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Abstract
Recent advancements in Chain-of-Thought prompting have facilitated significant breakthroughs for Large Language
Models (LLMs) in complex reasoning tasks. Current research enhances the reasoning performance of LLMs by
sampling multiple reasoning chains and ensembling based on the answer frequency. However, this approach fails in
scenarios where the correct answers are in the minority. We identify this as a primary factor constraining the reasoning
capabilities of LLMs, a limitation that cannot be resolved solely based on the predicted answers. To address this
shortcoming, we introduce a hierarchical reasoning aggregation framework AoR (Aggregation of Reasoning), which
selects answers based on the evaluation of reasoning chains. Additionally, AoR incorporates dynamic sampling,
adjusting the number of reasoning chains in accordance with the complexity of the task. Experimental results on
a series of complex reasoning tasks show that AoR outperforms prominent ensemble methods. Further analysis
reveals that AoR not only adapts various LLMs but also achieves a superior performance ceiling when compared to
current methods.
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1. Introduction

Large Language Models (LLMs) have driven re-
markable advancements across various Natural
Language Processing (NLP) tasks (OpenAI, 2023;
Chowdhery et al., 2022; Touvron et al., 2023a,b;
Huang et al., 2022; Zhao et al., 2023). Nonetheless,
there remains a discernible gap between the perfor-
mance of these models and human-level expertise
in reasoning tasks (Cobbe et al., 2021; Valmeekam
et al., 2022), which cannot be bridged merely by
increasing the model’s scale (Rae et al., 2022). In
this context, the advent of Chain-of-Thought (CoT)
prompting (Wei et al., 2022b) technique heralds a
stride towards mitigating this disparity. Rather than
employing “answer-only” prompts, CoT drives LLMs
to generate a series of intermediate steps that lead
to the final answer. By decoupling the problem-
solving process, CoT not only simplifies the com-
plexity of each step but also offers a novel perspec-
tive to addressing complex reasoning tasks.

Beyond the inherent limitations of LLMs (Yin
et al., 2023b), Wang et al. (2023d) observe that
the CoT exhibits randomness when utilizing a sin-
gle reasoning chain. As a remedy, they propose
modulating the sampling temperature to collect a
diverse set of reasoning chains, and then select
the most consistent answer as the final prediction.
This ensemble approach based on majority-voting
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𝑹𝑹𝟐𝟐: Let the rate of interest be 
r. ..|(5000 * r / 100) * 2 - 5000 * 
( (1 + r/100)^2 - 1)| = 72. 
Simplifying this equation gives r = 
12. So the answer is (B). 

𝑹𝑹𝟑𝟑: Let the rate of interest be r. 
The difference between simple 
interest and compound interest 
at the same rate for 2 years… 
Since the rate of interest cannot 
be negative, the answer is 6%. So 
the answer is (C).

Question: The difference between simple interest and C.I. at the 
same rate for Rs.5000 for 2 years in Rs.72. The rate of interest is?
Answer Choices: (A) 10% (B) 12% (C) 6% (D) 8% (E) 4%

𝑹𝑹𝟓𝟓: C.I. - Simple Interest = 72… 
Since interest cannot be negative, 
we take the solution r = 8%. So 
the answer is (D).

𝑹𝑹𝟏𝟏 : Let the rate of interest be r%. 
The compound interest would be 
5000[(1 + r/100)^2 - 1]… Solving 
this quadratic equation gives us r 
= 10%. So the answer is (A).

𝑹𝑹𝟒𝟒 : Let the rate of interest be x%. 
The simple interest for 2 years 
would be (5000 * 2 * x) / 100 = 
100x… So, 5000 * (1 + x/100)^2 - 
5000 - 100x = 72. Solving this 
equation, we get x = 6%. So the 
answer is (C).

Majority Vote: (C).

Correct Answer: (B). 





Figure 1: An illustrative example from AQuA (Ling
et al., 2017), with 5 reasoning chains generated
through temperature sampling. Although LLM is
able to generate the correct answer, majority voting
ultimately selects an incorrect answer due to the
abundance of incorrect answers.

has not only elevated the reasoning capability of
LLMs but has also emerged as the predominant
paradigm for LLMs in reasoning tasks (Chu et al.,
2023; Yu et al., 2023).

However, when confronted with more complex
questions, LLMs often waver among multiple an-
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Figure 2: Proportion of samples that correct answers appearing in LLMs’ generations among those where
majority voting results in an incorrect outcome across various reasoning tasks.

swers. A dilemma arises when the incorrect an-
swers outnumber the correct ones. Even if the LLM
is capable of generating the right answer, the major-
ity voting mechanism remains susceptible to skew-
ing the final prediction towards an erroneous one.
Figure 1 showcases an illustrative example from the
AQuA dataset (Ling et al., 2017). Among the five
sampled reasoning chains, four candidate answers:
(A), (B), (C), and (D) are generated. While the LLM
is capable of generating the correct answer (B)
in R2 , the overwhelming presence of erroneous
candidates eventually led to the selection of the
incorrect answer (C).

To explore this phenomenon, we conduct a pilot
analysis on samples spanning various reasoning
tasks, where the majority voting results in incor-
rect predictions. As depicted in Figure 2, over 80%
of the samples that LLM has the potential to an-
swer correctly, but majority voting fails. Notably, in
AQuA (Ling et al., 2017) and Penguins (Suzgun
et al., 2023) datasets, this proportion exceeds 95%.
These findings indicate that ensembling reasoning
chains, which relies on the frequency of answers,
still has significant room for improvement.

Motivated by the observed limitations, we pose
the central research question of this work: “When
LLMs are capable of generating the correct answer,
how can we mitigate the interference of incorrect
answers to accurately select the right one?” In situ-
ations polluted by a myriad of erroneous predictions,
relying exclusively on the answers themselves pro-
vides limited insight for enhanced accuracy. Con-
sequently, it becomes both essential and promising
to focus on the process leading to these answers:
the reasoning chains. Thus, we introduce a hi-
erarchical reasoning aggregation framework AoR
(Aggregation of Reasoning), designed to harness
the LLM’s ability to evaluate reasoning processes
in order to improve the selection of the final answer.

Specifically, given the constraints of LLM’s con-
text window (Liu et al., 2023a) that prevents simul-
taneous evaluation of all reasoning chains, AoR ini-
tiates by aggregating chains based on their respec-
tive answers followed by a two-phase evaluation
process. In the first phase: local-scoring, chains
yielding identical answers are evaluated. Since

the answers are consistent, the evaluation places
greater emphasis on the soundness of the reason-
ing process and the appropriateness of the reason-
ing steps. For the second phase: global-evaluation,
the most logically coherent and methodically valid
chains from different answer groups are jointly as-
sessed. The objective is to identify the reasoning
chain that best exhibits coherence and consistency
between the reasoning process and its correspond-
ing answer, thereby designating this answer as the
final output.

