
Enhancing Text-to-SQL Capabilities of Large Language Models
through Tailored Promptings

Zhao Tan, Xiping Liu*, Qing Shu, Xi Li, Changxuan Wan,
Dexi Liu, Qizhi Wan, Guoqiong Liao

School of Information Management, Jiangxi University of Finance and Economics
tanzhao325@gmail.com, liuxiping@jxufe.edu.cn, sq0124@gmail.com, yunjuyan2021@163.com,
wanchangxuan@263.net, dexiliu@163.com, wanqizhi1006@163.com, liaoguoqiong@163.com

Abstract
Large language models (LLMs) with prompting have achieved encouraging results on many natural language
processing (NLP) tasks based on task-tailored promptings. Text-to-SQL is a critical task that generates SQL queries
from natural language questions. However, prompting on LLMs haven’t show superior performance on Text-to-SQL
task due to the absence of tailored promptings. In this work, we propose three promptings specifically designed for
Text-to-SQL: SL-prompt, CC-prompt, and SL+CC prompt. SL-prompt is designed to guide LLMs to identify relevant
tables; CC-prompt directs LLMs to generate SQL clause by clause; and SL+CC prompt is proposed to combine the
strengths of these above promptings. The three prompting strategies makes three solutions for Text-to-SQL. Then,
another prompting strategy, the RS-prompt is proposed to direct LLMs to select the best answer from the results of
the solutions. We conducted extensive experiments, and experimental results show that our method achieved an
execution accuracy of 86.2% and a test-suite accuracy of 76.9% on the Spider dataset, which is 1.1%, and 2.7%
higher than the current state-of-the-art Text-to-SQL methods, respectively. The results confirmed that the proposed
promptings enhanced the capabilities of LLMs on Text-to-SQL. Experimental results also show that the granularity of
schema linking and the order of clause generation have great impact on the performance, which are considered little
in previous research.

Keywords: Text-to-SQL, Prompt, Large Language Models, Schema Linking, SQL Generation

1. Introduction

Text-to-SQL is a task in natural language process-
ing (NLP) that aims to automatically generate struc-
tured query language (SQL) queries from natural
language text. This task enables users to access
databases without requiring SQL knowledge or fa-
miliarity with the database schema, thus facilitating
the work of data analysts and software developers
who need to write complex SQL queries. Text-
to-SQL has attracted significant interest from both
industry and academia in recent years (Wang et al.,
2020; Choi et al., 2021; Zhao et al., 2022).

With the rapid progress of Large Language Mod-
els (LLMs), the research areas of NLP are being
revolutionized (Zhao et al., 2023). LLMs can now
serve as a general-purpose language task solver
(to some extent), and they have shown impressive
performance in a series of NLP tasks, e.g., arith-
metics, symbolic reasoning (Kojima et al., 2022),
disambiguation QA, movie recommendation, etc.
(Suzgun et al., 2022).

A new direction in Text-to-SQL tasks involves
the use of LLMs. (Rajkumar et al., 2022; Liu et al.,
2023) evaluated the capabilities of Text-to-SQL on
LLMs using zero-shot and few-shot prompting and
found that these results are still inferior to well-
designed and fine-tuned models. One important

* Corresponding author

reason is that Text-to-SQL is a complex task involv-
ing multiple domains such as semantic alignment,
understanding of structured data, and code genera-
tion. For example, to compose a correct SQL query
from a natural language question, one should first
identify the relevant tables and columns based on
the semantics of the question, infer the necessary
components, e.g., clauses and subqueries, and
decide on the proper keywords and expressions in
each clause, and so on.

An effective strategy for LLMs to solve complex
tasks is decomposition, i.e. decomposing a com-
plex task into several simpler subtasks, and then
guide the LLMs to solve the subtasks sequentially
(Zhou et al., 2022; Kojima et al., 2022). Recently,
DIN-SQL (Pourreza and Rafiei, 2023) is proposed
for Text-to-SQL, which decomposed Text-to-SQL
tasks into four subtasks: schema linking, classifi-
cation, SQL generation, and self-correction, and
then used the Chain of Thought prompting (CoT)
(Kojima et al., 2022) to solve these subtasks. Their
methods demonstrated that decomposition is ef-
fective and achieved promising results. However,
DIN-SQL lacks deep analysis and investigation of
subtasks, and the solutions to subtasks are sub-
optimal. For example, the schema linking subtask
of DIN-SQL aims to identify the related column
names (e.g., Player.player_name), which is very
challenging and it is very difficult to accurately link

6091

LREC-COLING 2024, pages 6091–6109
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

columns to keywords in questions. Instead, we
found that a more feasible approach is to identify
broader schema information, e.g. relevant tables (
Table Player, columns = [*, id, player_name, birth-
day, ...]). This approach reduces the difficulty of
schema linking and recalls necessary schema in-
formation, and is found to be more effective and
generates better results. Moreover, the pipeline
approach of DIN-SQL is prone to error propagation
and lacks robustness.

In this work, we propose three tailored prompt-
ing for Text-to-SQL. Inspired by the two main
challenges of Text-to-SQL (Shi et al., 2021), i.e.
schema linking and SQL generation, we designed
the SL-prompt and CC-prompt. SL-prompt is
designed for Schema Linking, which identifies the
relevant schema information. CC-prompt is pro-
posed to induce LLMs generating SQL Clasue
by Clause. SL+CC-prompt is a combination of
SL-prompt and CC-prompt, which utilize the rele-
vant schema information obtained by SL-prompt
to generation SQL clause by clause. We ana-
lyzed the granularity of the relevant schema in-
formation identified by SL-prompt and the order
in which CC-prompt clauses are generated. The
three prompting strategies makes three solutions
for Text-to-SQL. We found that, the results of these
solutions exhibit a surprising coverage of correct
answers. Then, another prompting strategy, the
RS-prompt (Result Selection prompt) is proposed
to direct LLMs to select the best answer from the
results of the solutions.

Through experiments, we demonstrate that the
proposed prompting strategies are effective, result-
ing in an execution accuracy score of 86.2 on the
Spider dataset (Yu et al., 2018), which is 1.1 points
higher than the current state-of-the-art system.

In summary, we make the following contributions
in this work:

• We proposed three promptings tailored for
the Text-to-SQL tasks: SL-prompt, CC-prompt
and SL+CC prompt. For SL-prompt, we an-
alyze the granularity of schema information;
in CC-prompt and SL+CC prompt, we explore
the order of clause generation.

• We propose to combine the three prompting-
based methods, and select final answers from
the results obtained from the methods. The
results of the three methods exhibit high di-
versity, and cover a large range of potentially
correct answers.

• We conducted extensive performance studies.
Experimental results on Spider dataset show
that our proposed method outperforms state-
of-the-art Text-to-SQL methods.

Figure 1: An overview of the method of this paper.
The orange edges represent the process of con-
structing prompting, and the purple edges repre-
sent the process of generating the output of LLMs,
the blue nodes represent our promptings, and the
green nodes represent the output of LLMs.

2. Methods

Text-to-SQL is a task that maps a natural language
question to a SQL query given a database schema.
As natural language question and SQL query are
different in syntax and structure, Text-to-SQL in-
volves a complex process.

LLMs can solve various NLP tasks by a sim-
ple prompt without illustrative examples (i.e., zero-
shot learning) or by simply conditioning them on
a few illustrative examples (i.e., few-shot learning).
In few-shot learning with LLMs, the generation is
often conditioned on a fixed set of m exemplars,
{(xi, yi)}i<m. Thus, the few-shot Text-to-SQL gen-
eration with LLMs can be formulated as follows:

PLLMs(y | x) = P
(
y | prompt

(
x, {(xi, yi)}i<m

))
, (1)

where x is the test input, y is the test out-
put, xi and yi make up a demonstration, and
prompt

(
x, {(xi, yi)}i<m

)
is a string representation

of overall input.

