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Abstract
In information retrieval, facet identification of a user query is an important task. If a search service can recognize
the facets of a user’s query, it has the potential to offer users a much broader range of search results. Previous
studies can enhance facet prediction by leveraging retrieved documents and related queries obtained through a
search engine. However, there are challenges in extending it to other applications when a search engine operates
as part of the model. First, search engines are constantly updated. Therefore, additional information may change
during training and test, which may reduce performance. The second challenge is that public search engines cannot
search for internal documents. Therefore, a separate search system needs to be built to incorporate documents from
private domains within the company. We propose two strategies that focus on a framework that can predict facets by
taking only queries as input without a search engine. The first strategy is multi-task learning to predict SERP. By
leveraging SERP as a target instead of a source, the proposed model deeply understands queries without relying on
external modules. The second strategy is to enhance the facets by combining Large Language Model (LLM) and the
small model. Overall performance improves when small model and LLM are combined rather than facet generation
individually.
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1. Introduction

Search clarification has been an area of interest in
information retrieval for a long time (Radlinski and
Craswell, 2017; Vtyurina et al., 2017). Users send
queries with various sub-intents to the search sys-
tem and expect various search results. These sub-
intents are called facets. For instance, facets could
include ”warcraft game”, ”warcraft movie”, ”warcraft
book”, ”warcraft history” and more when a user
searches for ”warcraft”. Previous studies (Hashemi
et al., 2021; Samarinas et al., 2022) introduce facet
generation task as generating facets from the query.
If a search system can predict the query facets in
advance, it can provide more diverse and higher-
quality search results.

The previous studies (Hashemi et al., 2021;
Samarinas et al., 2022; Hashemi et al., 2022; Liu,
2023; Zhao et al., 2023) demonstrated that mod-
els can improve their performance in generating
various query facets by leveraging Search Engine
Result Page (SERP). The most commonly used
information in SERP is the snippet of the retrieved
document. Constructing input with both query and
document snippets provides the model with richer
information, leading to improved performance in
facet prediction. However, there are several chal-
lenges to commercialize these methods. First, pub-
lic search engines like Bing or Google are contin-
uously updated. Search algorithms change over
time, and user documents are continually updated.
The external researchers cannot grasp the princi-
ples and changes of the private search algorithm.
Therefore, if the search engine is used as part of

the model, SERP changes between training and
testing, leading to a drop in performance. The sec-
ond challenge is that public search engines only
search for public documents. If the systems need
to create a query facet for an in-house service, the
facet distribution to target will be different. However,
there is a significant cost involved in constructing a
separate search engine to leverage in-house docu-
ments. Finally, external communication is essential
for SERP. Therefore, the previous methods are dif-
ficult for customers who want on-premise services
to consider.

We focus on a framework that operates indepen-
dently of the search engine by using only a query
as input during testing. We propose two strategies
to predict query facets without SERP. The first is
multi-task learning, which uses SERP only in the
training and not in the test. The approach of sim-
ply concatenating documents as input for training
is not efficient during the test (refer to Section 4).
Therefore, we consider SERP as the target to im-
prove the performance of our model. The second is
editing facets using LLM. Recently, LLM has made
remarkable progress since InstructGPT (Ouyang
et al., 2022), achieving high performance in a vari-
ety of tasks. However, simply instructing an LLM
to generate query facets can result in inaccurate
facet generation. Because LLM does not know the
distribution of the dataset, it is difficult to predict the
facet that fits the target. We improve performance
by editing the facets predicted by the fine-tuned
small model with LLM. This is the effect of allowing
LLM to generate accurate facets by informing LLM
of the distribution of the dataset through a small
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model learned with the training dataset. In other
words, LLM editing is more effective than end-to-
end generation because a fine-tuned small model
generates intermediate results to the target facet.
We also demonstrate that LLM editing works effec-
tively on the previous models as well.

2. Related Work

Previous studies leverage SERP to enhance facet
generation performance. Hashemi et al., 2021 pro-
poses the NMIR framework, which learns multiple
intent representations by taking query and retrieved
documents as input. Samarinas et al., 2022 intro-
duces five methods based on query and retrieved
documents. FG (Facet Generation) generates a
facet by inputting the retrieved document. SL (Se-
quence Labeling) determines whether a token is
a facet through sequence labeling in the retrieved
document. EFC (Extreme Facet Classification) con-
siders terms that frequently appear in facets as
classes and trains a classifier to find facet terms
in documents. Hashemi et al., 2022 proposes a
permutation-invariant approach based on NMIR.
Liu, 2023 proposes a method that leverages re-
lated queries in addition to documents to enhance
the performance. Zhao et al., 2023 finds better
facets for queries by combining external structured
information in addition to documents. SR (Struc-
tured Relation) uses hypernyms through external
knowledge (Concept Graph (Wang et al., 2015)
and WebIsA (Seitner et al., 2016)) and list structure
through HTML as input.

