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Abstract
Image-to-text generation involves automatic generation of descriptive text from images, with this paper focusing on
generation of reports from X-ray images. However, traditional approaches often exhibit a semantic gap between
visual and textual information. In this paper, we propose a multi-task learning framework to leverage both visual and
non-imaging data for generating radiology reports. Along with chest X-ray images, 10 additional features comprising
numeric, binary, categorical, and text data were incorporated to create a unified representation. The model was
trained to generate text, predict the degree of patient severity, and identify medical findings. Multi-task learning,
especially with text generation prioritisation, improved performance over single-task baselines across language
generation metrics. The framework also mitigated overfitting in auxiliary tasks compared to single-task models.
Qualitative analysis shows more coherent narratives and more accurate identification of findings, though some
repetition and disjointed phrasing remain. This study demonstrates the benefits of multi-modal, multi-task learning for

image-to-text generation applications.
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1. Introduction

With the development of deep learning techniques,
the fields of computer vision and natural language
processing have started to converge, as both im-
ages and texts can be represented via compatible
embeddings. This convergence has led to success
in the challenging cross-modal task of image-to-
text generation, which involves automatically gen-
erating descriptive text from images, and it has
numerous real-world applications, such as image
captioning (Stefanini et al., 2022), medical report
generation Ramirez-Alonso et al., 2022), and as-
sisting the visually impaired (SS et al., 2023).

Traditional approaches to image-to-text genera-
tion relied on independent models for image under-
standing and natural language generation, which
often led to a semantic gap between the visual and
textual information due to the lack of synergy be-
tween the two modalities. The use of multi-modal
data has provided a way to improve the coherence
and accuracy of generated text for image-to-text
tasks. Additionally, multi-task learning, where a
single model is trained to perform multiple related
tasks simultaneously, has played an important role
in harnessing the full potential of multi-modal data
in image-to-text generation (Bayoudh et al., 2021).

In this work, we explore a novel approach for
image-to-text generation using multi-modal data
through multi-task learning. Specifically, we pro-
pose a framework that is trained on medical data to
not only generate radiology reports describing the
image content but also predict the patient’s severity
level (the criticality of a patient’s medical condition)
and indicate the presence or absence of specific
findings from the image.

To fully leverage the multi-modal learning sce-
nario, we incorporated a set of ten supplementary
features along with the visual data. These addi-
tional features encompass a diverse range of data
types, including numeric, binary, categorical, and
textual information. These non-imaging data, both
clinical and non-clinical in nature, were obtained
from patient health records, thereby enabling the
creation of a unified data representation. This uni-
fied representation was fed into cross-attention lay-
ers along with the visual features to generate at-
tended visual features for each task-specific de-
coder. The proposed approach generates medical
reports that are detailed, accurate, and useful for
real-life applications. We evaluated the model on a
large dataset of chest X-ray images and radiology
reports, outperforming the single-task approach on
quantitative natural language generation evaluation
metrics.

This paper is structured as follows. Section 2 re-
views previous related research and approaches in
this field. Section 3 describes the data used in this
study and outlines the methods proposed. Section
4 explains how the methods were implemented and
the model architecture. Section 5 presents the re-
sults, both quantitative and qualitative and provides
a discussion. Finally, Section 6 summarises the
main conclusions drawn from this work.

2. Related Work

Multi-task learning (MTL) has become increas-
ingly popular in natural language processing (NLP)
because leveraging the commonalities and differ-
ences between related tasks improves overall per-
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formance (Zhang and Yang, 2021). Recent work on
MTL for NLP tasks has been categorised into two
broad frameworks: joint training, where all tasks are
trained concurrently, and multi-step training, where
trains the tasks in a sequence of steps (Zhang et al.,
2022).

This paper focuses on joint training for text gen-
eration, an area where MTL has been shown to be
beneficial. By training text generation models on
multiple objectives simultaneously, performance on
downstream tasks like summarisation and transla-
tion can be improved (Zhang et al., 2019: Su et al.,
2021).