2.1. Overview

In this work, we propose three promptings tai-
lored for Text-to-SQL: SL-prompt, CC-prompt, and
SL+CC prompt, each leading to a specific solution
to Text-to-SQL. As shown in Figure 1, SL-prompt

6092

and CC-prompt generate SQL separately. SL+CC
prompt combines SL-prompt and CC-prompt: it
gets the relevant schema using SL-prompt and
generates SQL using CC-prompt. We find that
none of the methods exhibit an overwhelming ad-
vantage over others. Therefore, we propose Re-
sult Select prompt (RS-prompt) to induce LLMs to
select the best answer from the candidate SQLs
generated by the three methods.

2.2. Prompting for Schema Linking

Schema linking is responsible for recognizing
schema information (e.g., tables, table names,
columns) mentioned in natural language questions.
It is considered a vital component for Text-to-SQL
and has been studied in several works (Lei et al.,
2020; Wang et al., 2020; Li et al., 2023b,a).

This paper proposes SL-prompt, a prompt tai-
lored for schema linking. Figure 2 shows an exam-
ple of SL-prompt. The inputs include a set of task-
specific demonstrations, a task-specific instruction,
the current question, and the database schema.
The SL-prompt focuses on the schema linking is-
sue. It guides LLMs to first identify the relevant
schema information, then generate the SQL using
the relevant tables.

Notably, schema linking can be conducted at
different granularities of database schema. In this
paper, we conducted experiments at three granular-
ities, and the experimental results demonstrate that
it is more favorable to identify the coarse-grained
schema items, e.g. relevant tables, instead of the
fine-grained schema items, e.g. relevant columns.
That is because recognizing the columns men-
tioned in the question is very challenging, and the
identified columns may recall only part of the rele-
vant columns. As a result, generating SQL based
on the false columns will inevitably lead to wrong
answers. Our experiments also verified that recog-
nizing relevant tables is more proper than recog-
nizing relevant columns. More discussion can be
found in §4.2.

2.3. Prompting for SQL Generation

Due to the mismatch between natural language
questions and the corresponding SQL queries,
SQL generation poses a significant challenge for
Text-to-SQL tasks. In previous research, a tree-
structured decoder has been used to reduce errors
when generating SQL (Guo et al., 2019; Wang
et al., 2020; Scholak et al., 2021). However, LLMs
as general-purpose models typically do not incor-
porate these decoders.

This work proposes a prompting-based ap-
proach, called CC-prompt, to generate SQL
queries. As shown in Figure 3, the input of CC-
prompt contains a set of task-specific demonstra-

Figure 2: An example of SL-prompt.

Figure 3: An example of CC-prompt.

tions, a task-specific instruction, the current ques-
tion, and the database schema. As generating
SQL is nontrivial, we divide the task of SQL gener-
ation into several steps, and generate a clause in
each step. The idea of CoT (Kojima et al., 2022) is
employed in this approach to guide LLMs generate
the clauses.

There are different orders of generating SQL
clauses. For example, one possible order is to
generate the SELECT clause first, followed by the
FROM clause, and then the others. However, we
find that generating SQL in this order is suboptimal.
In this work, we generate SQL in another order:
the FROM clause is generated first, the SELECT
clause is generated last, and other clauses are
generated in between. We will compare different
orders in experiments in §4.3.

2.4. Combining Promptings

We combine the SL-prompt and CC-prompt to get
SL+CC prompt. As presented in Figure 4, the
SL+CC prompt is slightly different in the input
with CC-prompt: the relevant tables inferred by SL-
prompt are incorporated. Like CC-prompt, SL+CC

6093

Figure 4: An example of SL+CC prompt.

Figure 5: An example of Result Select prompt.

prompt direct the model to generate a SQL query
clause by clause.

2.5. Result Selection

The output of LLMs is random in nature. To miti-
gate this phenomenon, one possible approach is
to generate multiple answers first and then select
the best one from them (Shi et al., 2022; Zhang
et al., 2022; Ni et al., 2023).

Inspired by Self-Consistency (Wang et al., 2022),
we designed Result Selection prompt (RS-prompt),
which selects the best one from multiple candidate
SQLs. As shown in Figure 5, the method is fed
with a database schema, a question, the candidate
SQLs generated before, and specific instructions
(including task).

Figure 5 provides an example of RS-prompt,

where the question is "Which model of the car
has the minimum horsepower?". In this case,
the SL-prompt accurately identifies the relevant ta-
bles (table model_list, table car_names, and table
cars_data) but makes an mistake in the SQL struc-
ture; the CC-prompt fails to find out the relevant ta-
bles (missing table car_name); the SL+CC prompt
complete this task correctly. The RS-prompt cor-
rectly explains the meaning of candidate SQLs,
and select the best result accordingly.

Interestingly, we found that SL+CC prompt does
not always outperform the SL-prompt and CC-
prompt, which will be further discussed in §4.1.

3. Experiments

In this section, we conduct experimental studies
on the proposed methods.

3.1. Experimental Setup

Models. In the experiments, we used two powerful
and publicly accessible LLMs: GPT-3.5-Turbo(GPT-
3.5) and GPT-4. We perform greedy decoding at
temperature τ = 0.3 to ensure stable output.

Datasets. We use four public Text-to-SQL bench-
mark datasets, they are: (1) Spider (Yu et al.,
2018) is a large-scale cross-domain Text-to-SQL
benchmark. It contains 8659 training samples
across 146 databases and 1034 development sam-
ples across 20 databases. (2) Spider-SYN (Gan
et al., 2021a) is a challenging variant of Spider,
which modifies the questions from Spider by re-
placing the schema-related words with the cor-
responding synonyms. Spider-Syn is composed
of 7000 training instances and 1034 development
instances. (3) Spider-DK (Gan et al., 2021b) is
another challenging variant of the Spider develop-
ment set, which is constructed by adding domain
knowledge that reflects real-world question para-
phrases to some questions from the Spider de-
velopment set. (4) Spider-Realistic (Deng et al.,
2021) is a new evaluation set based on the Spider
development set with explicit mentions of column
names removed. It contains 508 samples.

Evaluation Metrics. We use Execution Accu-
racy(EX) as the evaluation metric for all experi-
ments, which measures the percentage of system
predictions leading to the gold execution result. We
also adopt test-suite accuracy (TS) (Zhong et al.,
2020) as an evaluation metric. TS could achieve
high code coverage from a distilled test suite of the
database, and it is also based on execution results.

Baselines. We compare the proposed methods

6094

with the following baselines:
(1) Few-shot + CodeX (Rajkumar et al., 2022),

which has a set of demonstrations and runs on the
Codex model.

(2) Zero-shot + ChatGPT (Liu et al., 2023),
which works on ChatGPT under a zero-shot set-
ting.

(3) Coder-Reviewer (Zhang et al., 2022), which
generates and selects SQL queries based on their
likelihood.

(4) MBR-Exec (Shi et al., 2022), which generate
and selects SQLs with the most common execution
result.

(5) PICARD (Scholak et al., 2021), which con-
strains auto-regressive coders of language models
through incremental parsing.

(6) RASAT (Qi et al., 2022), which introduces
relation-aware self-attention into transformer mod-
els and utilizes constrained auto-regressive de-
coders.

(7) LEVER (Ni et al., 2023), which generates
SQL queries with Codex and selects the one with
highest scores.

