overfit-
ting. The training data is used to train a machine
learning model and can be omitted in unsupervised
(or cross-domain/lingual) setups. The development
data is used in the development phase to design
and tune the model(s) of interest. Finally, the test
data is used to confirm the main conclusions and
compare against previous work.1 We will refer to
the development and test split as evaluation splits,
as they have a similar use-case (comparing mod-
els). Historically, splitting the data in 60%-20%-
20% (train-dev-test) or 80%-10%-10% for larger
datasets has been a popular strategy to obtain
these data splits, and the full data size was decided
based on budget availability.

Recent work on model evaluation has proposed
to identify adequate sample sizes using statistical
power analyses for classification and translation
tasks (Card et al., 2020), which, in turn, would re-
quire large amounts of simulated data and scores.
We use an alternative strategy, and use only real
outputs from parsers and focus on a structured pre-
diction task: dependency parsing. Although the
methods presented can also be applied to other
tasks and datasets.

We will use data from the Universal Dependen-
cies dataset (Zeman et al., 2021), as it is (one of)
the largest and most diverse annotated corpora
available in NLP. UD uses the previously mentioned
80%-10%-10% for each treebank if there is enough

1Recently, there have been more cases of using test-
ing data during development (van der Goot, 2021).
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Figure 1: Plot of the sizes (cumulative) of the dev
and test splits of all 217 official UD v2.9 treebanks
(in 122 languages).

data. For smaller treebanks (<100,000 tokens),
they suggest to use 10,000 tokens for development
and 10,000 for test.2 We plotted the sizes of the
development and test sets for all treebanks from
UD2.9 (Zeman et al., 2021) in Figure 1. The guide-
lines for data splitting are clearly reflected, and
implicitly suggest that 10,000 tokens are a good
amount for an evaluation split when creating a new
treebank.

Since the use case of development data and
test data is similar (they are both used to compare
varieties of models, just in different stages of the
research), in this work, we will assume that their
ideal size is the same. Furthermore, we will evalu-
ate data size on the token-level, as annotation and
evaluation of UD is also done on the word-level.

In this work, we evaluate the effect of eval-
uation data size using two strategies: 1) Com-

2More detailed descriptions available at:
https://universaldependencies.org/
release_checklist.html.

https://universaldependencies.org/release_checklist.html
https://universaldependencies.org/release_checklist.html
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Source Treebank #tokens Domain-transfer treebanks
English-WSJ 1,173,766 EN-Atis, EN-ESL, EN-EWT, Naija-NSC
Italian-ISDT 278,429 IT-PoSTWITA
Russian-GSD 98,000 RU-Taiga
English-EWT 251,489 EN-Atis, EN-EWT, EN-WSJ, Naija-NSC
Italian-ISDT 119,342 IT-PoSTWITA
Russian-Taiga 138,908 RU-GSD

Table 1: List of used datasets. The top source
treebanks are news, the bottom are web data.

pare rankings of models using weighted Kendall’s
Tau (Kendall, 1938) over rankings of parsers;
2) Compare model pairs with significance testing
using Almost Stochastic Order (Del Barrio et al.,
2018; Dror et al., 2019). Furthermore, we investi-
gate cross-domain and cross-lingual setups in Sec-
tion 3.2.3

2. Setup

2.1. Data
In the remainder of this paper, we focus on the
treebanks listed in Table 1. We focus on the news
and web domain, motivated by dataset availability.
Large (>95,000 words) treebanks are available for
Italian, and Russian from UD v2.9. To obtain a
news treebank for English, we used the Stanford
Converter on the Penn Treebank (Bies et al., 1995).
Furthermore, we added cross-domain datasets with
a size of >50,000 tokens where available.

We re-split the data from each treebank to gauge
the effect of having different varieties of the de-
velopment set.4 Explorations with varying train
sizes showed that a size of 50,000 tokens gave
a good tradeoff in training time and accuracy, so
we used this for our main experiments. Previous
work has shown that training on random samples
would lead to artificially high scores (Gorman and
Bedrick, 2019; Çöltekin, 2020) because texts from
the same document, writer, etc. would appear in
both the training set and the development set. With
that in mind, we used the first 50,000 tokens for
training, and applied the following strategies for
selecting the instances for the development data
(visualized in Figure 2):

• Seq: we took the last M samples as devel-
opment data, based on the assumption that
sentences in each treebank are ordered; this
way there will be less chance the training
and development data have overlap of doc-
uments/writers, etc.

3Code is available on: https://bitbucket.org/
robvanderg/data_size/.

4If the train split alone was too small, we concatenated
train-dev(-test).

Seq T T T D D

Rand T T T D D

Rand_seq T T T D D

Figure 2: Visualization of how we split existing
datasets. The full bars are the original training data
concatenated with the original development data,
and each square represents a portion of this data.
T = a portion of the training data, D = a portion of
the development data.