Furthermore, leveraging the scores derived from
the global evaluation phase, AoR can estimate the
current confidence level of the LLM in its optimal
reasoning process and answer. This allows AoR
to dynamically decide whether it is necessary to
sample additional reasoning chains. Experimental
results across various reasoning tasks demonstrate
AoR’s effectiveness in significantly enhancing the
reasoning performance of LLMs. Benefited from
dynamic sampling, which determines the number
of sampling and evaluations by distinguishing be-
tween easy and challenging samples, AoR also
effectively curtails the LLM’s reasoning overhead,
establishing a balance between performance and
computational cost.

The main contributions are listed below:

• We identify that the existing ensemble mech-
anism, which solely relies on the frequency
of answers, is insufficient. This observation
underscores the importance of incorporating
the reasoning process, leading to the design
of our hierarchical reasoning process aggre-
gation framework AoR.

• Leveraging the evaluation scores of the opti-
mal reasoning chains, AoR integrates the abil-
ity to dynamically sample reasoning chains,
efficiently minimizing the reasoning overhead.

• Extensive experimental results demonstrate
AoR’s superior performance and cost effi-
ciency compared to existing reasoning chain
ensemble methods.
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Feature AoR
(our work)

Self-Consistency
(Wang et al., 2023d)

ComplexSC
(Fu et al., 2023b)

PHP
(Zheng et al., 2023)

DiVeRSe
(Li et al., 2023b)

Task Agnostic? ✓ ✓ ✓ ✗ ✓
Training-Free? ✓ ✓ ✓ ✓ ✗
Plug-and-Play? ✓ ✓ ✓ ✗ ✗
Dynamic Sampling? ✓ ✗ ✗ ✓ ✗

Table 1: A comparison of AoR to other reasoning chains ensemble methods.

2. Related work
Reasoning with Chain-of-Thought. Chain-of-
Thought (CoT; Wei et al., 2022b) prompting has
emerged as a pivotal technique for eliciting rea-
soning capabilities in LLMs (Zhao et al., 2023;
Liang et al., 2023). When guided by samples en-
riched with explicit reasoning steps, LLMs can pro-
duce a series of intermediate steps culminating
in a multi-step solution (Zhou et al., 2023). Re-
markably, CoT can enhance the performance of
LLMs in reasoning tasks without necessitating ad-
ditional training (Huang and Chang, 2022; Min et al.,
2022). This characteristic has swiftly garnered
widespread attention (Qiao et al., 2023; Chu et al.,
2023), with several studies attributing this phe-
nomenon to the emergent capabilities intrinsic to
LLMs (Wei et al., 2022a; Kaplan et al., 2020). Sub-
sequent research has concentrated on strengthen-
ing the consistency between reasoning paths and
answers (Chen et al., 2022; Gao et al., 2022), au-
tomating the construction of prompts (Zhang et al.,
2023; Li et al., 2023a; Diao et al., 2023), eliciting
external knowledge (Wang et al., 2023b; Li and Qiu,
2023) and progressively refining the reasoning pro-
cesses (Yao et al., 2023; Besta et al., 2023; Sel
et al., 2023; Han et al., 2023; Liu et al., 2023b).

Ensemble of Multiple Reasoning Chains.
Wang et al. (2023d) identify the randomness in
the CoT’s single-chain sampling process and
subsequently propose the Self-Consistency
method. This approach entails sampling multiple
reasoning chains and selecting the most frequently
occurring answer as the final output, which lays
the foundation for a series of reasoning chain
ensemble methods. Fu et al. (2023b) observe
a positive correlation between the complexity of
reasoning chains and the accuracy of generated
answers. Based on this insight, they propose
filtering reasoning chains based on their complexity
before employing a majority voting mechanism for
the answers. Furthermore, Li et al. (2023b) train a
verifier to score each reasoning chain. The answer
corresponding to the highest-scoring reasoning
chain is selected as the final output. From a
different perspective, Zheng et al. (2023) suggest
using previously generated answers as hints to
guide LLMs toward producing accurate answers.
Furthermore, recent advancements have seen the

emergence of strategies encouraging interaction
among reasoning chains (Yin et al., 2023a) or
transforming LLMs into multiple agents to benefit
from diverse cognitive processes (Sun et al., 2023).
A comparison of AoR with some representative
reasoning chain ensemble methods is presented
in Table 1. Notably, our method is task-agnostic
and does not require additional annotation for
training. This plug-and-play characteristic, coupled
with dynamic sampling, ensures the functionality
and cost-effectiveness of our method.

Evaluation Capability of LLMs. The automated
evaluation capability of LLMs has recently become
a prominent point of research (Hackl et al., 2023;
Hada et al., 2023; Zhu et al., 2023). Liu et al.
(2023d) and Wang et al. (2023a) discover that LLMs
have the potential to produce evaluation results
consistent with human experts. Chiang and yi Lee
(2023a) and Shen et al. (2023) further underscores
the stability and reliability of assessments gener-
ated by LLMs. Kocmi and Federmann (2023) and
Liu et al. (2023c) conduct a comparative study be-
tween LLM-based evaluation methods and existing
automated evaluation metrics. Their results show-
case that evaluations derived from LLMs surpassed
all current automated benchmarks, indicating the
exceptional evaluation capabilities of LLMs. More-
over, the utilization of LLMs for assessment offers
several advantages including customizability (Fu
et al., 2023a), a diversity of evaluation perspec-
tives (Chen et al., 2023), and training-free (Luo
et al., 2023). Given the remarkable evaluation
prowess of LLMs (Chan et al., 2023; Chiang and
yi Lee, 2023b; Gao et al., 2023), we integrate this
capability into the aggregation of reasoning chains,
enabling a more accurate assessment and selec-
tion of the reasoning processes and answers.

3. Preliminary

In this section, we provide definitions for standard
prompting and CoT Prompting. Additionally, we
detail the voting procedure of Self-Consistency.
These foundational concepts serve as a ground-
work for AoR. Considering a scenario where there
is a question, denoted as Q, along with a prompt,
denoted as T , and a LLM, denoted as PM.
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𝑹𝑹𝟐𝟐: Let the rate of interest be r. 
Then, according to the given 
information, |(5000 * r / 100) * 2 
- 5000 * ( (1 + r/100)^2 - 1) |= 
72… So the answer is (B). 

𝑹𝑹𝟏𝟏 : Let the rate of interest be 
r%. The compound interest 
would be 5000[(1 + r/100)^2 - 
1]… So the answer is (A).