(8) RESDSQL (Li et al., 2023a), a ranking-
enhanced encoding and skeleton-aware decoding
framework.

(9) Self-Debug (Chen et al., 2023), which
prompts LLMs to debug SQL with explanations.

(10) SPDS (Nan et al., 2023), which selects few-
shot demonstrations in terms of diversity and simi-
larity.

(11) DIN-SQL (Pourreza and Rafiei, 2023),
which decomposes text-to-SQL tasks into four sub-
tasks and prompting LLMs to solve them sequen-
tially.

3.2. Experimental Results

Table 1 shows the performance of our method
and other baselines on the Spider development
set. It can be seen that our method with GPT-
4 model achieves the best performance on this
benchmark. Previous researches have shown that
LLMs may struggle with certain Text-to-SQL tasks
(Rajkumar et al., 2022; Liu et al., 2023), but through
our study, we can conclude that, by designing ef-
fective promptings, the capabilities of LLMs on Tex-
to-SQL can be enhanced to achieve competitive
performance.

Table 2 shows the result of our method on Spider-
DK, Spider-SYN, and Spider-Realistic benchmarks.
We chose PICARD (Scholak et al., 2021), RASAT
(Wang et al., 2020), RESDSQL (Li et al., 2023a),
and ChatGPT (Liu et al., 2023) as baselines. The
experimental results show that our method exhibits
effectiveness across various benchmarks.

Methods EX TS

Few-shot + CodeX (Rajkumar et al., 2022) 67.0 55.1
Zero-shot + ChatGPT (Liu et al., 2023) 70.1 60.1
Coder-Reviewer + CodeX(Zhang et al., 2022) 74.5 -
MBR-Exec (Shi et al., 2021) 75.2 -
T5-3B + PICARD (Scholak et al., 2021) 79.3 69.4
RASAT + PICARD (Li et al., 2023b) 80.5 70.3
LEVER + CodeX (Ni et al., 2023) 81.9 -
RESDSQL-3B + NatSQL (Li et al., 2023a) 84.1 73.5
Self-Debug + CodeX (Chen et al., 2023) 84.1 -
SPDS + CodeX (Nan et al., 2023) 84.4 -
DIN-SQL + GPT-4 (Pourreza and Rafiei, 2023) 85.1 74.2

Ours (GPT-3.5) 78.6 68.3
Ours (GPT-4) 86.2 76.9

Table 1: Execution accuracy (EX) and test-suite
accuracy (TS) on the Spider development set.

Methods Spider-DK Spider-Syn Spider-Realistic
EX TS EX TS EX TS

T5-3B + PICARD 62.5 - 69.8 61.8 71.4 61.7
(Scholak et al., 2021)
RASAT + PICARD 63.9 - 70.7 62.4 71.9 62.6
(Wang et al., 2020)
RESDSQL-3B + NatSQL 66.0 - 76.9 66.8 81.9 70.1
(Li et al., 2023a)
Zeroshot + ChatGPT 62.6 - 58.6 48.5 63.4 49.2
(Liu et al., 2023)

Ours (GPT-3.5) 63.9 - 67.1 57.6 70.7 58.3
Ours (GPT-4) 67.2 - 78.1 68.6 82.8 70.6

Table 2: Experimental results on Spider-DK,
Spider-Syn, and Spider-Realistic.

3.3. Results on Complex Queries

We evaluated our model on samples of different
difficulty. According to the difficulty of generated
SQL, The Spider dataset can be divided into 4
subsets: easy, medium, hard, and extra-hard (Yu
et al., 2018). The performances on the four sub-
sets are shown in Table 3. On GPT-3.5, our method
improves the performance at all levels, with the
largest improvement (11.9%) at the hard level. On
GPT-4 model, our method also shows improvement
at all levels, with the most remarkable improvement
at extra-hard level (9.0%). From this set of experi-
ments, we can see that our method are particularly

Execution accuracy

Methods Easy Medium Hard Extra-hard EX

Few-shot + GPT-3.5 91.1 78.5 58.0 46.4 72.9
Ours (GPT-3.5) 91.5 85.4 67.0(11.9 ↑) 53.6 78.6

Few-shot + GPT-4 90.7 84.7 76.7 54.8 80.0
Ours (GPT-4) 92.7 91.2 84.1 65.1(9.0 ↑) 86.2

Test-suit accuracy

Methods Easy Medium Hard Extra-hard TS

Few-shot + GPT-3.5 90.3 67.6 42.6 26.4 62.3
Ours (GPT-3.5) 90.7 77.3 52.8 (9.0 ↑) 27.1 68.3

Few-shot + GPT-4 86.7 73.1 59.2 31.9 67.4
Ours (GPT-4) 90.4 82.2 71.8 48.2(16.3 ↑) 76.9

Table 3: Execution accuracy (EX) and Test-suit
accuracy (TS) at different difficulty levels.

6095

Methods Easy Medium Hard Extra-hard EX

SL-prompt + GPT-3.5 92.7 79.3 68.8 48.2 75.7
CC-prompt + GPT-3.5 91.5 79.1 63.1 48.2 74.4
SL+CC prompt + GPT-3.5 88.7 82.0 70.5 51.8 76.8

SL-prompt + GPT-4 96.0 87.6 79.0 65.7 84.6
CC-prompt + GPT-4 93.1 86.5 78.4 59.0 82.3
SL+CC prompt + GPT-4 92.7 89.4 80.7 66.9 85.1

Table 4: Execution accuracy (EX) of SL-prompt,
CC-prompt and SL+CC prompt at different difficulty
levels.

SL-prompt CC-prompt SL+CC prompt SUM

GPT-3.5
! % % 21
% ! % 27
% % ! 29
% % % 157
! ! ! 669

GPT-4
! % % 9
% ! % 6
% % ! 16
% % % 111
! ! ! 791

Table 5: Comparison of prompts. A !denotes a
correctly answered instance, while a %indicates
failure. The ’SUM’ column records the total in-
stances for each case in the 1034-instance Spider
development set.

helpful for complex Text-to-SQL tasks.

4. Analysis

4.1. Comparison of Methods

Table 4 shows the performance of the SL-prompt,
CC-prompt, and SL+CC prompt at 4 difficulty levels
on Spider. On the medium+ task, SL+CC prompt
showed stronger performance, as we expected.
However, on the easy level, SL-prompt performs
the best. One possible reason is that the easy-level
tasks mostly involve only two clauses (i.e., SE-
LECT clause, FROM clause), and SL+CC prompt
guides LLMs to explore as many clauses as possi-
ble through a set of demonstrations planned for
all levels, which leads the LLMs to overcompli-
cate easy tasks and generates some unnecessary
clauses. As Table 4 shows, SL+CC prompt is not al-
ways superior to SL-prompt and CC-prompt, even
though SL+CC prompt combines the two prompts.

More detail can be found in Figure 6. We dis-
tribute the 1034 Spider development set instances
uniformly on a plane with 1034 points. Each
point represents an instance, and is color-coded:
red if SL-prompt succeed on it, green for CC-

Figure 6: This figure depicts performance on the
1034-instance Spider development set with differ-
ent prompts. Each dot signifies an instance, and
color-coded by the prompt that correctly generated
it. Grey dots represent instances correctly handled
by multiple prompts.

prompt, blue for SL+CC-prompt, and gray if mul-
tiple prompts succeed on it. Panels (c) and (d)
demonstrate that although the SL+CC prompt may
outperform SL-prompt and CC-prompt, they have
their own strengths.