In this context, Tang et al. (2017) studied the prob-
lem of joint question answering (QA) and question
generation (QG) and proposed a training frame-
work that trains the models of QA and QG simulta-
neously. They implemented a QG model based on
sequence-to-sequence learning and a QA model
based on recurrent neural networks. Guo et al.
(2018) proposed a multi-task learning approach for
abstractive summarisation, using auxiliary tasks
of question generation and entailment generation.
They introduced novel multi-task architectures with
high-level layer-specific sharing across multiple en-
coder and decoder layers of the three tasks.

Sachan and Xing (2018) proposed a self-training
method for jointly learning to ask and answer ques-
tions, leveraging unlabeled text along with labelled
question-answer pairs for learning. They evalu-
ated their approach on four benchmark datasets
and showed significant improvements over estab-
lished baselines. Zhang et al. (2019) proposed
DIALOGPT, a large-scale generative pre-training
approach for conversational response generation.
They use a transformer-based architecture and pre-
train the model on a large corpus of conversational
data. They also propose a novel training objective
that encourages the model to generate diverse and
informative responses. Su et al. (2021) proposed
a multi-task pre-training approach for plug-and-
play task-oriented dialogue systems. They used
a transformer-based architecture and pre-trained
the model on multiple related tasks to improve the
performance of each task.

While multi-task learning has demonstrated its
potential to enhance text generation performance,
effectively training a neural network to produce
coherent narrative text from diverse multi-modal
and cross-modal inputs remains a complex and
challenging task. Cross-modal learning, which in-
volves models understanding connections across
modalities, presents inherent difficulties. Nonethe-
less, multi-task learning can mitigate some of
these challenges in cross-modal text generation
by enabling models to jointly learn representations
across modalities while optimising multiple objec-
tives.

More specifically, Li et al. (2020) introduced a
new learning approach known as Oscar (Object-
Semantics Aligned Pre-training) for Cross-modal
tasks involving vision and language. This method
capitalises on the insight that prominent objects
in images can be accurately identified and are fre-
quently referenced in associated text. Oscar em-
ploys object tags detected within images as ref-
erence points, facilitating the alignment learning
process between images and text. More recently,
Sharma et al. (2023) introduced a novel task called
EXCLAIM, which generates explanations for visual
semantic role labelling in memes. They also pro-
posed a multi-modal, multi-task learning framework
called LUMEN, which jointly learns to predict the
correct semantic roles and generate suitable natu-
ral language explanations.

In the medical domain, image-to-narrative lan-
guage generation is a more challenging task due
to the need for more comprehensive paragraph
annotations, the subtlety of distinctions in medical
images, and the requirement for additional con-
textual information to analyse and interpret med-
ical images, unlike the relatively straightforward
nature of natural images. While multi-modal ap-
proaches have proven valuable in tackling some of
these challenges in various vision language tasks
such as visual question answering (Eslami et al.,
2021;Wang et al., 20223a; Liu et al., 2023) or medi-
cal report generation (Yang et al., 2022;Wang et al.,
2022b;Wu et al., 2023;Aksoy et al., 2023), there
is a notable gap in the exploration of multi-task
learning techniques for radiology report generation
using diverse multi-modal data. Applying multi-task
learning could potentially help models learn joint
representations across text, images, and other clin-
ical data to improve coherence and accuracy when
generating narratives from multi-modal inputs in
the medical domain.

3. Methodology

3.1. Problem Formulation

The approach is designed to concurrently perform
three tasks: Text Generation, Ordinal Classifica-
tion, and Multi-Label Classification. These tasks
involve processing various inputs and producing
meaningful outputs while optimising for different
loss functions. By integrating them within a single
framework, the overarching objective is to leverage
information and features from the other tasks, ulti-
mately resulting in more precise and context-aware
text generation capabilities.

Given an image I, unified additional features F,
ground truth radiology report text sequences Y,
ground truth ordinal acuity levels T' (where T is an
integer value between 1 to 5 indicating the sever-
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ity of the medical finding), and ground truth labels
for findings Z (where Z are multi-label categorical
values with 5 possible labels indicating the pres-
ence or absence of specific medical findings), the
objective is to learn an encoder-decoder model to
minimise the loss for the three tasks:

Image-to-text Generation (ITG), generates a
radiology report Y that maximises the probability of
the ground truth text sequence Y given the image
I and features F'. The loss is defined as the cross-
entropy loss between Y and Y.