• Rand: random sampling without replacement
on the remaining instances. Note that this is
different compared to the random splits pro-
posed in Søgaard et al. (2021) and Çöltekin
(2020), because the train split is from a sepa-
rate range.

• Rand_seq: we took an ordered sequence of
size M at a random starting point of the re-
maining data. Note that the web treebanks
do not contain a chronological order, but the
spoken treebanks do.

M was measured in numbers of tokens but we
sampled whole sentences to not interrupt the con-
text. We experimented with M ∈ [100, 200, 500,
1000, 2000, 5000, 10000, 20000, treebank_size].

2.2. Parsers
We use MaChAmp (v0.3beta (van der Goot et al.,
2021)): A toolkit focused on multi-task learning. It
uses a pre-trained language model as encoder and
allows for multiple decoder heads (one for each
task). However, we trained it with a single depen-
dency head using a deep-biaffine parser (Dozat
and Manning, 2017). We create different ver-
sions of the parser by iterating over all commonly-
available multilingual language models that fit on
our 32GB GPUs (33 in total, full list in Appendix A),
and training with five different random initializa-
tions each. We used the standard Labeled Attach-
ment Score (LAS), as implemented by Zeman et al.
(2018) as the evaluation metric.

3. Results

3.1. In-treebank results

3.1.1. Comparison of rankings

For each target development set (size + split strat-
egy), we train all 33 models using five initializations
on each respective training split, and average the

https://bitbucket.org/robvanderg/data_size/
https://bitbucket.org/robvanderg/data_size/
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Figure 3: Kendall’s Tau Scores for each treebank for all of our data splitting strategies. Note that the
X-axis is divided based on our size sample, and is not scaled.
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Figure 4: ASO distances. The dashed lines represent the average distance in ϵmin, and the full line the
percentage of cases where (binary) disagreement is found.

respective LAS from each run. The ranking ob-
tained based on the largest possible development
set is used as the gold ranking (i.e., the true order
of the models), and is compared to the ranking of
the smaller split sizes.

We used weighted Kendall’s Tau (Kendall, 1938;
Vigna, 2015) to quantify the differences between
the rankings. Kendall’s Tau measures correlations
between rankings and returns a value between -1
and 1, where 1 indicates perfect agreement, and
-1 means that the rankings are reversed. A value
above 0.4 indicates a strong relation between both
rankings (Botsch, 2011).

Figure 3 shows the Kendall’s Tau scores for each
treebank. The first observation is that the scores
tend to converge (less variance for larger sizes).
This indicates that a robust optimal ranking is found,
and supports our design decision of considering
the ranking at the maximum size as the gold stan-
dard. In general, the random splitting strategies
(Rand and Rand_Seq) show higher correlations
for smaller data sizes compared to the Seq strat-
egy. Across treebanks, the Kendall’s Tau seems to
converge at around 2,000 or 5,000 instances, but
strong correlations (>0.4) can already be found for
much smaller evaluation splits.

We also investigate a more challenging setup by
considering each seed as a separate model, so we
are also charged with ranking the same language
model that uses different seeds (a total of 5 × 33
parsers). Full results are reported in Appendix B;

they show that all trends remain similar, except
that Kendall’s Tau scores are slightly lower. This
indicates that our proposed method for estimating
the effect of evaluation data set size is robust across
random initializations.

3.1.2. Significance Testing

Now that we have established that there is a strong
correlation between smaller development sizes and
the maximum size, we next quantify this effect em-
pirically by running significance tests between the
performance of all model within each development
size. Once again, we compare the results of the
smaller development splits to the maximum-size
development split. Intuitively, we compute a matrix
for each data size that consists of a value for every
model versus every other model, for which each
significant difference is marked. We use the Almost
Stochastic Order test (Dror et al., 2019; Del Barrio
et al., 2018) as implemented by Ulmer et al. (2022)
over the five random seeds to estimate significance.
If ASO determines ϵmin < 0.5, we consider model
A to be significantly better than model B.

We used two metrics to evaluate the consistency
of the significance testing results: 1) The amount
of disagreement of significance results, where ϵmin

is converted to a binary value (ϵmin < 0.5), and
for which we count the number of different entries
across two development data sizes (i.e., the overlap
of two binary matrices). 2) The average absolute
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Figure 5: Cross-domain Kendall’s Tau Scores for each treebank for all of our data splitting strategies.
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Figure 6: Cross-lingual Kendall’s Tau Scores for each treebank for all of our data splitting strategies.

difference of the ϵmin values for all model pairs
across data sizes.

The results of ASO testing in Figure 4 show that
these two metrics have an almost perfect correla-
tion (Pearson correlation is 0.99), as is also visually
indicated by the nearly overlapping dashed and full
lines. Furthermore, the trends are highly similar to
the Kendall’s Tau scores (Figure 3). We again see
a slightly earlier convergence for the random split-
ting strategies, but still see minor improvements for
the larger sizes, especially with the seq sampling
strategy. Since the trends are highly similar to the
Kendall’s Tau scores, and ASO is more computa-
tionally costly, we focus solely on Kendall’s Tau in
the following section.