Question: The difference between simple interest and C.I. at the same rate for Rs.5000 for 2 years in Rs.72. The rate of interest is?
Answer Choices: (A) 10% (B) 12% (C) 6% (D) 8% (E) 4%

Answer: (A) Answer: (B)

Prompt: Evaluate the solution process for the problem using the criteria below, with a 
maximum score of 10 points:
• Logical Consistency (3 points)
• Appropriateness of Method (3 points)
• Completeness and Clarity (2 points)
• Application of Knowledge (2 points)
Reasoning Chain: 𝑹𝑹𝟐𝟐、𝑹𝑹𝟔𝟔
Response: (𝑹𝑹𝟐𝟐, 8), (𝑹𝑹𝟔𝟔, 7).

Local-Scoring

Answer: (C)

𝑹𝑹𝟑𝟑: The difference between 
simple interest and compound 
interest at the same rate for 2 
years… So the answer is (C).

Answer: (D)

𝑹𝑹𝟖𝟖: The interest earned after 2 
years would be 5000 r /100 = 
50r, …5r/2 - 5000 = 72 …
r = 8%. So the answer is (D).

Prompt: Multiple solution processes are presented below, each leading to a different answer. 
Only one of these answers is correct. Evaluate each solution process based on:
• Validity of Approach (3 points)
• Consistency of Steps and Answer (3 points)
• Completeness and Clarity (2 points)
• Application of Knowledge (2 points)
Reasoning Chain: 𝑹𝑹𝟏𝟏、𝑹𝑹𝟐𝟐、𝑹𝑹𝟑𝟑、𝑹𝑹𝟖𝟖
Response: (𝑹𝑹𝟏𝟏, 5), (𝑹𝑹𝟐𝟐, 7), (𝑹𝑹𝟑𝟑, 6), (𝑹𝑹𝟖𝟖, 5). 

Global-Evaluation

𝒁𝒁𝟐𝟐𝒁𝒁𝟑𝟑𝒁𝒁𝟖𝟖𝒁𝒁𝟏𝟏

𝑺𝑺𝟐𝟐𝑺𝑺𝟔𝟔
𝑹𝑹𝟏𝟏
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𝑹𝑹𝟐𝟐
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Question: The difference between simple interest and C.I. at the same rate for Rs.5000 for 2 years in Rs.72. The rate of interest is?
Answer Choices: (A) 10% (B) 12% (C) 6% (D) 8% (E) 4%

𝑹𝑹𝟏𝟏

𝑹𝑹𝟑𝟑

𝑹𝑹𝟐𝟐

𝑹𝑹𝟖𝟖

Figure 3: An illustrative example detailing the AoR workflow. Initially, 10 reasoning chains are sampled.
During the local-scoring phase, reasoning chains with identical answers are compared, filtering out
high-quality chains R1, R2, R3, and R8 for global evaluation. In the global-evaluation phase, R2 receives
the highest score, but the score margin between R2 and R3 fails to surpass the threshold θ.

Standard Prompting. Under standard prompt-
ing, LLM takes the question Q and the prompt T as
inputs. It then sequentially generates each token
of the answer A, aiming to maximize the likelihood
at each step.

P (A ∣ T ,Q) =
∣A∣
∏
i=1

PM(ai ∣ T ,Q, a<i) (1)

CoT Prompting. CoT (Wei et al., 2022b) en-
hances the prompt T by integrating the problem-
solving process and guiding the LLM to generate a
rationale R before generating the answer A. We
refer to the pair (R,A) as a reasoning chain.

P (R,A ∣ T ,Q) = P (A ∣ T ,Q,R)P (R ∣ T ,Q),
(2)

where P (R ∣ T ,Q) and P (A ∣ T ,Q,R) are defined
as follows:

P (R ∣ T ,Q) =
∣R∣
∏
i=1

PM(ri ∣ T ,Q, r<i) (3)

P (A∣T ,Q,R) =
∣A∣
∏
j=1

PM(ai ∣ T ,Q,R, a<j) (4)

Self-Consistency. Self-Consistency (Wang et al.,
2023d) employs CoT to sample n reasoning chains:

{(R1,A1), (R2,A2), . . . , (Rn,An)}. We define the
set of answers as {A} = {A1,A2, . . . ,An}. The
final answer A∗ is determined by selecting the an-
swer that appears most frequently within {A}.

A∗
= argmax

a
∣{(Ri,Ai) ∣ Ai = a}∣ (5)

4. Methodology

4.1. Overview
The AoR approach to aggregating reasoning
primarily unfolds in two stages: local-scoring
and global-evaluation. Firstly, we utilize CoT
to sample n reasoning chains, represented as
{(R1,A1), (R2,A2), . . . , (Rn,An)}. Supposing
there are m unique answers generated, denoted
as {a1, a2, . . . , am}, we categorize them into m

distinct buckets. The j
th bucket is defined as

{(Ri,Ai) ∣ Ai = aj}. In the local-scoring phase,
we score the reasoning chains (Ri,Ai) within each
bucket. The top k chains, based on their scores,
are selected as representatives for the bucket. In
the global-evaluation phase, a representative is se-
lected from each of the buckets for assessment.
After k rounds of evaluations, the bucket with the
highest average score determines the final output.
Figure 3 provides an illustrative example. Although
incorrect answers (C) and (D) are in the majority,
the two-phase process of local-scoring and global-
evaluation accurately discerns and attributes the
highest score to the correct answer (B).
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Sampling

𝑹𝑹𝟏𝟏𝟏𝟏

Local-Scoring Global-Evaluation

Let the rate of interest be x%. The simple interest 
for 2 years would be 5000 * x * 2 / 100 = 100x. The 
compound interest for 2 years would be … So the 
answer is (B).

𝑹𝑹𝟏𝟏𝟏𝟏
Let the rate of interest be r%. Then, the simple 
interest for 2 years would be (5000 * 2 * r) / 100 = 
100r. The compound interest for 2 years would be … 
So the answer is (A).

𝑹𝑹𝟏𝟏𝟏𝟏
Let the rate of interest be r. Then we know that … 
So the rate of interest is 1.2%. Therefore, the 
answer is (E).

Criteria: Logical Consistency …
Demonstration: (𝑹𝑹𝟏𝟏,𝟓𝟓), 𝑹𝑹𝟏𝟏,𝟕𝟕
Response: 𝑹𝑹𝟏𝟏𝟏𝟏,𝟔𝟔

Criteria: Logical Consistency …
Demonstration: (𝑹𝑹𝟏𝟏,𝟖𝟖), 𝑹𝑹𝟔𝟔,𝟕𝟕
Response: (𝑹𝑹𝟏𝟏𝟏𝟏, 9).

Criteria: Logical Consistency …
Demonstration: 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵
Response: (𝑹𝑹𝟏𝟏𝟏𝟏, 7).