Ordinal Classification (OC) predicts ordinal
acuity level 7' given I and F. The loss is defined
as the binary cross-entropy between 7" and 7.

Multi-Label Classification (ML) predicts multi-
ple labels for findings Z given I and F. The loss is
the binary cross-entropy between Z and Z.
Overall Loss Function, denoted as L, is com-
posed of three task-specific loss components:

L=a Lg(Y,Y)+ B Loc(T,T) +~-Lw.(Z, Z)
Where:

Lira(Y,Y) is the loss function for ITG.
Loc(T, T) is the loss function for OC.
Z

LwL(Z, Z) is the loss function for ML.

Here, «, 38, and v are hyperparameters that con-
trol the relative weighting of these losses. During
the experiments to determine the optimal values for
the loss hyperparameters, we explored various ap-
proaches. Prioritising « in the context of the main
task yielded better results. Therefore, with ITG hav-
ing the highest weight, followed by OC, and then
ML, we set o > 3 > ~. This approach emphasises
the prioritisation of the ITG task, followed by OC
and ML. It leverages multi-task learning to enhance
performance primarily in the main task of report
generation.

During the training process, the model’s encoder-
decoder parameters 6 are optimised by minimising
the overall loss L over the training dataset using
the following objective:

rrbin L) = mein (a . L|Te,(}>, Y;0)
+ B+ Loc(T, T;6)
- Lw(Z,2:0))

3.2. Feature Extraction and
Pre-processing

This section outlines the preparation and encoding
of various data modalities employed in this study.
Every image was resized and then normalised to
ensure uniform intensity levels. Subsequently, a

pre-trained model extracted visual features from
the images. The resulting visual feature vector was
then input into a transformer-based encoder to gain
adeeper understanding of the recognised elements
in the image.

Numerical variables were initially preprocessed
to remove potential outliers based on domain knowl-
edge and clinical perspectives. For instance, data
points with physiologically implausible values (e.g.
a patient temperature of 67°C, which substantially
exceeds normal human ranges) were identified as
probable errors and excluded. The remaining data
for each numerical feature was then standardised
to a 0to 1 range by rescaling based on the minimum
and maximum observed values.

Binary variables were converted to numerical rep-

resentations. Integer values were assigned to each
group in categorical data, one-hot encoded, and
reshaped into a 2D array for input to the encoder.
Text-based variables were pre-processed by con-
verting to lowercase, removing unnecessary punc-
tuation using regular expressions, and condensing
consecutive periods into single spaces. Double pe-
riods were replaced with single spaces to maintain
consistent text formatting. Additional standardisa-
tion involved replacing shorthand phrases or abbre-
viations with their full-text equivalents, correcting
errors, and addressing inconsistencies in plurali-
sation. This pre-processing pipeline standardised
various data types for input into the model.
Lastly, acuity levels were encoded using cumula-
tive one-hot representation where ordinal levels
are mapped to binary vectors. Each vector has a
length equal to the number of ordinal levels minus
one. The presence of a’1’ in a specific position
within the binary vector indicates the corresponding
ordinal level. This encoding preserves the ordinal
relationships between levels.

3.3. Cross-modal MTL Network

Our framework, as illustrated in Figure 1, comprises
two primary blocks: shared layers that are common
to all tasks and task-specific layers tailored to each
individual task. Additionally, within this framework,
there are 3 sub-blocks, namely the visual block,
unified data block and cross-attention block.

The unified data block first encodes all numerical
data into a single vector via the encoding process
described in Section 3.2, then passes this through
a dense layer to obtain a condensed representation
of the integer outputs. Categorical data is one-hot
encoded and passed through a separate dense
layer to obtain categorical embeddings. Text-based
data from each modality is passed through distinct
embedding layers, with the resulting embeddings
further processed by dense layers to obtain the
final text data representations.
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Figure 1: An overall framework of our proposed Cross-modal multi-task learning network

The visual block comprises two encoding stages.
Initially, the pre-trained EfficientNet model, trained
on ImageNet, functions as the Convolutional Neu-
ral Network (CNN) encoder for extracting the fea-
tures from the image, denoted as ’x,’ into L vectors.
Each of these vectors is a D-dimensional represen-
tation corresponding to the features extracted from
distinct spatial locations within the image. Subse-
quently, these visual vectors are utilised in two con-
secutive multi-head self-attention blocks to obtain a
hybrid representation. The first self-attention block
attends exclusively to the image features, while
the cross-attention block focuses on the unified
data representation, utilising the image features
as queries. This allows the network to contextu-
ally focus on relevant aspects of the unified data
conditioned on the image content.