Search Clarification is closely related to interac-
tive search systems (Sekulić et al., 2021; Alian-
nejadi et al., 2021). This is because the search
system can clarify the user’s intent and provide
more accurate services. Therefore, for ambigu-
ous queries, the search system asks a clarifying
question (Aliannejadi et al., 2019). Zamani et al.,
2020a identifies the taxonomy of clarification and
generates clarifying questions. Rao and Daumé III,
2018 builds a neural network model for the task of
ranking clarification questions.

Facet identification of a query is also related
to learning the query representation or expan-
sion. Traditionally, query representations were
constructed from term frequencies in search
logs (Salton et al., 1975). Rocchio Jr, 1971;
Lavrenko and Croft, 2017 introduce query repre-
sentation using query expansion and relevance
feedback. Mikolov et al., 2013 learns the rela-
tionships between adjacent words in the corpus
and represents words as embeddings. Words and
queries can be expressed through pre-trained lan-
guage models learned with large corpora such as
BERT (Devlin et al., 2018) and GPT2 (Radford et al.,
2019). Recently, Wang et al., 2023; Jagerman et al.,

2023 introduce query expansion through LLM.

3. Task Definition

This paper focuses on generating facets based
on only queries. In the training, Ttrain =
{(q1, D1, R1, F1), ..., (qN , DN , RN , FN )} where qi
represents a query, Di = {di1, ..., dim} consists
of snippets from m retrieved documents, Ri =
{ri1, ..., rit} contains t related queries, obtained
from query logs, and Fi = {fi1, ..., fik} rep-
resents k target facets. In the test, Ttest =
{(q1, F1), ...(qM , FM )} where we generate Fi from
qi. In contrast to the training, D and R cannot be
used during the test.

4. Method

The previous methods are frameworks that learn
a model by using the SERP for the query as in-
put. Similar to the previous method, the model in
Table 1 is fine-tuned to generate facets based on
BART-base (Lewis et al., 2019) by receiving queries
and documents. The performance of the fine-tuned
model changes depending on the input configura-
tion of training and testing. The performance will
significantly decrease if SERP used for training is
not used in testing. As a result, the most ideal sce-
nario is a situation where the input configuration in
training and test is the same.

Our method assumes a scenario where SERP
is not available for test. Therefore, we utilize multi-
task learning by placing information in the target
rather than the input of the model. Additionally, we
leverage vast knowledge by combining LLM and
small models. The term ”small model” denotes a
model that can be trained on a single GPU. In our
experiments, this corresponds to BART-base. The
term ”LLM” denotes a model of size 7B or larger and
can be used in various tasks through pretraining
and instruction-tuning.

4.1. Multi-task Learning
The input is constructed by prepending special to-
kens to the query, which allows us to control the tar-
get to be generated. Special tokens include [facet],
[document], and [related], and are used to generate
facets, snippets of documents, and related queries,
respectively. The input is as follows:

is = concat([s],query) (1)

where s ∈ {facet, document, related}. The target
output is composed of each sentence separated
by ”,” as follows:

os = ``s1, s2, ..." (2)
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Training / Test Term Overlap (F1) Exact Match (F1) Set BLEU-mean Set BERTScore (F1)
QD / QD 0.2914 0.0732 0.3265 0.8794
QD / Q 0.1299 0.004 0.2367 0.8472

Table 1: Performance changes according to the input of training and test. Q means the query, D means
the snippet of the document. D and Q are concatenated to form the input.

where si is the target sentence corresponding to s.
The loss is calculated as cross entropy as follows:

Ls =
1

N

N∑
i=1

CE(f(is), os) (3)

The sum of losses based on the targets used in
multi-task learning is the final loss. The trained
model can generate not only facets but also docu-
ments or related queries. The model’s additional
capabilities assist in generating accurate facets
from queries.

4.2. LLM Editing
Multi-task learning improves the performance of
small models without relying on the search engine.
However, the fine-tuned model still has a limitation
in not being able to leverage rich external infor-
mation during the test. Therefore, we propose a
strategy to mitigate this drawback by leveraging an
LLM with extensive knowledge from a large corpus.

LLM editing is a technique that refines facets gen-
erated by a fine-tuned small model. When LLM is
instructed to generate target facets corresponding
to a query, it relies on general generation capabili-
ties. This generative ability comes from a massive
pretraining corpus and instruction tuning. There-
fore, it is difficult to convey the distribution of the
desired target facets in the dataset to LLM sim-
ply through few-shot demonstrations of query and
facet pairs. On the other hand, the fine-tuned small
model knows the distribution of facets to be gener-
ated because it has been learned from the training
dataset. Therefore, we provide the facets predicted
by the small model to LLM to regenerate the im-
proved facets. With the assistance of a small model,
LLM can perform modified facet identification from
a state close to the target facets, making the task
easier. In other words, it is a method of leveraging
the distribution of the training dataset, which is the
knowledge of a fine-tuned small model.