𝑺𝑺𝟏𝟏𝟏𝟏 𝑺𝑺𝟏𝟏<

𝑺𝑺𝟖𝟖 𝑺𝑺𝟏𝟏𝟏𝟏<

𝑺𝑺𝟏𝟏𝟏𝟏𝜀𝜀 ≤

Prompt: Multiple solution processes are 
presented below, …
Criteria: Validity of Approach (3 points), 
Consistency of Steps and Answer (3 points), 
Completeness and Clarity (2 points), 
Application of Knowledge (2 points) … 

𝑹𝑹𝟏𝟏 𝑹𝑹𝟏𝟏𝟏𝟏 𝑹𝑹𝟑𝟑 𝑹𝑹𝟖𝟖 𝑹𝑹𝟏𝟏𝟏𝟏

Response: 
𝑹𝑹𝟏𝟏,𝟔𝟔 , 𝑹𝑹𝟏𝟏𝟏𝟏,𝟗𝟗 , 𝑹𝑹𝟑𝟑,𝟓𝟓 , 𝑹𝑹𝟖𝟖,𝟓𝟓 , 𝑹𝑹𝟏𝟏𝟏𝟏,𝟕𝟕  

𝒁𝒁𝟏𝟏 𝒁𝒁𝟏𝟏𝟏𝟏𝒁𝒁𝟑𝟑 𝒁𝒁𝟖𝟖 𝒁𝒁𝟏𝟏𝟏𝟏= < < <

𝒁𝒁𝟏𝟏𝟏𝟏 𝒁𝒁𝟏𝟏𝟏𝟏− ≥ 𝜽𝜽 𝑹𝑹𝟏𝟏𝟏𝟏

Figure 4: Illustration of the dynamic sampling process, where solid circles represent reasoning chains
and hollow circles their respective scores. Due to the minimal score difference between R2 and R3,
three additional chains R10, R11, and R12 are sampled, yielding answers (A), (B), and (E). R10 and R11

are compared against chains with matching answers. R10 fails to outscore R1, while R11 surpasses
R8, advancing to global evaluation. R12, introducing a new answer (E), exceeds the threshold ϵ and
progresses. In the global evaluation, R11 outperforms others, and with its score difference with R12

exceeding θ, thus answer (B) is selected as the final decision.

Local-Scoring. Local-scoring focuses on select-
ing high-quality reasoning chains within a group
sharing the same answer. While fixing the answer,
the evaluation can place a heightened emphasis
on the rigor of the rationale logic and the appro-
priateness of the reasoning steps. Let’s assume
there are nj reasoning chains leading to the an-
swer aj , denoted as (R(j)

1 ,A(j)
1 ), . . . , (R(j)

nj
,A(j)

nj
),

collectively forming bucket j.
When these nj items are input into the LLM si-

multaneously, guided by evaluation criteria in the
prompt T1, the LLM assigns a score S(j)

i to each
R(j)

i . Based on a predefined threshold ϵ, high-
quality chains are identified as {(R(j)

i ,A(j)
i ) ∣ S(j)

i ≥

ϵ}. From this refined set, the top k items are se-
lected as representatives of bucket j, denoted as
B(j)
topk. If no item satisfies S(j)

i ≥ ϵ, then B(j)
topk is

an empty set, and items from this bucket will be
excluded from the global-evaluation phase.

Global-Evaluation. Global-evaluation is tasked
with distinguishing and selecting the reasoning
chain among different answers, aiming to pinpoint
the one that demonstrates optimal coherence and
consistency between the reasoning process and
its outcome. Assuming that we have m buckets. A
representative is chosen from each bucket, form-
ing a set ⋃m

j=1{b
(j)∣b(j) ∈ B(j)

topk}. When these
m representatives are fed into the LLM concur-
rently, guided by evaluation criteria encapsulated
in prompt T2, the LLM assigns a score Z

(j) to each

b
(j)

= (R(j)
, A

(j)).
Representatives from each bucket are sequen-

tially chosen for k rounds of scoring. Ultimately,
the bucket j∗ with the highest average score deter-
mines the final answer. If the number of representa-
tives in a bucket is less than k, previously selected
items are resampled to meet the required count.

j
∗
= argmax

j

1

k

k

∑
t=1

Z(j)
t (6)

It’s worth noting that representatives from each
bucket are high-quality reasoning chains bearing
scores that are identical or closely aligned, each
showcasing its unique advantages. Consequently,
conducting multiple rounds of scoring not only miti-
gates the randomness in single-round evaluations
but also ensures a comprehensive assessment.

4.2. Dynamic Sampling
Leveraging the scores from the global-evaluation
phase, AoR dynamically adjusts the sampling of
reasoning chains based on the LLM’s confidence
in the optimal reasoning chain. This process be-
gins by identifying two key answers: Aα, which has
the highest average score Z̄α, and Aβ , with the
second-highest average score Z̄β . Drawing inspi-
ration from Roth and Small (2006), we consider the
margin Z̄α − Z̄β . If this margin exceeds a prede-
fined threshold θ, it signifies a substantial quality
discrepancy between the top two reasoning chains,
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leading to the selection of Aα as the final answer
and terminating the sampling process.

If Z̄α − Z̄β
< θ, AoR proceeds to sample an ad-

ditional d reasoning chains. These new chains un-
dergo evaluation against established benchmarks
to calculate their scores {Sn+1, Sn+2, . . . , Sn+d}.
These scores determine their influence on the ex-
isting answer hierarchy. If Sn+1 is either beneath
the threshold θ or does not surpass the minimum
score within the top k scores of its answer cate-
gory, the sampled chain (Rn+1,An+1) does not
affect the overall ranking. Conversely, if a sampled
chain introduces a new answer An+1 = am+1 sat-
isfied threshold θ or significantly alters the score
ranking within Btopk, a re-evaluation during the
global-evaluation phase is necessitated to recal-
ibrate scores.

Dynamic sampling ceases once the confidence
margin between the two leading answers meets
or exceeds θ or when the total number of sampled
chains reaches a predefined maximum nmax. As
illustrated in Figure 4, we present a straightforward
instance of dynamic sampling, in which the accu-
racy of the final decision is enhanced by integrating
an additional reasoning chain, confidently pinpoint-
ing answer B during the global evaluation phase.
This flexible method guarantees a more efficient
assessment, reducing unnecessary computational
efforts on clear-cut cases and focusing more rigor-
ously on analyzing queries that are complex or have
ambiguous interpretations. By adjusting the depth
of evaluation according to the estimated complex-
ity of each task, AoR efficiently balances precision
in its outcomes with optimal use of computational
resources.