Interestingly, the strengths and weaknesses of
the SL+CC prompt are mostly consistent. For
GPT-3.5 model, when comparing SL-prompt with
SL+CC prompt, we find that SL-prompt correctly
handled 5.4% of the samples that SL+CC prompt
could not, while SL+CC prompt uniquely suc-
ceeded with 6.5% of the samples. Comparing
CC-prompt and SL+CC prompt, we find that CC-
prompt uniquely succeeded in 6.0% of the sam-

6096

ples, whereas SL+CC prompt uniquely succeeded
in 8.4% of the samples. This observation verified
that LLMs are significantly influenced by prompt-
ing.

With the diversity of results comes potential room
for improvement. Specific values are given in

Table 5 shows the number of samples on which
different prompts succeed. Out of 1034 instances,
only 157 (15.2%) are not correctly tackled by any
prompt, which means that 84.8% of the questions
can be correctly answered by at least one of our
prompts with GPT-3.5 model, which is very com-
petitive. On the other hand, the EX rate of our
method on GPT-3.5 is 78.6%, which means that
6.2% (84.8%-78.6%) of the samples are not pre-
dicted correctly, which means that there is still
much room for improvement in the result selec-
tion phrase. However, for the GPT-4 model, the
gap is relatively small (3.1%).

4.2. Structure of SL-prompt

We evaluated three different structures of SL-
prompt: (1) SL-prompt(a) identifies relevant ta-
ble names, and then relevant column names; (2)
SL-prompt(b) recognizes related tables with their
columns, and then relevant column names; (3) SL-
prompt(c) detects only relevant tables with their
columns.

The examples and experimental performance
are presented in the Table 6.

One may think there is no difference between
SL-prompt(a) and SL-prompt(b), but they actually
make great difference in performance. That is prob-
ably because, in SL-prompt(a), the model didn’t
fully utilize the column information given in the con-
text, although it seems obvious.

Contrary to intuition, the experimental results
reveal that SL-prompt(c), which identifies only rele-
vant tables, outperforms other structures trying to
recognize relevant columns. That is because it is
very challenging to infer the exact columns men-
tioned in the query; thus, the other two structures
may miss some columns. When this erroneous
set of columns is passed to the model, the model
may generate false results. On the contrary, SL-
prompt(c) does not filter columns, making a sig-
nificantly high recall of relevant schema, and the
model can reason out the correct columns when
generating the results.

4.3. Structure of CC-prompt

It is observed that, in CC-prompt, the order of
clause generation impacts the performance of mod-
els. Therefore, we design three CC-prompt struc-
tures with different generation orders, as shown in
Table 7. CC-prompt(a) mimics the structure of a
standard SQL query, while CC-prompt(b) positions

SL-prompt structure EX TS

(a)

1. Identify relevant table names:
ta, tb, . . .

2. Identify relevant column names:
cta1 , cta2 , ctb1 , . . .

3. Write SQL: SELECT . . .

66.9 61.3

(b)

1. Identify relevant tables:
(ta : cta1 , . . . , cta|C|), (tb : c

tb
1 , . . . , ctb|C|), . . .

2. Identify relevant column names:
cta1 , cta2 , ctb1 , . . .

3. Write SQL: SELECT . . .

70.9 65.0

(c)
1. Identify relevant tables:

(ta : cta1 , . . . , cta|C|), (tb : c
tb
1 , . . . , ctb|C|), . . .

2. Write SQL: SELECT . . .
75.7 68.5

Table 6: The performance of different structures of
SL-prompt on the GPT-3.5 model.

CC-prompt structure EX TS

(a)

1. Write the SELECT clause: SELECT . . .
2. Write the FROM clause: FROM . . .
3. Write other clauses: . . .
4. Write SQL: SELECT . . .

73.5 64.4

(b)

1. Write the FROM clause: FROM . . .
2. Write the SELECT clause: SELECT . . .
3. Write other clauses: . . .
4. Write SQL: SELECT . . .

73.7 64.6

(c)

1. Write the FROM clause: FROM . . .
2. Write other clauses: . . .
3. Write the SELECT clause: SELECT . . .
4. Write SQL: SELECT . . .

74.4 65.1

Table 7: The performance of different structures of
CC-prompt the GPT-3.5 model.

the SELECT clause generation after the FROM
clause, and CC-prompt(c) generates the SELECT
clause at the end. The experimental results show
that CC-prompt(c) surpasses other structures. This
is explainable, as the SELECT clause corresponds
to the projection operation, which is typically the
last operation when composing a SQL. The order
of SQL clause generation for SL+CC prompt is
consistent with CC-prompt.

5. Related Work

Text-to-SQL aims to simplify the process of ac-
cessing data in relational databases for non-
expert users. Researchers have made impres-
sive achievements in this task by designing models
(Wang et al., 2020; Cai et al., 2021; Li et al., 2023b;
Qi et al., 2022; Li et al., 2023a) or fine-tuning pre-
trained models (Yu et al., 2020; Shi et al., 2021;
Scholak et al., 2021).

LLMs have demonstrated impressive code gen-
eration abilities without fine-tuning (Chen et al.,
2021; Chowdhery et al., 2022; Zhao et al., 2022;
Athiwaratkun et al., 2022). More researchers are
studying the Text-to-SQL capabilities of LLMs. (Ra-

6097

jkumar et al., 2022; Liu et al., 2023) investigated
the efficacy of Text-to-SQL on various LLMs, includ-
ing GPT-3, Codex, and ChatGpt. They explored
the impact of prompt structure, number of few-shot
demonstrations, and other factors on the outcomes
using zero-shot and few-shot prompting. Nonethe-
less, these studies’ results are still inadequate com-
pared to well-designed and fine-tuning models of
the same period.

The rapid development of prompting-based
methods has led to the proposal of numerous ef-
fective prompting principles. For example, CoT
prompting (Kojima et al., 2022) is proposed to im-
prove LLMs’ reasoning ability by producing inter-
mediate steps before predicting a final answer;
Self-Consistency (Wang et al., 2022) mitigates
the phenomenon of randomness in the output of
LLMs by voting on the diversity of results and
selecting the best one. For Text-to-SQL, these
prompting enhancement methods are equally ef-
fective. Self-Debug(Chen et al., 2023) employing
CoT prompting to obtain the question explanation
and generates the initial SQL, then instruct LLMs
to debug the SQL. Coder-Reviewer (Zhang et al.,
2022), MBE-Exec (Shi et al., 2021) and LEVER
(Ni et al., 2023) utilizing consistency principles to
choose the optimal one from multiple candidate re-
sults. MBE-Exec (Shi et al., 2021) selects the SQL
with the most common execution result, Coder-
Reviewer (Zhang et al., 2022) selects the SQL
considering both the likelihood of the predicted
SQL given the question description (Coder score)
and the likelihood of the question description given
the predicted SQL (Reviewer score); LEVER (Ni
et al., 2023) selects the SQL with the highest score,
which represents the probability that the SQL is cor-
rect and is calculated based on the question, the
SQL and the execution results. However, these ap-
proaches have limited improvement because they
do not provide in-depth analysis of text-to-SQL
characteristics and tailored solutions.

Tailored approaches to Text-to-SQL include
studying prompting design strategies for Text-to-
SQL (Nan et al., 2023) and the decomposition
of Text-to-SQL tasks (Pourreza and Rafiei, 2023).
(Nan et al., 2023) presented a study of Text-to-SQL
prompt design strategies, explored the impact of
demonstration selection, database schema repre-
sentation, and other factors on results. Din-SQL
reduces the overall difficulty of Text-to-SQL by di-
viding it into four subtasks; however, it lacks ex-
ploration of these key subtasks, and the pipelined
approach limits the capacity of LLMs.