Editing Prompt. Table 2 shows the prompt for
LLM editing the results of the small model. We
inform LLM of two-shot demonstrations (predicted
facets => label facets). If LLM does not com-
bine small models, we instruct LLM to generate
facets via few-shot or zero-shot. In E(zero), LLM
is instructed to generate facets without information
about the dataset distribution. In E(few), LLM can
obtain limited information via standard prompting

### User:
The predicted facets for ‘{example query1}’ are ‘{predicted facets1}’.
But the correct facets are ‘{label facets1}’.
The predicted facets for ‘{example query2}’ are ‘{predicted facets2}’.
But the correct facets are ‘{label facets2}’.

As in the example above, modify the predicted facets.

The predicted facets for ‘{input query}’ are ‘{predicted facets}’.
What are the correct facets?

### Assistant:
The correct facets for ‘{input query}’ are

Table 2: Prompt given to LLM. {predicted facets}
are the output of the small model.

through few-shot demonstrations. In Appendix A,
prompt configuration is introduced in more detail.

5. Experiments

We followed previous studies (Hashemi et al., 2021;
Samarinas et al., 2022; Liu, 2023; Hashemi et al.,
2022; Zhao et al., 2023) and used BART-base as
a small model. ChatGPT (OpenAI, 2022) or GPT4
are private LLMs and have cost issues. Additionally,
OpenAI’s models are constantly updated, making
it difficult to reproduce our results, so we use open-
source LLMs with public parameters. At the time of
our experiments, we used UP 30B (Upstage, 2023),
which ranks high on the LLM leaderboard (Beech-
ing et al., 2023).

5.1. Dataset

MIMICS dataset (Zamani et al., 2020b) 1 is widely
used in search clarification or facet generation.
MIMICS is collected from the Bing search engine
and consists of three subsets. Following previous
studies, MIMICS-Click is used as a training dataset
and MIMICS-Manual is used as a test dataset.
SERP was used as public data 2.

5.2. Evaluation Metric
5.2.1. Automatic Evaluation

We follow the automatic metric proposed
in Hashemi et al., 2021. Term Overlap indicates
that the terms of generated facets and ground truth
facets overlap. Exact Match indicates whether the

1https://github.com/microsoft/MIMICS
2http://ciir.cs.umass.edu/downloads/mimics-

serp/MIMICS-BingAPI-results.zip
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Model Term Overlap (F1) Exact Match (F1) Set BLEU-mean Set BERTScore (F1)
F 0.2374 0.0284 0.2898 0.8657

E(zero) 0.0817 0.0134 0.1512 0.8586
E(few) 0.2101 0.0424 0.3511 0.8803
FR+M 0.2519 0.0337 0.2963 0.8687

FR+M+E 0.2385 0.0509 0.3766 0.8807
FD+M 0.2508 0.0338 0.2992 0.871

FD+M+E 0.2381 0.0518 0.3772 0.8812

Table 3: Our model’s performance to multi-task learning and LLM editing. F, D, and R indicate that
the model was trained to generate facet, document, and related queries, respectively. +M represents
multi-task learning and +E represents LLM editing combined into the small model.

Facets refer to the sub-intents desired by the user who
searched the query.
The following are facets about ”{query}”.
Which facets set is better? (without explanation)
A: {predicted facets by model A}
B: {predicted facets by model B}

Table 4: Assessment prompt instructed to LLMs

generated facets are identical to the ground truth
facets. Set BLEU-mean represents the average of
the 1-gram, 2-gram, 3-gram, and 4-gram scores
of each facet sentence. Set BERTScore (Zhang*
et al., 2020) calculates the similarity of each
facet sentence using RoBERTa-large (Liu et al.,
2019). For intuitive analysis, we use a single score
for metrics such as each F1 or average score.
Evaluation scripts are provided in Samarinas et al.,
2022.

5.2.2. LLM-based Evaluation

It is difficult to select the best model only by auto-
matic evaluation. Since automatic evaluation has
four metrics, a good model depends on the metric.
Previous studies (Chiang and Lee, 2023; Liu et al.,
2023) introduce that the LLM evaluator works as a
good evaluator in various NLG tasks. LLM evalua-
tors show a high correlation with human evaluators
and show more reliable results than traditional met-
rics (e.g. BLEU, ROUGE, METEOR). Additionally,
LLM assessments are highly reproducible and un-
affected by previous test samples. LLM evaluator
can be utilized in various ways, such as through a
win-lose method or by computing scores. Kocmi
and Federmann, 2023 introduces evaluating the
LLM evaluator using a scoring method in trans-
lation tasks, but it has the disadvantage that the
score distribution is biased to one side. Since we
only need to determine the superiority between two
compared models, we utilize the LLM evaluator in
a win-lose method. Inspired by these results, we
attempt to evaluate using gemini-pro (Team et al.,
2023) and GPT4 (OpenAI, 2023), which are known
to have the best performance as LLM.