The ordinal classification (OC) and the multi-label
classification (MLC) decoders take the encoder
outputs and normalise them. The normalised out-
puts are subsequently input to a dense layer with
a sigmoid activation function to derive probabili-
ties. These probabilities are then averaged across
the sequence dimension, resulting in scalar predic-
tions.

The text generator decoder employs causal
masking, which is combined with padding masks.
It comprises two consecutive multi-head self-
attention layers. The first layer attends exclusively
to the target sequence, while the second layer at-

tends to the encoder outputs using the decoder in-
puts as queries. The attended representations are
processed through a two-layer positionwise feed-
forward network. Finally, a linear layer produces
predictions, which are used as inputs for the next
time step.

4. Experimental Settings

4.1. Dataset

The dataset used in this research was created by
combining three public databases - MIMIC-CXR,
MIMIC-IV, and MIMIC-IV-ED. MIMIC-CXR contains
over 377,000 chest X-ray images from multiple
views and associated de-identified radiology re-
ports for 63,473 patients. MIMIC-IV provides de-
identified patient information like demographics for
individuals admitted to Beth Israel Deaconess Med-
ical Center (BIDMC). MIMIC-IV-ED contains de-
tailed clinical data for emergency department visits
at BIDMC from 2011-2019. Each database uses
unique subject identifiers for patients. However,
linking records across databases by patient ID was
ineffective since patients may have multiple vis-
its. Moreover, to generate accurate reports, non-
imaging data must align time-wise with the chest
x-ray. Therefore, we linked MIMIC-CXR and MIMIC-
IV-ED records for patients in the ED during report
generation. After data cleaning, the final dataset
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had 65,813 entries with 10 features including oxy-
gen saturation, heart rate, respiratory rate, systolic
blood pressure, diastolic blood pressure, tempera-
ture, patient’s chief complaint, ICD (diagnosis) title,
gender and ethnicity.

Challenges with this dataset include skewed dis-
tribution toward normal cases and duplicate reports
for different patients. To address this, we selected
a balanced subset of 10,000 samples - 7,000 for
training, 2,000 for validation, and 1,000 for the test
set. Since there are no comparable public datasets
with similar non-imaging data, we used this dataset
to develop and evaluate our approach.

4.2. Evaluation Metrics

Natural Language Generation Metrics

To evaluate the quality of the generated reports,
several automatic evaluation metrics were com-
puted to compare the generated text to the refer-
ence reports. The first set of metrics used was
the BLEU-1 to BLEU-4 scores, which assessed n-
gram precision for unigrams up to 4 grams. These
scores measured the local word-level similarity
between the generated and reference texts, with
higher scores indicating greater similarity. The sec-
ond metric used was the ROUGE-L score, which
measured the longest common subsequence and
assessed the quality of the generated text in terms
of recall and precision.

While the metrics above are traditionally used
in radiology report generation, we have also eval-
uated semantic similarity using BERTScore and
Bio-ClinicalBERT Score (Equation 1). These met-
rics used contextual embeddings from BERT and
Bio-ClinicalBERT models to provide a more nu-
anced assessment of meaning compared to strict
n-gram matching. The BERT-based metrics were
able to capture whether the generated reports con-
veyed clinically coherent descriptions despite differ-
ing word usage compared to the reference. These
automated evaluation metrics quantified linguistic
similarity at word level, sentence level, and seman-
tic meaning levels.