6. Conclusion

In this paper, we proposed three promptings tai-
lored for Text-to-SQL tasks on LLMs: SL-prompt,

CC-prompt, and SL+CC prompt. These prompts
were designed to alleviate the two major concerns
in Text-to-SQL tasks: schema linking and SQL
generation. We also study the mechanism of our
promptings interacting with LLMs. For the SL-
prompt, we investigated the effect of the granularity
of the relevant schema information. For the CC-
prompt and SL+CC prompt, we evaluated the im-
pact of the order of clause generation. Our experi-
mental results demonstrated that our promptings
significantly improved the performance of LLMs on
Text-to-SQL tasks, achieving an EX of 86.2% and
TS of 76.9%, outperforming the current state-of-
the-art methods.

7. Acknowledgements

This research was partially supported by the Na-
tional Natural Science Foundation of China (No.
62076112, 62272205, 62272206, and 62272207),
the Natural Science Foundation of Jiangxi Province
(No. 20212ACB202002 and 20232ACB202008),
Science and Technology Research Project of
Jiangxi Provincial Department of Education (No.
GJJ190255), and Graduate Student Innovation
Special Fund Project of Jiangxi Province for the
Year 2023 (No. YC2023-B185).

8. Bibliographical References

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian
Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
Wasi Uddin Ahmad, Shiqi Wang, Qing Sun,
Mingyue Shang, et al. 2022. Multi-lingual evalu-
ation of code generation models. arXiv preprint
arXiv:2210.14868.

Ruichu Cai, Jinjie Yuan, Boyan Xu, and Zhifeng
Hao. 2021. Sadga: Structure-aware dual
graph aggregation network for text-to-sql. Ad-
vances in Neural Information Processing Sys-
tems, 34:7664–7676.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. 2021. Evaluating
large language models trained on code. arXiv
preprint arXiv:2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schärli,
and Denny Zhou. 2023. Teaching large lan-
guage models to self-debug. arXiv preprint
arXiv:2304.05128.

DongHyun Choi, Myeong Cheol Shin, EungGyun
Kim, and Dong Ryeol Shin. 2021. Ryansql: Re-
cursively applying sketch-based slot fillings for

6098

complex text-to-sql in cross-domain databases.
Computational Linguistics, 47(2):309–332.

Aakanksha Chowdhery, Sharan Narang, Jacob
Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, et al.
2022. Palm: Scaling language modeling with
pathways. arXiv preprint arXiv:2204.02311.

Xiang Deng, Ahmed Hassan Awadallah, Christo-
pher Meek, Oleksandr Polozov, Huan Sun, and
Matthew Richardson. 2021. Structure-grounded
pretraining for text-to-sql. In The 2021 Annual
Conference of the North American Chapter of
the Association for Computational Linguistics.

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew
Purver, John R Woodward, Jinxia Xie, and Peng-
sheng Huang. 2021a. Towards robustness of
text-to-sql models against synonym substitution.
In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics
and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long
Papers), pages 2505–2515.

Yujian Gan, Xinyun Chen, and Matthew Purver.
2021b. Exploring underexplored limitations of
cross-domain text-to-sql generalization. In Pro-
ceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
8926–8931.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019.
Towards complex text-to-sql in cross-domain
database with intermediate representation. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
4524–4535.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid,
Yutaka Matsuo, and Yusuke Iwasawa. 2022.
Large language models are zero-shot reason-
ers. In ICML 2022 Workshop on Knowledge
Retrieval and Language Models.

Wenqiang Lei, Weixin Wang, Zhixin Ma, Tian Gan,
Wei Lu, Min-Yen Kan, and Tat-Seng Chua. 2020.
Re-examining the role of schema linking in text-
to-sql. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 6943–6954.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong
Chen. 2023a. Resdsql: Decoupling schema
linking and skeleton parsing for text-to-sql. arXiv
preprint arXiv:2302.05965.

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen
Qin, Chenhao Ma, Nan Huo, Fei Huang, Wenyu

Du, Luo Si, and Yongbin Li. 2023b. Graphix-
t5: Mixing pre-trained transformers with graph-
aware layers for text-to-sql parsing. arXiv
preprint arXiv:2301.07507.

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S Yu.
2023. A comprehensive evaluation of chatgpt’s
zero-shot text-to-sql capability. arXiv preprint
arXiv:2303.13547.

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu Ri,
Jaesung Tae, Ellen Zhang, Arman Cohan, and
Dragomir Radev. 2023. Enhancing few-shot text-
to-sql capabilities of large language models: A
study on prompt design strategies. arXiv preprint
arXiv:2305.12586.

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoy-
anov, Wen-tau Yih, Sida I Wang, and Xi Victoria
Lin. 2023. Lever: Learning to verify language-to-
code generation with execution. arXiv preprint
arXiv:2302.08468.

Mohammadreza Pourreza and Davood Rafiei.
2023. Din-sql: Decomposed in-context learning
of text-to-sql with self-correction. arXiv preprint
arXiv:2304.11015.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng
Wan, Chenghu Zhou, Xinbing Wang, Quanshi
Zhang, and Zhouhan Lin. 2022. Rasat: In-
tegrating relational structures into pretrained
seq2seq model for text-to-sql. arXiv preprint
arXiv:2205.06983.

Nitarshan Rajkumar, Raymond Li, and Dzmitry
Bahdanau. 2022. Evaluating the text-to-sql capa-
bilities of large language models. arXiv preprint
arXiv:2204.00498.

Torsten Scholak, Nathan Schucher, and Dzmitry
Bahdanau. 2021. Picard: Parsing incremen-
tally for constrained auto-regressive decoding
from language models. In Proceedings of the
2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 9895–9901.

Freda Shi, Daniel Fried, Marjan Ghazvininejad,
Luke Zettlemoyer, and Sida I Wang. 2022. Natu-
ral language to code translation with execution.
arXiv preprint arXiv:2204.11454.

Peng Shi, Patrick Ng, Zhiguo Wang, Henghui Zhu,
Alexander Hanbo Li, Jun Wang, Cicero Nogueira
dos Santos, and Bing Xiang. 2021. Learning
contextual representations for semantic parsing
with generation-augmented pre-training. In Pro-
ceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 13806–13814.

Mirac Suzgun, Nathan Scales, Nathanael Schärli,
Sebastian Gehrmann, Yi Tay, Hyung Won

6099

Chung, Aakanksha Chowdhery, Quoc V. Le,
Ed H. Chi, Denny Zhou, and Jason Wei. 2022.
Challenging BIG-Bench Tasks and Whether
Chain-of-Thought Can Solve Them. arXiv
preprint arXiv:2210.09261.

Bailin Wang, Richard Shin, Xiaodong Liu, Olek-
sandr Polozov, and Matthew Richardson. 2020.
Rat-sql: Relation-aware schema encoding and
linking for text-to-sql parsers. In Proceedings of
the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7567–7578.

Xuezhi Wang, Jason Wei, Dale Schuurmans,
Quoc V Le, Ed H Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. 2022.
Self-consistency improves chain of thought rea-
soning in language models. In The Eleventh
International Conference on Learning Represen-
tations.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Yi Chern
Tan, Xinyi Yang, Dragomir Radev, Caiming Xiong,
et al. 2020. Grappa: Grammar-augmented pre-
training for table semantic parsing. In Interna-
tional Conference on Learning Representations.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. 2018. Spi-
der: A large-scale human-labeled dataset for
complex and cross-domain semantic parsing
and text-to-sql task. In 2018 Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP 2018, pages 3911–3921. Association
for Computational Linguistics.