5. Experiment

5.1. Experimental Setup
Tasks and Datasets. We conduct a comprehen-
sive evaluation of AoR across three types of rea-
soning tasks. (1) Mathematical reasoning in-
corporates six representative datasets, namely
GSM8K (Cobbe et al., 2021), MultiArith (Roy and
Roth, 2015), SingleEQ (Koncel-Kedziorski et al.,
2016), SVAMP (Patel et al., 2021), AddSub (Hos-
seini et al., 2014), and AQuA (Ling et al., 2017).
(2) Commonsense reasoning covers Strate-
gyQA (Geva et al., 2021), CommonsenseQA
(CSQA; Talmor et al., 2019), BoolQ (Clark et al.,
2019), and AI2 Reasoning Challenge (ARC-
C) (Clark et al., 2018). (3) Symbolic reason-
ing comprises four datasets derived from Big-
Bench (bench authors, 2023; Suzgun et al., 2023),
including Date Understanding, Penguins in a Table,
Colored Objects, and Object Counting. A com-
prehensive overview and statistical analysis of the
dataset is presented in Appendix A.1.

Baselines. We compare AoR with several strong
baselines detailed in Section 2. These include
Chain-of-Thought prompting (CoT; Wei et al.,
2022b), Complexity-based prompting (Complex-
CoT; Fu et al., 2023b), Self-Consistency (SC; Wang
et al., 2023d), Complexity-based Consistency (CC;
Fu et al., 2023b), Progressive-Hint Prompting (PHP;
Zheng et al., 2023) and DiVeRSe (Li et al., 2023b).

In our experiments, we adhere to the settings of
Self-Consistency (Wang et al., 2023d) and sam-
pled 40 reasoning chains, denoted as (40). Re-
garding notations, CoT and ComplexCoT represent
prompt exemplars with different reasoning com-
plexities, while SC, CC, PHP, and DiVeRSe signify
various methods of reasoning chain ensemble. For
instance, the notation CoT-SC(40) signifies that 40
reasoning chains are generated using CoT prompts,
followed by the application of the Self-Consistency
method. For all baselines, we follow their official
implementations for fair comparison.

Backbone LLMs. In the main experiments, we
employ GPT-3.5-Turbo-0301. In the discus-
sion part, we introduce a broader variety of
models, including GPT-4-0314, Claude-2, and
the open-source model LLaMA-2-70B-Chat and
Mixtral-8x7B. We access models from OpenAI
and Anthropic using their official APIs, while for
LLaMA-2-70B-Chat and Mixtral-8x7B, we uti-
lized model weights and code provided by Touvron
et al. (2023b) and Jiang et al. (2024).

When sampling various reasoning chains, we
configure the temperature setting differently across
models to optimize their performance. Specifically,
for GPT-3.5-Turbo, GPT-4, and Claude-2, we
maintain a temperature of 1. For LLaMA, we ad-
here to its official recommendation by setting the
temperature at 0.6, and for Mistral, we opt for a
temperature of 0.7 to achieve optimal performance.

By default, AoR initially samples 20 reasoning
chains, implementing a dynamic sampling strat-
egy with an upper limit of nmax = 40 and a batch
size b = 5, collectively referred to as AoR(20,40).
During the local scoring phase, we define a repre-
sentative count of k = 3 and a scoring threshold
of ϵ = 6. For dynamic sampling, we establish a
termination criterion with a threshold of θ = 2, and
with each iteration, we sample an additional 5 rea-
soning chains. Moreover, we utilize the best and
worst reasoning chains within the same answer
as evaluation benchmarks to evaluate the newly
sampled reasoning chains. Our implementation
details and hyperparameters analysis are available
in Appendix A.2 and A.3.

5.2. Main Results
Mathematical Reasoning. The results for the
mathematical reasoning tasks are presented in Ta-
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GSM8K MultiArith SingleEQ SVAMP AddSub AQuA Avg
CoT 80.0 97.7 91.9 78.1 86.6 54.7 81.50
CoT-PHP 84.6 98.3 93.9 83.9 86.1 65.4 85.37
CoT-SC(40) 88.9 99.3 94.5 85.9 87.6 68.7 87.48
CoT-CC(40) 88.7 99.2 94.3 86.1 87.8 69.3 87.57
CoT-Diverse(40) 89.2 99.3 94.5 86.6 88.7 70.9 88.20
CoT-AoR (20, 40) 91.8 99.8 95.5 89.8 90.6 75.9 90.57
ComplexCoT 82.8 97.5 92.5 81.0 85.5 57.4 82.78
ComplexCoT-PHP 85.1 98.0 92.9 83.1 85.3 60.6 84.16
ComplexCoT-SC(40) 90.6 98.5 94.9 87.5 87.5 70.5 88.25
ComplexCoT-CC(40) 90.5 98.3 93.3 87.2 87.5 70.0 87.80
ComplexCoT-DiVeRSe(40) 90.8 98.7 94.3 87.8 88.2 72.9 88.78
ComplexCoT-AoR (20, 40) 92.9 99.5 95.3 91.0 89.1 76.4 90.70

Table 2: Comparison of performance (accuracy %) between AoR and several strong baselines across six
mathematical reasoning datasets. The highest accuracy scores are underlined. Within the same prompt,
standout results are highlighted in bold. All methods employ a GPT-3.5-Turbo-0301 backbone for a
fair comparison. Results for ComplexCoT and ComplexCoT-PHP are sourced from Zheng et al. (2023).
The average performance across datasets is provided for an overall comparison.
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Figure 5: Performance comparison of AoR and various strong baselines on commonsense reasoning and
symbolic reasoning tasks.

ble 2. Across six datasets, AoR surpasses all base-
line approaches. Under the CoT prompt, when com-
pared to the competitive DiVeRSe method, AoR
achieves an average performance boost of 2.37%
across six datasets. Furthermore, the average per-
formance shows an improvement of 3.09% com-
pared to the SC method, with a significant increase
of 7.2% on the AQuA dataset. When employing
ComplexCoT prompt, AoR maintains its compet-
itive advantage. It shows average performance
enhancements of 2.45%, 2.90%, and 1.92% com-
pared to the SC, CC, and DiVeRSe method.

Commonsense and Symbolic Reasoning. Fig-
ures 5a and 5b illustrate the performance of AoR
in commonsense reasoning and symbolic reason-
ing tasks. For commonsense reasoning tasks, AoR
demonstrate an average performance improvement
of 8.45% and 8.27% compared to SC and CC meth-
ods. Notably, on StrategyQA, which emphasizes
implicit reasoning strategies, both SC and CC do
not significantly outperform the baseline CoT meth-

ods. In contrast, AoR effectively enhances the
LLM’s performance on StrategyQA. Moreover, AoR
consistently achieves significant performance im-
provements in symbolic reasoning tasks. When
compared to the SC method, there are improve-
ments of 5.8% and 8.9% on the Date Understand-
ing and Penguins datasets.