1
BScore = N
(1)
Where: N is the number of sentence pairs in the
evaluated dataset y; is the i" reference sentence
7; is the i generated sentence F'1(y;, ;) is the
F1 score between y; and ¢; using both BERT and
ClinicaBERT embeddings separately Suff(y;, 9;) is
the sufficiency score between y; and g; Flu(y;, 9;)
is the fluency score between y; and ;

N
> (FL(yi, §i)+Suff (v, §:) +Flu(yi, §:))
=1

Classification Metrics

We utilised several metrics to evaluate model per-
formance on multi-label and ordinal classification
tasks. For multi-label classification, the metrics we
employed included Precision, Recall, F1 Score,
Hamming Loss, and Exact Match Ratio. Precision
and Recall evaluated the accuracy of predicting
positive labels and capturing all true positives
respectively. F1 Score provided the balance
between Precision and Recall. Hamming Loss
quantified label prediction errors, and Exact Match
Ratio measured how often the model correctly
predicted all labels for a given instance.

For ordinal classification, our metrics consisted of
Ordinal Classification Accuracy, Mean Absolute
Error, Mean Squared Error, and the Accuracy-
Correlation Hybrid Metric. Ordinal Classification
Accuracy measured the accuracy by computing the
total number of correct predictions divided by the
total number of predictions. Mean Absolute Error
and Mean Squared Error quantified the average
magnitude of errors in predicted ordinal values.
The Accuracy-Correlation Hybrid Metric combined
aspects of accuracy and correlation to evaluate
the preservation of the ordinal relationship.

4.3. Experimental Setup

The cross-modal multi-task learning model was
implemented in TensorFlow 2.3.0 and Keras us-
ing a Transformer architecture. Transformer layers
implemented with 3 attention heads, and 256 di-
mensional feedforward layers.

The model was trained on 7,000 data using an
Adam optimiser with a learning rate warmup over
10% of steps up to 3e-5 and a batch size of 32.
The validation, and test sets consist of 2,000, and
1,000 data, respectively. Training continued for 100
epochs with early stopping monitoring the validation
loss with patience=10.

For parity in model optimisation, we maintained
consistency in the choice of hyperparameters (e.g.
learning rate, batch size, etc.) when training each
of the assessed models. All models were trained
on NVIDIA Tesla A100 GPUs with 40GB memory.

5. Results and Discussion

We evaluated the performance of our proposed
multi-task learning (MTL) model on three tasks:
text generation, ordinal classification, and multi-
label classification. The MTL model was trained
in two configurations - with equal weighting across
tasks (MTL-EQ) and with task prioritisation for
the text generation task (MTL-TP). We compared
these MTL models to single-task learning baselines
(STL).
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Method  B_1 B2 B3 B4 BS, Bio-CBS;, RL
STL 0.3326 0.2159 0.1488 0.0950 0.2056  0.7857  0.3096
MTL_EQ 0.3352 0.2229 0.1570 0.0983 0.1958  0.7883  0.3235
MTL_TP 0.3424 0.2295 0.1616 0.1035 0.2065 0.7898  0.3366

Table 1: Performance comparison of an image-to-text generator using different training approaches.
B n for BLEU-n, R_L for ROUGE-L, BSx; for BERT Score F1Score and CBSy; for Bio-ClinicalBERT
Score F1Score. STL denotes Single Task Learning, MTL-TP represents Multi-Task Learning with Task
Prioritisation for text generation, and MTL-EQ indicates Multi-Task Learning with equal task weights for
each task

B_1 B 2 B 3 B 4 BS,,
p-value 0.00117 0.00006 0.00035 0.02569 0.83824

Bio-CBS;;
0.00611

RL
0.00000

Table 2: P-values from pairwise t-test between STL and MTL_TP approaches (rounded to 5 decimal

places)

Method Precision Recall F1Score Hamming Loss Exact Match Ratio
STL 0.7520  0.6552  0.7005 0.1466 0.8534
MTL_EQ  0.6502  0.6641 0.6562 0.1618 0.8382
MTL_TP 0.6603 0.6775  0.6694 0.1598 0.8402

Table 3: Comparing performance of the multi-label classifier in Single-Task, Task-Prioritised Multi-Task

and Equal-Weight Multi-Task Learning

Method Accuracy MAE ACC+Corr
STL 0.8790 0.1210 0.8197
MTL_EQ 0.8553 0.1447 0.7907
MTL_TP  0.8640 0.1360 0.8005

Table 4: Comparing performance of the ordinal
classifier in Single-Task, Task-Prioritised Multi-Task
and Equal-Weight Multi-Task Learning

Table 1 displays the results for text genera-
tion tasks, measured in terms of BLEU scores
(B_1 to B_4), BERT Score Fi1Score (BSF1),
Bio-ClinicalBERT Score F1Score (Bio-CBSF'1),
and ROUGE-L (R_L). When employing Multi-
Task Learning with Equal Task Weights (MTL-EQ),
the model exhibits slightly improved performance
across most metrics. Notably, the MTL-TP model
achieved the best performance, outperforming STL
and MTL-EQ on all metrics. This demonstrates
the benefits of MTL with proper task weighting for
improving text generation quality. It also validates
the capability of MTL to leverage representations
learned across related tasks.