Tianyi Zhang, Tao Yu, Tatsunori B Hashimoto, Mike
Lewis, Wen-tau Yih, Daniel Fried, and Sida I
Wang. 2022. Coder reviewer reranking for code
generation. arXiv preprint arXiv:2211.16490.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan
Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang,
Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong
Wen. 2023. A survey of large language models.
arXiv preprint arXiv:2303.18223.

Yiyun Zhao, Jiarong Jiang, Yiqun Hu, Wuwei Lan,
Henghui Zhu, Anuj Chauhan, Alexander Hanbo
Li, Lin Pan, Jun Wang, Chung-Wei Hang, et al.
2022. Importance of synthesizing high-quality
data for text-to-sql parsing. In NeurIPS 2022
Workshop on Synthetic Data for Empowering
ML Research.

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Se-
mantic evaluation for text-to-sql with distilled test

suites. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 396–411.

Denny Zhou, Nathanael Schärli, Le Hou, Jason
Wei, Nathan Scales, Xuezhi Wang, Dale Schu-
urmans, Olivier Bousquet, Quoc Le, and Ed Chi.
2022. Least-to-most prompting enables com-
plex reasoning in large language models. arXiv
preprint arXiv:2205.10625.

6100

A. Prompts

A.1. SL-prompt(6-shot)

Table songs, columns = ['*', 'songid', 'title']
Table albums, columns = ['*', 'aid', 'title', 'year', 'label', 'type']
Table band, columns = ['*', 'id', 'firstname', 'lastname']
Table instruments, columns = ['*', 'songid', 'bandmateid', 'instrument']
Table performance, columns = ['*', 'songid', 'bandmate', 'stageposition']
Table track_lists, columns = ['*', 'albumid', 'position', 'songid']
Table vocals, columns = ['*', 'songid', 'bandmate', 'type']

Q: "What is the last name of the musician that have produced the most songs?"
Let's translate Q to SQL according to the following steps:
1. Identify relevant tables:

Table performance, columns = ['*', 'songid', 'bandmate', 'stageposition'],
Table band, columns = ['*', 'id', 'firstname', 'lastname'],
Table songs, columns = ['*', 'songid', 'title'];
2. Write the SQL:

SELECT band.lastname FROM performance
JOIN band ON performance.bandmate = band.id
JOIN songs ON songs.songid = performance.songid
GROUP BY lastname ORDER BY count(song.*) DESC LIMIT 1

Table addresses, columns = ['*', 'address_id', 'address_details']
Table locations, columns = ['*', 'location_id', 'other_details']
Table products, columns = ['*', 'product_id', 'product_type_code', 'product_name',
'product_price']
Table parties, columns = ['*', 'party_id', 'party_details']
Table assets, columns = ['*', 'asset_id', 'other_details']
Table channels, columns = ['*', 'channel_id', 'other_details']
Table finances, columns = ['*', 'finance_id', 'other_details']
Table events, columns = ['*', 'event_id', 'address_id', 'channel_id', 'event_type_code',
'finance_id', 'location_id']
Table products_in_events, columns = ['*', 'product_in_event_id', 'event_id', 'product_id']
Table parties_in_events, columns = ['*', 'party_id', 'event_id', 'role_code']
Table agreements, columns = ['*', 'document_id', 'event_id']
Table assets_in_events, columns = ['*', 'asset_id', 'event_id']

Q: "What are the names and type codes of products?"
Let's translate Q to SQL according to the following steps:
1. Identify relevant table:

Table products, columns = ['*', 'product_id', 'product_type_code', 'product_name',
'product_price'];
2. Write the SQL:

SELECT product_name, product_type_code FROM products

Table sqlitesequence, columns = ['*', 'id', 'name']
Table artists, columns = ['*', 'name', 'seq']
Table albums, columns = ['*', 'id', 'title', 'artist_id']
Table employees, columns = ['*', 'id', 'last_name', 'first_name', 'title', 'reports_to',
'birth_date', 'hire_date', 'address', 'city', 'state', 'country', 'postal_code', 'phone', 'fax', 'email']
Table customers, columns = ['*', 'id', 'first_name', 'last_name', 'company', 'address', 'city', 'state',

6101

'country', 'postal_code', 'phone', 'fax', 'email', 'support_rep_id']
Table genres, columns = ['*', 'id', 'name']
Table invoices, columns = ['*', 'id', 'customer_id', 'invoice_date', 'billing_address', 'billing_city',
'billing_state', 'billing_country', 'billing_postal_code', 'total']
Table media_types, columns = ['*', 'id', 'name']
Table tracks, columns = ['*', 'id', 'name', 'album_id', 'media_type_id', 'genre_id', 'composer',
'milliseconds', 'bytes', 'unit_price']
Table invoice_lines, columns = ['*', 'id', 'invoice_id', 'track_id', 'unit_price', 'quantity']
Table playlists, columns = ['*', 'id', 'name']
Table playlist_tracks, columns = ['*', 'playlist_id', 'track_id']

Q: "What are the first and last names of the top 10 longest−serving employees?"
Let's translate Q to SQL according to the following steps:
1. Identify relevant table:

Table employees, columns = ['*', 'id', 'last_name', 'first_name', 'title', 'reports_to',
'birth_date', 'hire_date', 'address', 'city', 'state', 'country', 'postal_code', 'phone', 'fax', 'email'];
2. Write the SQL:

SELECT first_name, last_name FROM employees ORDER BY hire_date ASC LIMIT 10

Table customers, columns = ['*', 'customer_id', 'customer_first_name', 'customer_middle_initial',
'customer_last_name', 'gender', 'email_address', 'login_name', 'login_password', '

phone_number',
'town_city', 'state_county_province', 'country']
Table orders, columns = ['*', 'order_id', 'customer_id', 'date_order_placed', 'order_details']
Table invoices, columns = ['*', 'invoice_number', 'order_id', 'invoice_date']
Table accounts, columns = ['*', 'account_id', 'customer_id', 'date_account_opened',
'account_name', 'other_account_details']
Table product_categories, columns = ['*', 'production_type_code', 'product_type_description',
'vat_rating']
Table products, columns = ['*', 'product_id', 'parent_product_id', 'production_type_code',
'unit_price', 'product_name', 'product_color', 'product_size']
Table financial_transactions, columns = ['*', 'transaction_id', 'account_id', 'invoice_number',
'transaction_type', 'transaction_date', 'transaction_amount', 'transaction_comment',
'other_transaction_details']
Table order_items, columns = ['*', 'order_item_id', 'order_id', 'product_id', 'product_quantity',
'other_order_item_details']
Table invoice_lineitems, columns = ['*', 'order_item_id', 'invoice_number', 'product_id',
'product_title', 'product_quantity', 'product_price', 'derived_product_cost', 'derived_vat_payable',
'derived_total_cost']

Q: "What is the customer last name, id and phone number with most number of orders?"
Let's translate Q to SQL according to the following steps:
1. Identify relevant tables:

Table orders, columns = ['*', 'order_id', 'customer_id', 'date_order_placed', 'order_details'],
Table customers, columns = ['*', 'customer_id', 'customer_first_name', 'customer_middle_initial',
'customer_last_name', 'gender', 'email_address', 'login_name', 'login_password', '

phone_number',
'town_city', 'state_county_province', 'country'];
2. Write the SQL:

SELECT customers.customer_last_name, orders.customer_id, customers.phone_number
FROM orders JOIN customers ON orders.customer_id = customers.customer_id
GROUP BY orders.customer_id ORDER BY count(*) DESC LIMIT 1

6102

Table routes, columns = ['*', 'rid', 'dst_apid', 'dst_ap', 'src_apid', 'src_ap', 'alid', 'airline',
'codeshare']
Table airports, columns = ['*', 'apid', 'name', 'city', 'country', 'x', 'y', 'elevation', 'iata', 'icao']
Table airlines, columns = ['*', 'alid', 'name', 'iata', 'icao', 'callsign', 'country', 'active']