Dynamic Sampling. Figures 6a and 6b illustrate
the progression of sample counts during the dy-
namic sampling process on the AQuA and GSM8K
datasets. The color scheme represents the vari-
ance in answer counts within the dataset, transition-
ing from light to dark shades to illustrate the range
from singular to multiple answer occurrences. The
majority of samples conclude satisfactorily after
the first round, with only a select group of more
complex samples necessitating further reasoning
chains. With each subsequent round of sampling,
there’s a noticeable decline in the total number of
samples, indicating that the newly added reasoning
chains contribute to the final answer’s determina-
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Figure 6: Correlation of sample volume to dynamic sampling iterations in AQuA and GSM8K datasets.
The x-axis represents the sample count, while the y-axis indicates the rounds of sampling. Color variations
denote the range of answers identified in the global-evaluation phase across different data samples, with
”20 Raw” indicating the initial distribution of answer counts.
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Figure 7: Performance of AoR using different
LLMs for both backbones and evaluators when
solving AQuA problems.
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Figure 8: Proportion of samples lead to incorrect
final prediction that contain at least one correct
candidate answer.

tion. Compared to the AQuA dataset, which uses
options as answers, the open-ended nature of the
GSM8K dataset results in a broader distribution of
initial answers. By observing the distribution of an-
swers in the “20Raw” and “20” phases, it is evident
that in the local-scoring phase, after filtering out a
substantial number of low-quality reasoning chains,
significantly reduces the number of candidate an-
swers, enabling a more accurate final answer se-
lection in the global evaluation.

5.3. Discussion
In this section, we delve into the advantages of
the AoR method, dissecting the reasons behind its
performance improvements from four perspectives.

AoR on Various LLMs. Figure 9 depicts the en-
hanced performance of AoR when applied to four
different LLMs. In comparison with SC and CC,
AoR achieves an average improvement of 8.1%
and 7.6%. Our evaluation extends to two prominent
open-source models: the dense model LLaMA-
2-70B-Chat and the Mixture-of-Experts (MoE)
model Mixtral-8x7B. AoR achieves consistent
improvements across various LLM architectures.

Notably, with the LLaMA-2 model, the improve-
ment is notably significant, attaining a 16.6% in-
crease compared to SC. Moreover, we conduct an
analysis of the evaluation models and obverse that
integrating GPT-4 into the local-scoring and global-
evaluation phases results in performance improve-
ments of 2.4%, 3.6% and 5.1% on the Claude-2,
and LLaMA-2, and Mistral models. This high-
lights the potential for a superior evaluation model
to enhance the effectiveness of AoR.

Analysis of Incorrect Samples. In Section 1,
we analyze the erroneous samples from the SC
method, revealing that a majority of these samples
did not arise from LLM’s inability to produce the
correct answer. Instead, the majority voting mech-
anism failed to identify the right answer. Adopting
a similar analytical approach for AoR’s incorrect
samples, as depicted in Figure 8, we discover a
significant reduction in the proportion of samples
where AoR failed to select the correct answer. This
underscores AoR’s efficiency in leveraging the in-
formation from reasoning chains to boost the like-
lihood of selecting the correct answer. Moreover,
this proportion can be further reduced by employing
a more discerning evaluator.
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Figure 10: Evaluation of demonstration selec-
tions during the local-scoring phase of dynamic
sampling. “Best” and “Worst” denote the reason-
ing chains with the highest and lowest scores,
respectively, among those yielding identical an-
swers.

Cost and Performance Analysis. A potential
concern revolves around the additional overhead in-
troduced by AoR’s evaluation and whether dynamic
sampling can effectively reduce reasoning costs. In
Figure 9, we analyze the cost and performance of
AoR and SC on the AQuA dataset using GPT-3.5.
Notably, CoT-AoR (20,40) not only surpasses CoT-
SC(40) with a 7.2% boost in performance but also
achieves a significant 20% reduction in overhead.
Furthermore, CoT-AoR (20, 40) outperforms even
CoT-SC(100), indicating that compared to major-
ity voting, AoR’s evaluation of reasoning chains is
a more efficient method for answer selection. It’s
noteworthy that the SC method exhibits saturation:
there is no significant performance improvement
when the number of reasoning chains exceeds 60.
In contrast, AoR continues to show noticeable per-
formance enhancements at sampling chains of 40
and 60. This suggests that AoR possesses a su-
perior performance ceiling in comparison to SC
approaches, underlining its cost-effectiveness and
higher potential for accuracy improvement.

Analysis of Evaluation Benchmarks. In the
local-scoring phase of dynamic sampling, evalu-
ated reasoning chains are leveraged to score newly
added chains. Figure 10 assesses the impact of
using no demonstrations versus various demonstra-
tion strategies on the final answer across different
datasets. Strategies include selecting no reason-
ing chains, two random chains, the two highest,
the two lowest, and a combination of the highest
and lowest scoring chains for demonstration. While
this primarily affects dynamically sampled cases,
demonstrations consistently enhance model per-
formance across datasets. This improvement is
likely because demonstrations provide the model
with insight into the current score distribution, en-
abling more informed scoring. Notably, employing

the highest and lowest scoring chains as demon-
strations achieves the best performance, likely be-
cause they offer a comprehensive view of the score
range, aiding the model in more accurately scoring
new chains. However, using the two lowest scoring
chains as examples tends to bias the model to-
wards lower scores, often preventing these new
chains from advancing to the global evaluation
phase and thus impairing performance. Conse-
quently, we utilize both the best and worst reason-
ing chains within the same answer as evaluation
benchmarks mentioned in Section 4.2.

6. Conclusion

In this study, we introduce AoR (Aggregation of Rea-
soning), a pioneering framework that enhances the
ensemble methods for reasoning chains by metic-
ulously evaluating and aggregating the reasoning
processes. AoR employs a two-phase evaluation
approach, assessing reasoning chains from mul-
tiple perspectives, ensuring the evaluation’s valid-
ity and comprehensiveness. Notably, AoR allows
for the dynamic adjustment of the number of rea-
soning chains according to the complexity of the
task, substantially minimizing unnecessary compu-
tational overhead. Experimental results illustrate
that AoR significantly improves the reasoning abil-
ities of LLMs, outperforming several established
baselines. Furthermore, our in-depth analysis in-
dicates that AoR’s adaptability extends across var-
ious LLM architectures, with potential for further
enhancements through integrating a more robust
evaluator and an increased volume of reasoning
chains. Compared to the existing ensemble meth-
ods, AoR not only presents benefits in terms of
performance and efficiency but also effectively miti-
gates the risk of accurate answers being overshad-
owed by more frequent but incorrect predictions.
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Ethical Statement

In developing the AoR framework, our team has
prioritized ethical considerations to ensure our work
respects privacy and promotes fairness. Specifi-
cally, the AoR methodology does not involve the
collection or utilization of any personally identifi-
able information. The design of our experimen-
tal prompts has been meticulously crafted to pre-
vent any form of discrimination against individuals
or groups, thereby safeguarding against privacy
breaches and potential socio-ethical implications.
Furthermore, we have conducted an in-depth re-
view of the licenses for all datasets employed in
our research, as outlined in Appendix A.1.