To assess the statistical significance of the im-
provements achieved by the MTL-TP approach over
the Single-Task Learning (STL) baseline, we con-
ducted a pairwise t-test for each metric. Table
2 presents the p-values from these significance
tests, rounded to 5 decimal places. The small p-
values obtained for most metrics, particularly BLEU-

2, BLEU-3, and ROUGE-L, indicate that the im-
provements in text generation quality are statisti-
cally significant. This analysis focuses on the text
generation task, as it was the primary task where
substantial improvements were observed with the
MTL-TP approach.

On ordinal classification, STL achieved the high-
est accuracy and lowest mean absolute error. How-
ever, the MTL-TP model was competitive, with only
a 1.5% drop in accuracy compared to STL (Table
4). For multi-label classification, STL again per-
formed the best in terms of precision, recall, F1,
hamming loss, and exact match ratio. The MTL
models achieved comparable but slightly lower per-
formance (Table 3). However, it is important to
note that STL suffered from overfitting after only 4
epochs on the multi-label classification task. De-
spite attempts to optimise hyperparameters, STL
continued to overfit within a few epochs. In contrast,
MTL helped prevent overfitting for 5-6 additional
epochs compared to STL on this task. So even
though computed multi-label classification metrics
show better STL performance, this overfitting was
inevitable with single-task training.

For a better comparison of the results, we have
colour-coded the illustrated samples to match their
respective ground truth labels, see Figure 2. Am-
biguous or repeated expressions are denoted in
italics, while incorrect predictions or expressions
not present in the original report are underlined. If
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Input Image

Ground Truth

the cardiac silhouette size is
top normal mediastinal and
hilar contours are normal
lungs are clear and the
pulmonary vascularity is

1 normal no pleural effusion or

pneumothorax is present no
acute osseous abnormalities
are detected

nimal basilar atelectasis is

en there is no focal
consolidation no pleural
effusion or pneumothorax is
seen the cardiac and
mediastinal silhouettes are

| unremarkable

STL
UNK] for comparison there

is_no focal consolidation
pleural effusion or
pneumothorax the heart is
normal in size

the mediastinal and hilar
contours are normal the
pulmonary vascularity is
normal there are no acute
0sseous abnormalities

surgical clip is seen in

change in the left lower lobe
no focal consolidation pleural
effusion or pneumothorax is
seen the cardiac and
mediastinal silhouettes are
unremarkable no displaced
rib_fracture is identified the
visualized upper abdomen is
unremarkable no displaced

MTL_EQ

trace pleural effusion is seen
the cardiac and mediastinal

silhouettes are
unremarkable there is no
pneumothorax or
pneumothorax the cardiac
and hilar contours are
normal there is no
pneumothorax is no free air
below the right
hemidiaphragm is seen no
focal

or size is normal the
mediastinal and hilar contours
are normal there is no pleural
effusion or pneumothorax no
free air below the right
hemidiaphragm is seen no
acute osseous abnormality is
seen the right hemidiaphragm
is seen no free air

MTL_TP

the lungs are clear the
cardiac  silhouette is
normal in size the
mediastinal and  hilar
contours are normal the
pulmonary vasculature is
normal no pleural effusion
or pneumothorax is seen
no acute osseous
abnormalities identified
there is seen the lungs
are

aortic arch is again seen v

no focal consolidation pleural
effusion or pneumothorax
cardiac and mediastinal
silhouettes are unremarkable
pulmonary edema is
detected no acute osseous
structures are intact no acute

fracture is seen beneath the

0sseous abnormalities
identified no  pulmonary
edema

Figure 2: lllustrations of generated text from different approaches

the statement is for both, such as when the expres-
sion is both repeated and not in the original report,
we used both italics and underlines. The results
indicate promise in generating reports that capture
many of the main findings mentioned in the ground
truth. All approaches show a generally positive
alignment in terms of grammar, however, some of
the generated reports exhibit repeated words or
phrases, which can affect the overall coherence.