Q: "What is the count of cities with more than 3 airports?"
Let's translate Q to SQL according to the following steps:
1. Identify relevant table:

Table airports, columns = ['*', 'apid', 'name', 'city', 'country', 'x', 'y', 'elevation', 'iata', 'icao'];
2. Write the SQL:

SELECT count (airports.*) FROM airports WHERE count (airports.*) > 3

Table class, columns = ['*', 'class_code', 'crs_code', 'class_section', 'class_time', 'class_room',
'prof_num']
Table course, columns = ['*', 'crs_code', 'dept_code', 'crs_description', 'crs_credit']
Table department, columns = ['*', 'dept_code', 'dept_name', 'school_code', 'emp_num',
'dept_address', 'dept_extension']
Table employee, columns = ['*', 'emp_num', 'emp_lname', 'emp_fname', 'emp_initial',
'emp_jobcode', 'emp_hiredate', 'emp_dob']
Table enroll, columns = ['*', 'class_code', 'stu_num', 'enroll_grade']
Table professor, columns = ['*', 'emp_num', 'dept_code', 'prof_office', 'prof_extension',
'prof_high_degree']
Table student, columns = ['*', 'stu_num', 'stu_lname', 'stu_fname', 'stu_init', 'stu_dob', 'stu_hrs',
'stu_class', 'stu_gpa', 'stu_transfer', 'dept_code', 'stu_phone', 'prof_num']

Q: "What is the name, address, and number of students in the departments that have the 3
most students?"

Let's translate Q to SQL according to the following steps:
1. Identify relevant tables:

Table student, columns = ['*', 'stu_num', 'stu_lname', 'stu_fname', 'stu_init', 'stu_dob', 'stu_hrs',
'stu_class', 'stu_gpa', 'stu_transfer', 'dept_code', 'stu_phone', 'prof_num'],
Table department, columns = ['*', 'dept_code', 'dept_name', 'school_code', 'emp_num',
'dept_address', 'dept_extension'];
2. Write the SQL:

SELECT department.dept_name, department.dept_address, count(student.*) FROM student
GROUP BY student.dept_code ORDER BY count (student.*) DESC LIMIT 3

A.2. CC-prompt(6-shot)

Table customers, columns = ['*', 'customer_id', 'customer_details']
Table customer_events, columns = ['*', 'customer_event_id', 'customer_id', 'date_moved_in',
'property_id', 'resident_id', 'thing_id']
Table customer_event_notes, columns = ['*', 'customer_event_note_id', 'customer_event_id',
'service_type_code', 'resident_id', 'property_id', 'date_moved_in']

Q: "What is each customer's move in date, and the corresponding customer id and details?"
Let's translate Q to SQL clause by clause.
1. Write the FROM clause:

FROM Customers AS T1 JOIN Customer_Events AS T2 ON T1.customer_id = T2.customer_id
2. Write the SELECT clause:

SELECT T2.date_moved_in , T1.customer_id , T1.customer_details

6103

3. Write the SQL:
SELECT T2.date_moved_in , T1.customer_id , T1.customer_details FROM Customers AS T1
JOIN Customer_Events AS T2 ON T1.customer_id = T2.customer_id

Table instructor, columns = ['*', 'id', 'name', 'dept_name', 'salary']
Table section, columns = ['*', 'course_id', 'sec_id', 'semester', 'year', 'building', 'room_number',
'time_slot_id']
Table teaches, columns = ['*', 'id', 'course_id', 'sec_id', 'semester', 'year']

Q: "Which year had the greatest number of courses?"
Let's translate Q to SQL clause by clause.
1. Write the FROM clause:

FROM SECTION
2. Write the GROUP BY clause:

GROUP BY YEAR
3. Write the ORDER BY clause:

ORDER BY count(*) DESC LIMIT 1
4. Write the SELECT clause:

SELECT YEAR
5. Write the SQL:

SELECT YEAR FROM SECTION GROUP BY YEAR ORDER BY count(*) DESC LIMIT 1

Table follows, columns = ['*', 'f1', 'f2']
Table tweets, columns = ['*', 'id', 'uid', 'text', 'createdate']
Table user_profiles, columns = ['*', 'uid', 'name', 'email', 'partitionid', 'followers']

Q: "Find the average number of followers for the users who do not have any tweet."
Let's translate Q to SQL clause by clause.
1. Write the FROM clause:

FROM user_profiles
2. Write the subquery:

SELECT UID FROM tweets
3. Write the WHERE clause:

WHERE UID NOT IN (SELECT UID FROM tweets)
4. Write the SELECT clause:

SELECT avg(followers)
5. Write the SQL:

SELECT avg(followers) FROM user_profiles
WHERE UID NOT IN (SELECT UID FROM tweets)

Table classroom, columns = ['*', 'building', 'room_number', 'capacity']
Table department, columns = ['*', 'dept_name', 'building', 'budget']
Table course, columns = ['*', 'course_id', 'title', 'dept_name', 'credits']

Let's translate Q to SQL clause by clause.
1. Write the FROM clause:

FROM classroom
2. Write the WHERE clause:

WHERE capacity > 50
3. Write the GROUP BY clause:

6104

GROUP BY building
4. Write the SELECT clause:

SELECT count(*) , building
5. Write the SQL:

SELECT count(*) , building FROM classroom WHERE capacity > 50 GROUP BY building

Tables locations, columns = ['*', 'location_id', 'other_details']
Tables products, columns = ['*', 'product_id', 'product_type_code', 'product_name',
'product_price']
Tables events, columns = ['*', 'event_id', 'address_id', 'channel_id', 'event_type_code'
, 'finance_id', 'location_id']
Tables products_in_events, columns = ['*', 'product_in_event_id', 'event_id', 'product_id']

Q: "Show the names of products that are in at least two events."
Let's translate Q to SQL clause by clause.
1. Write the FROM clause:

FROM Products AS T1 JOIN Products_in_Events AS T2 ON T1.Product_ID = T2.Product_ID
2. Write the GROUP BY clause:

GROUP BY T1.Product_Name HAVING COUNT(*) >= 2
3. Write the SELECT clause:

SELECT T1.Product_Name
4. Write the SQL:

SELECT T1.Product_Name
FROM Products AS T1 JOIN Products_in_Events AS T2 ON T1.Product_ID = T2.Product_ID
GROUP BY T1.Product_Name HAVING COUNT(*) >= 2

Tables products, columns =['*', 'product_id', 'parent_product_id', 'production_type_code',
'unit_price', 'product_name','product_color', 'product_size']
Tables financial_transactions, columns = ['*', 'transaction_id', 'account_id', 'invoice_number',
'transaction_type', 'transaction_date', 'transaction_amount', 'transaction_comment',
'other_transaction_details']
Tables order_items, columns = ['*', 'order_item_id', 'order_id', 'product_id', 'product_quantity',
'other_order_item_details']

Q: "What are the ids for transactions that have an amount greater than the average amount of a
transaction?"