Limitations

Manual Demonstration Construction for Lo-
cal-Scoring and Global-Evaluation. Our ap-
proach relies on manually crafted demonstrations
to guide the model in generating outputs in the de-
sired format for extracting scores. This method’s
efficacy is contingent on the model’s ability to ac-
curately interpret these demonstrations and pro-
duce outputs as anticipated. In instances where
the model fails to comprehend the demonstrations
adequately or deviates from the expected output
format, the performance of AoR becomes unstable,
potentially hindering the completion of its process.
Nonetheless, we are optimistic that the evolution of
LLMs will bolster their comprehension (Cheng et al.,
2024; Naveed et al., 2024) and output formatting
capabilities (Liang et al., 2024; Dekoninck et al.,
2024), thereby mitigating this issue over time.

Model Context Window Size Limitations. The
limitations imposed by the model’s context window
size restrict the number of examples that can be
processed simultaneously. At present, models face
challenges in handling an extensive array of rea-
soning chains, necessitating a balance between
performance assessment and computational ex-
penditure. While smaller parameter models can
navigate through the AoR process, their ability is
often limited to evaluating single reasoning chains,
thereby escalating the computational demands of
AoR. However, we believe this to be a temporary
constraint. Recent models like Mistral (Jiang
et al., 2023) and InternLM (Team, 2023) have
demonstrated evaluation capacities comparable to
those of GPT with appropriate prompting. More-
over, we are encouraged by recent advancements
that have significantly expanded the models’ con-
text windows (Xiao et al., 2023; Liu et al., 2024).
As long-context models continue to evolve (Ratner
et al., 2023; Wang et al., 2023c), we anticipate that
AoR will be able to conduct evaluations on larger

batches of reasoning chains, substantially reducing
computational costs and enhancing efficiency.
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A. Appendices

A.1. Dataset Statistics
In our experiment, we meticulously select 14
datasets encompassing mathematical reasoning,
commonsense reasoning, and symbolic reasoning
domains. The specifics and statistical details of
each dataset, including the data source, task type,
answer type, number of prompt samples, total test
samples, and dataset licenses, are comprehen-
sively outlined in Table 3.

A.2. Implementation Details
Prompting Exemplars. AoR utilizes the Wei et al.
(2022b) and Fu et al. (2023b) provided prompt ex-
emplars to sample reasoning chains, with the num-
ber of prompt exemplars for each dataset detailed
in Table 3. In the local scoring phase, given that the
answers are identical, our evaluation focuses more
on the soundness of the reasoning process and the
correctness of the reasoning method. Specifically,
we require the LLM to evaluate reasoning chains
that share the same answer from four perspectives
as follows:

• Logical Consistency (3 points): The coher-
ence and soundness of the reasoning are eval-
uated to ensure logical progression.

• Appropriateness of Method (3 points): The
suitability of the used method is verified, em-
phasizing that the approach is not unnecessar-
ily complex.

• Completeness and Clarity (2 points): All
necessary steps must be clearly shown without
omission, ensuring easy follow-through.

• Application of Knowledge (2 points): The
correct and relevant application of formulas,
theorems, or facts is assessed.

The global-evaluation phase prioritizes the cor-
rectness of the method and the consistency be-
tween reasoning steps and the answer, enabling
the model to filter out the correct reasoning chain
from those with differing answers. Specifically, we
require the LLM to evaluate reasoning chains with
different answers from the following four perspec-
tives:

• Validity of Approach (3 points): The em-
ployed method effectively addresses the prob-
lem, confirming the appropriateness of the ap-
proach.

• Consistency of Steps and Answer (3
points): It is ensured that all steps are not
only correct but also consistent with the final
answer.

• Completeness and Clarity (2 points): Es-
sential steps are delineated and presented un-
ambiguously, maintaining clarity throughout.

• Application of Knowledge (2 points): The
precision and appropriateness in the use of
formulas, theorems, or facts are verified.

In line with the findings of Gao (2023), providing as
much detailed information as possible in the input
facilitates the generation of the desired outcome.
Thus, additional statistical information, such as the
number of reasoning chains within a bucket and
the number of candidate answers, is incorporated
into the prompt. For the complete prompt, please
refer to our Github repository.

Evaluation. We employ accuracy as the metric to
assess performance across tasks involving mathe-
matical reasoning, commonsense reasoning, and
symbolic reasoning. For datasets where the an-
swer is numerical, such as GSM8K, we utilize regu-
lar expressions to extract the answer following the
phrase “the answer is” and conduct a numerical
comparison with the provided answer. For datasets
where the answers are choices, such as AQuA,
we compare the extracted choice with the correct
option to verify consistency. In cases where the
dataset answers are binary (yes/no), such as Strat-
egyQA, we evaluate whether the extracted result
aligns with the provided label. If a reasoning chain
fails to correctly extract an answer, it is excluded
from further consideration. Similar to the approach
by Xie et al. (2023), we fine-tune task-specific ver-
ifiers to assign weights to the sampled reasoning
chains to implement the DiVeRSe (Li et al., 2023b).

Computation Cost. Computational costs are
quantified based on OpenAI’s official pricing
for the GPT-3.5-Turbo-0301 API, calcu-
lated as follows: Input Tokens × 0.0015/1000 +
Output Tokens × 0.002/1000.

Our primary experiments, as outlined in Sec-
tion 5.2 were conducted from July to September
2023. Discussion in Section 5.3 and the Ablation
Study in Appendix A.3 for both commercial and
open-source models were completed between Oc-
tober and December 2023.

Due to rate limits and budget constraints, we set
an upper limit on our sample size for each analysis.
Consequently, our analysis is based on a maximum
of 500 samples per run.