Particularly, The STL approach struggles with un-
natural wording like "[UNK] for comparison" and hal-
lucinates findings that are not present in either the
image or the ground truth. The MTL_EQ output has
disjointed phrasing and repetition indicating a lack
of narrative coherence. In contrast, the MTL_TP
generates smooth, logical statements more simi-
lar to the ground truth, with some minor repetition.
In the second example, the MTL_TP text exhibits
clearer structure, with sentences covering distinct
findings. Itincludes details like "pulmonary edema”,
"aortic arch is again seen" and "no acute osseous
abnormalities identified " not in the original text but
present in the image.

Overall, results demonstrate good progress for
the radiology report generation model, with accu-
rate identification of key findings but also room for
improvement. The STL model sometimes seems to
include extraneous or inaccurate details where the
equal-weighted MTL shows improvements in con-
tent quality over STL, but suffers from repetitiveness
and disorganized narratives. The MTL_TP gener-
ates the most coherent language with smoother
transitions between ideas. The results demonstrate
that task prioritisation during multi-task training can
better capture logical relationships between medi-
cal imaging findings compared to single or equal-

weighted multi-task models. Further tuning to op-
timise content selection and narrative flow could
help MTL models produce the text closer to ground
truth quality.

6. Conclusion

In this paper, we proposed a novel framework for
image-to-text generation in the medical domain.
By leveraging multi-modal data and employing a
multi-task learning (MTL) approach, our proposed
model aimed to bridge the gap between image un-
derstanding and natural language generation, ul-
timately improving the quality and coherence of
generated medical reports.

Our model was trained on chest X-ray images
and radiology reports to generate text descriptions,
predict patient severity levels, and identify medical
findings. We incorporated 10 additional features
along with visual data to create a unified represen-
tation for multi-modal learning.

The results demonstrate the benefits of multi-task
learning, particularly with proper task weighting, for
improving text generation quality. The multi-task
model with text generation prioritisation (MTL-TP)
outperformed single-task learning baselines across
all language generation metrics. While single-task
learning achieved better performance on the auxil-
iary tasks of ordinal and multi-label classification,
it suffered from severe overfitting after only a few
epochs. In contrast, multi-task learning helped pre-
vent overfitting for these tasks and trained for addi-
tional epochs.

Qualitative analysis also showed that MTL-TP
generated more coherent narratives that better cap-
tured logical relationships between medical find-
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ings. The generated reports exhibited good identi-
fication of key findings from the images.

The ability to automatically produce accurate radi-
ology reports from chest X-rays could greatly assist
clinicians and reduce reporting bottlenecks. More
broadly, our proposed approach and findings can
inform future research on combining computer vi-
sion and natural language processing for medical
applications.

Furthermore, our approach’s success in the med-
ical domain suggests the potential for its generali-
sation to other domains. The principles of the inte-
grated learning approach, as demonstrated in our
research, can be applied to a wide range of applica-
tions beyond medical image analysis. For example,
in image captioning (Sirisha and Sai Chandana,
2022), our model’s ability to understand the visual
content and generate coherent textual descriptions
could significantly enhance the accessibility and
interpretability of images in various fields, including
social media, e-commerce, and more. Moreover,
in grounded story generation (Hong et al., 2023),
our approach can be extended to create compelling
and contextually relevant narratives based on vi-
sual cues, making it suitable for content generation
in the entertainment and creative industries. The
integrated learning approaches, which proved ef-
fective in our medical domain application, could
play an important role in advancing these related
domains, improving the quality and relevance of
content generated from visual inputs.

Finally, the synergies between vision and lan-
guage training could lead to more contextual, logi-
cal, and human-like computer-generated text. Our
model, however, still has limitations in optimising
content selection and flow that provide opportuni-
ties forimprovement. However, the success demon-
strated in this medical application underscores the
potential of multi-modal, multi-task learning for a
wide range of domains.
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