3.2. Cross-lingual/domain Results
Only 131/217 of all UD v2.9 treebanks have train-
ing data, and as such, the evaluation of parsers on
test-only treebanks relies on cross-treebank per-
formance.5 In order to estimate sufficient devel-
opment set sizes for this common scenario, we
additionally perform the Kendall’s Tau experiments
from Section 3.1.1 on the cross-lingual and cross-
domain setups introduced in Section 2.1.

For cross-domain setups, Figure 5 shows that
smaller dev-sizes are already more stable, but if the
best possible ranking is desired, sizes should be
similar compared to the in-domain results (Figure 3).

5Note that we only consider in-domain treebanks for
the cross-lingual experiments.

The cross-lingual results (Figure 6) show that very
minimal amounts of data lead to similar rankings
as the largest development splits; a size of 500-
2,000 tokens already leads to an almost perfect
ranking. Interestingly, the most stable rankings are
obtained with the seq strategy; taking the consec-
utive instances with the largest distance from the
training data. It should be noted that our sample of
languages is relatively closely related to each other;
we expect that in cross-domain samples with more
distinct languages, differences across parsers will
be more profound and even smaller samples could
be indicative enough.

4. Conclusion

We have investigated the effect of dataset size
on evaluation for a variety of setups within depen-
dency parsing. Across two measures of model
performance rankings (Kendall’s Tau and ASO),
we have shown that the target size of the official
UD guidelines of 10,000 tokens is a safe choice for
ensuring representative model performance rank-
ings, but that even smaller sizes of 2,000 to 5,000
tokens have sufficient predictive power in our sam-
ple of treebanks. Furthermore, if we target cross-
domain setups, good rankings can be obtained
using smaller sizes. Cross-lingually even smaller
datasets down to around 500–2,000 tokens are
sufficient for predicting final model rankings. For
reducing these minimum data sizes even further, fu-
ture work could investigate more targeted sampling
strategies with a focus on increased data diversity.
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Name Citation
Helsinki-NLP/opus-mt-mul-en Tiedemann and Thottingal (2020)
Peltarion/xlm-roberta-longformer-base-4096 Sagen (2021)
bert-base-multilingual-cased Devlin et al. (2019)
bert-base-multilingual-uncased Devlin et al. (2019)
bigscience/bloom-560m Scao et al. (2022)
cardiffnlp/twitter-xlm-roberta-base Barbieri et al. (2021)
distilbert-base-multilingual-cased Sanh et al. (2019)
facebook/mbart-large-50 Liu et al. (2020)
facebook/mbart-large-50-many-to-many-mmt Liu et al. (2020)
facebook/mbart-large-50-many-to-one-mmt Liu et al. (2020)
facebook/mbart-large-50-one-to-many-mmt Liu et al. (2020)
facebook/mbart-large-cc25 Liu et al. (2020)
facebook/mgenre-wiki De Cao et al. (2022)
facebook/nllb-200-distilled-600M Costa-jussà et al. (2022)
facebook/xglm-564M Lin et al. (2021)
google/byt5-base Xue et al. (2022)
google/byt5-small Xue et al. (2022)
google/canine-c Clark et al. (2022)
google/canine-s Clark et al. (2022)
google/mt5-base Xue et al. (2021)
google/mt5-small Xue et al. (2021)
google/rembert Chung et al. (2020)
microsoft/infoxlm-base Chi et al. (2021)
microsoft/infoxlm-large Chi et al. (2021)
microsoft/mdeberta-v3-base He et al. (2021)
setu4993/LaBSE Feng et al. (2022)
studio-ousia/mluke-base Yamada et al. (2020)
studio-ousia/mluke-base-lite Yamada et al. (2020)
studio-ousia/mluke-large Yamada et al. (2020)
studio-ousia/mluke-large-lite Yamada et al. (2020)
xlm-mlm-100-1280 Conneau et al. (2020)
xlm-roberta-base Conneau et al. (2020)
xlm-roberta-large Conneau et al. (2020)

Table 2: Language models used in our experi-
ments.

A. Language models used

The multilingual language models we used as a
basis for our parsers are listed in Table 2.

B. Results with separate seeds

To make the ranking more challenging, we also
considered a setup in which each model initializa-
tion is treated as a different parser. So instead of
taking the average over seeds for each language
model, we have five parsers per language model
in the final ranking. Results (Table 7) show that the
Kendall’s Tau scores are only slightly lower com-
pared to the averaged results (Table 3), showcasing
the robustness of our approach.
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Figure 7: Kendall’s Tau Scores for each treebank for all of our data splitting strategies when using each
seed as a separate model. Note that the X-axis is divided based on our size sample, and is not scaled.
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