A.3. Ablation Study
To facilitate the intricate reasoning chain aggrega-
tion process in AoR, we establish essential hyper-
parameters during the local scoring and global eval-
uation phases, such as the representative count

https://github.com/yinzhangyue/AoR
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Dataset Reasoning Task Answer Type # Prompts # Test License
GSM8K (Cobbe et al., 2021) Arithmetic Number 8 1,319 MIT License
MultiArith (Roy and Roth, 2015) Arithmetic Number 8 600 Unspecified
SingleEQ (Koncel-Kedziorski et al., 2016) Arithmetic Number 8 508 Unspecified
AddSub (Hosseini et al., 2014) Arithmetic Number 8 395 Unspecified
SVAMP (Patel et al., 2021) Arithmetic Number 8 1,000 MIT License
AQUA (Ling et al., 2017) Arithmetic Multi-choice 4 254 Apache-2.0
StrategyQA (Geva et al., 2021) Commonsense T/F 6 2,290 MIT license
CommonsenseQA Talmor et al., 2019 Commonsense Multi-choice 7 1,221 Unspecified
BoolQ (Clark et al., 2019) Commonsense T/F 4 3,270 CC BY-SA 3.0
ARC-C (Clark et al., 2018) Commonsense Multi-choice 4 299 CC BY-SA 4.0
Date Understanding (Suzgun et al., 2023) Symbolic Multi-choice 3 250 MIT license
Penguins in a Table (Suzgun et al., 2023) Symbolic Multi-choice 3 146 MIT license
Colored Objects (Suzgun et al., 2023) Symbolic Multi-choice 3 250 MIT license
Object Counting (Suzgun et al., 2023) Symbolic Multi-choice 3 250 MIT license

Table 3: Overview of datasets utilized in our experiments. # Prompts indicates the number of Chain-of-
Thought (CoT) (Wei et al., 2022b) prompting exemplars used for few-shot prompting. # Test denotes the
total count of test samples in each dataset.
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Figure 11: Ablation on representative count k
on various reasoning datasets.
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Figure 12: Distribution of evaluation scores in
the local-scoring phase on the GSM8K dataset.

k, score threshold ϵ, termination threshold θ, and
batch size b. Below, we conduct ablation experi-
ments using the GPT-3.5 model to examine the
impact of each hyperparameter on the overall per-
formance.

Analysis of Representative Count k. We ana-
lyze four datasets to investigate how the represen-
tative count k impacts accuracy, as shown in Fig-
ure 11. When k = 1, only the highest-scoring rea-
soning chain from each bucket is evaluated, which
puts rigorous demands on the scoring model and
can result in fluctuating outcomes. Selecting more
representatives from each bucket enhances the
comprehensiveness and stability of the evaluation,
harmonizing the quality and diversity of reasoning
chains. However, our findings suggest that increas-
ing the number of representatives when k > 3 does
not lead to significant performance gains but does
incur additional computational overhead. As a re-
sult, we chose k = 3 as it strikes an optimal balance
between performance and computational cost.

Analysis of Score Threshold ϵ. Figure 12 illus-
trates the score distribution during the local-scoring

phase on the GSM8K dataset, where we observe
a normal distribution of scores. The model sel-
dom assigns very low scores (0-2 points). A lower
score threshold ϵ leads to an excessive number of
reasoning chains proceeding to global evaluation;
for instance, setting ϵ to 3 results in over 95% of
reasoning chains moving to global evaluation. Con-
versely, a higher ϵ enforces stricter filtering; set-
ting ϵ to 8 results in fewer than 10% of reasoning
chains moving forward to global evaluation, lead-
ing to many samples having only one reasoning
chain in the global-evaluation phase. Some sam-
ples might even finish dynamic sampling without
any reasoning chains proceeding to global evalua-
tion. Therefore, we determine the score threshold
ϵ to be 6, which ensures a balance by maintain-
ing high-quality reasoning chains and allowing a
sufficient number to undergo global evaluation.

Analysis of Termination Threshold θ. Figure 13
demonstrates the impact of various termination
thresholds (θ) on accuracy and computational cost.
A threshold of θ = 0 implies that we select the
answer associated with the highest-scoring rea-
soning chain as the final answer without sampling

https://github.com/openai/grade-school-math
https://github.com/wangxr14/Algebraic-Word-Problem-Solver
https://gitlab.cs.washington.edu/ALGES/TACL2015
https://github.com/wangxr14/Algebraic-Word-Problem-Solver
https://github.com/arkilpatel/SVAMP
https://github.com/deepmind/AQuA
https://github.com/eladsegal/strategyqa
https://www.tau-nlp.sites.tau.ac.il/commonsenseqa
https://github.com/google-research-datasets/boolean-questions
https://github.com/allenai/arc-solvers
https://github.com/suzgunmirac/BIG-Bench-Hard
https://github.com/suzgunmirac/BIG-Bench-Hard
https://github.com/suzgunmirac/BIG-Bench-Hard
https://github.com/suzgunmirac/BIG-Bench-Hard
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Figure 13: The effect of varying termination thresholds θ on accuracy and computational cost for the
GSM8K and CSQA datasets. Line graphs illustrate accuracy, while bar graphs depict computational costs.

0

2

4

6

8

10

Co
st

 ($
)

1 2 3 4 5 6 7 8
90.6

90.8

91.0

91.2

91.4

91.6

91.8

Ac
cu

ra
cy

 (%
)

Accuracy

(a) GSM8K.

0

1

2

3

4

Co
st

 ($
)

1 2 3 4 5 6 7 8
82

83

84

85

86

Ac
cu

ra
cy

 (%
)

Accuracy

(b) CSQA.

Figure 14: The impact of batch size b variations on accuracy and computational cost on the GSM8K and
CSQA datasets. Line graphs represent accuracy, while bar charts indicate computational costs.

additional reasoning chains. While this approach
incurs lower costs, it results in the poorest perfor-
mance on both the GSM8K and AQuA datasets.
This suggests that relying solely on the model’s
confidence in the highest-scoring reasoning chain
does not guarantee its correctness. As the thresh-
old increases, we observe a gradual improvement
in accuracy. This indicates that imposing additional
constraints and introducing new reasoning chains
when necessary can aid the model in selecting the
correct reasoning process. However, performance
tends to saturate beyond a threshold of 2. We note
that at a threshold of 4, more than 15% of samples
in the GSM8K dataset fail to produce a final answer
even upon reaching the maximum number of sam-
pled reasoning chains. Furthermore, excessively
high thresholds also lead to significant increases in
computational costs. Therefore, we establish the
termination threshold θ at 2, achieving an optimal
balance between the accuracy of the outputs and
the sampling costs of reasoning chains.

Analysis of Batch Size b. Figure 14 illustrates
the impact of varying batch sizes (b) on accuracy
and computational costs. During our analysis, sam-
ples exceeding the context window are excluded.
We observe consistent performance improvements
on both the GSM8K and AQuA datasets when
evaluating multiple samples simultaneously, as op-
posed to assessing each sample individually. One

possible explanation is that evaluating samples
together allows the LLM to compare differences
across reasoning chains, thereby providing more
reliable scores. As the batch size increases, ac-
curacy improves gradually until it reaches a batch
size of 6, beyond which accuracy begins to fluc-
tuate and even decline. At this point, the model’s
output becomes unstable, with some samples ex-
ceeding the model’s context window, resulting in
failed evaluations. Concurrently, we noted a grad-
ual decrease in computational costs with increasing
batch size, attributed to the reduced overhead of
repetitive prompts. However, this trend starts to
slow down when b > 2. Therefore, we selected a
batch size of b = 5, which not only achieves optimal
accuracy and lower computational costs but also
avoids evaluation failures due to samples exceed-
ing the model’s context window.
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