Let's translate Q to SQL clause by clause.
1. Write the FROM clause:

FROM Financial_transactions
2. Write the subquery:

SELECT avg(transaction_amount) FROM Financial_transactions
3. Write the WHERE clause:

WHERE transaction_amount >
(SELECT avg(transaction_amount) FROM Financial_transactions)
4. Write the SELECT:

SELECT transaction_id
5. Write the SQL:

SELECT transaction_id FROM Financial_transactions WHERE transaction_amount >
(SELECT avg(transaction_amount) FROM Financial_transactions)

6105

A.3. SL+CC prompt(6-shot)

Table customers, columns = ['*', 'customer_id', 'customer_details']
Table customer_events, columns = ['*', 'customer_event_id', 'customer_id', 'date_moved_in',
'property_id', 'resident_id', 'thing_id']
Table customer_event_notes, columns = ['*', 'customer_event_note_id', 'customer_event_id',
'service_type_code', 'resident_id', 'property_id', 'date_moved_in']

Q: "What is each customer's move in date, and the corresponding customer id and details?"
Relevant tables:

Table customers, columns = ['*', 'customer_id', 'customer_details'],
Table customer_events, columns = ['*', 'customer_event_id', 'customer_id','date_moved_in',
'property_id', 'resident_id', 'thing_id']"
Let's translate Q to SQL clause by clause. The relevant tables are likely to be used in the

translation.
1. Write the FROM clause:

FROM Customers AS T1 JOIN Customer_Events AS T2 ON T1.customer_id = T2.customer_id
2. Write the SELECT clause:

SELECT T2.date_moved_in , T1.customer_id , T1.customer_details
3. Write the SQL:

SELECT T2.date_moved_in , T1.customer_id , T1.customer_details FROM Customers AS T1
JOIN Customer_Events AS T2 ON T1.customer_id = T2.customer_id

Table instructor, columns = ['*', 'id', 'name', 'dept_name', 'salary']
Table section, columns = ['*', 'course_id', 'sec_id', 'semester', 'year', 'building', 'room_number',
'time_slot_id']
Table teaches, columns = ['*', 'id', 'course_id', 'sec_id', 'semester', 'year']

Q: "Which year had the greatest number of courses?"
Relevant table:

Table section, columns = ['*', 'course_id', 'sec_id', 'semester', 'year', 'building', 'room_number',
'time_slot_id']
Let's translate Q to SQL clause by clause. The relevant tables are likely to be used in the

translation.
1. Write the FROM clause:

FROM SECTION
2. Write the GROUP BY clause:

GROUP BY YEAR
3. Write the ORDER BY clause:

ORDER BY count(*) DESC LIMIT 1
4. Write the SELECT clause:

SELECT YEAR
5. Write the SQL:

SELECT YEAR FROM SECTION GROUP BY YEAR ORDER BY count(*) DESC LIMIT 1

Table follows, columns = ['*', 'f1', 'f2']
Table tweets, columns = ['*', 'id', 'uid', 'text', 'createdate']
Table user_profiles, columns = ['*', 'uid', 'name', 'email', 'partitionid', 'followers']

Q: "Find the average number of followers for the users who do not have any tweet."
Relevant tables:

Table user_profiles, columns = ['*', 'uid', 'name', 'email', 'partitionid', 'followers'],

6106

Table tweets, columns = ['*', 'id', 'uid', 'text', 'createdate']
Let's translate Q to SQL clause by clause. The relevant tables are likely to be used in the

translation.
1. Write the FROM clause:

FROM user_profiles
2. Write the subquery:

SELECT UID FROM tweets
3. Write the WHERE clause:

WHERE UID NOT IN (SELECT UID FROM tweets)
4. Write the SELECT clause:

SELECT avg(followers)
5. Write the SQL:

SELECT avg(followers) FROM user_profiles
WHERE UID NOT IN (SELECT UID FROM tweets)

Table classroom, columns = ['*', 'building', 'room_number', 'capacity']
Table department, columns = ['*', 'dept_name', 'building', 'budget']
Table course, columns = ['*', 'course_id', 'title', 'dept_name', 'credits']

Q: "How many rooms in each building have a capacity of over 50?"
Relevant tables:

Table classroom, columns = ['*', 'building', 'room_number', 'capacity']
Let's translate Q to SQL clause by clause. The relevant tables are likely to be used in the

translation.
1. Write the FROM clause:

FROM classroom
2. Write the WHERE clause:

WHERE capacity > 50
3. Write the GROUP BY clause:

GROUP BY building
4. Write the SELECT clause:

SELECT count(*) , building
5. Write the SQL:

SELECT count(*) , building FROM classroom WHERE capacity > 50 GROUP BY building

Tables locations, columns = ['*', 'location_id', 'other_details']
Tables products, columns = ['*', 'product_id', 'product_type_code', 'product_name',
'product_price']
Tables events, columns = ['*', 'event_id', 'address_id', 'channel_id', 'event_type_code'
, 'finance_id', 'location_id']
Tables products_in_events, columns = ['*', 'product_in_event_id', 'event_id', 'product_id']

Q: "Show the names of products that are in at least two events."
Relevant tables:

Tables products, columns = ['*', 'product_id', 'product_type_code', 'product_name',
'product_price'],
Tables products_in_events, columns = ['*', 'product_in_event_id', 'event_id', 'product_id']
Let's translate Q to SQL clause by clause. The relevant tables are likely to be used in the

translation.
1. Write the FROM clause:

FROM Products AS T1 JOIN Products_in_Events AS T2 ON T1.Product_ID = T2.Product_ID

6107

2. Write the GROUP BY clause:
GROUP BY T1.Product_Name HAVING COUNT(*) >= 2
3. Write the SELECT clause:

SELECT T1.Product_Name
4. Write the SQL:

SELECT T1.Product_Name
FROM Products AS T1 JOIN Products_in_Events AS T2 ON T1.Product_ID = T2.Product_ID
GROUP BY T1.Product_Name HAVING COUNT(*) >= 2

Tables products, columns =['*', 'product_id', 'parent_product_id', 'production_type_code',
'unit_price', 'product_name','product_color', 'product_size']
Tables financial_transactions, columns = ['*', 'transaction_id', 'account_id', 'invoice_number',
'transaction_type', 'transaction_date', 'transaction_amount', 'transaction_comment',
'other_transaction_details']
Tables order_items, columns = ['*', 'order_item_id', 'order_id', 'product_id', 'product_quantity',
'other_order_item_details']

Q: "What are the ids for transactions that have an amount greater than the average amount of a
transaction?"

Relevant table:
Tables financial_transactions, columns = ['*', 'transaction_id', 'account_id', 'invoice_number',
'transaction_type', 'transaction_date', 'transaction_amount', 'transaction_comment',
'other_transaction_details'] "
Let's translate Q to SQL clause by clause. The relevant tables are likely to be used in the

translation.
1. Write the FROM clause:

FROM Financial_transactions
2. Write the subquery:

SELECT avg(transaction_amount) FROM Financial_transactions
3. Write the WHERE clause:

WHERE transaction_amount >
(SELECT avg(transaction_amount) FROM Financial_transactions)
4. Write the SELECT:

SELECT transaction_id
5. Write the SQL:

SELECT transaction_id FROM Financial_transactions WHERE transaction_amount >
(SELECT avg(transaction_amount) FROM Financial_transactions)

A.4. Result Select prompt

The Result Select prompt was implemented in a zero-shot setting. An example of this prompt is illustrated
in Figure 7.

6108

Figure 7: An example of input and output of Result Select prompt.

6109

	Introduction
	Methods
	Overview
	Prompting for Schema Linking
	Prompting for SQL Generation
	Combining Promptings
	Result Selection

	Experiments
	Experimental Setup
	Experimental Results
	Results on Complex Queries

	Analysis
	Comparison of Methods
	Structure of SL-prompt
	Structure of CC-prompt

	Related Work
	Conclusion
	Acknowledgements
	Bibliographical References
	Prompts
	SL-prompt(6-shot)
	CC-prompt(6-shot)
	SL+CC prompt(6-shot)
	Result Select prompt