Table 4 shows the model assessment prompt.
We provided the predicted facets of models A and B

to the LLM and asked which one was better. There-
fore, the model responds with either A or B. How-
ever, LLM often has a different response format
because it is a generative model. To minimize the
risk of not being able to verify the correct answer
due to such parsing, we set it to temperature=0.1,
top_p=1. Nonetheless, samples responding in a
different format are excluded from the evaluation.

5.3. Result and Discussion
Table 3 shows the experimental results of our strate-
gies. F model is fine-tuned only for facet generation.
E models are the result of instructing LLM to gen-
erate facets by providing a query and few(two)- or
zero-shot demonstrations without a small model.
+M is multi-task learning, where the model is trained
to generate related queries (R) or snippets of doc-
uments (D) in addition to facet generation. +E
indicates that LLM editing was performed on the
results of the small model. Some examples and
statistics of the generated facets are introduced in
Appendix B.

Multi-task learning improves performance even
when there is only a query in the test. Both FR+M
and FD+M outperform F in all four metrics. The
enhanced capability of the small model to infer not
only the facets but also retrieved documents or
related queries leads to a better understanding of
the query. When considering all automatic metrics,
FD+M is slightly superior to FR+M. As a result, we
confirmed that a snippet of the document is more
effective for small models than a related query.

LLM editing enhances the facets generated by
the small model. FD+M+E slightly reduces perfor-
mance in Term Overlap compared to FD+M, but
improves performance in the other three metrics.
Overall, FD+M+E is better than FD+M. FD+M+E
outperforms E(few) in all aspects, which proves that
the facets generated by the small model contribute
to the target facet distribution. E(few) receives a
distribution of the dataset via in-context learning
through few-shot demonstrations, but it is very lim-
ited information. E(zero) has lower performance
because it does not know the distribution of the
dataset at all. It is important to note that facets
generated by LLM without prior information are diffi-
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Model Training / Test Term Overlap (F1) Exact Match (F1) Set BLEU-mean Set BERTScore (F1)
FG Q / Q 0.0664 0.0306 0.0751 0.8446

FD+M (ours) QD / Q 0.2508 0.0338 0.2992 0.871
FD+M+E (ours) 0.2381 0.0518 0.3772 0.8812

FG

QD / QD

0.2919 0.0707 0.3544 0.8785
FG+E 0.2702 0.0694 0.4092 0.8844

SL 0.1914 0.0515 0.2483 0.8748
SL+E 0.1895 0.0542 0.2618 0.8769
EFC 0.0515 0.0289 0.0544 0.423

EFC+E 0.0678 0.028 0.0863 0.8626
SR QDS / QDS 0.274 0.0888 0.4297 0.8903

SR+E 0.2626 0.849 0.4302 0.8896

Table 5: Performance comparison between our model and other models. S in QDS indicates structured
information. Bold indicates the highest performance in each test type.

cult to match the target distribution. In other words,
the method of combining the small model and LLM
proves to be more effective than simply fine-tuning
and standard prompting. In the Appendix C, we
show that LLM editing is effective regardless of LLM
size.

5.3.1. Comparison with Previous Methods

Table 5 shows a comparison of the performance
of our model with the previous methods. The de-
scriptions of comparative models are in Section 2.
FD+M+E demonstrates the second-best perfor-
mance in Set BLEU-mean and Set BERTScore
among previous models that did not combine LLM
editing. This means that FD+M+E generates more
semantically sufficient facets than FG, which is the
best in QD test type without SERP. SR improves
performance with structured information (hyper-
nyms and HTML) in addition to document snippets
but is more dependent on SERP. From the results
of SR, we expect that leveraging structured infor-
mation in multi-task learning will lead to improved
performance in the future.

5.3.2. Result of LLM-based Evaluation

Table 6 shows comparison results between
FD+M+E and other models. We selected FD+M,
FG(QD/QD) and SR as comparison models. The
numbers in the cell are the percentages that
FD+M+E won in competition with other models.
For example, GPT4 determines that FD+M+E is
better than SR for 63.86% of the test data. Both
LLMs determine that FD+M+E performs better than
the other three models. These results prove that
FD+M+E is a more effective method than previous
methods using SERP. In other words, FD+M+E
is better than the previous SoTA in terms of LLM-
based evaluation perspective. In particular, the
higher win rate compared to FD+M indicates that
LLM editing is an important factor. Since LLM eval-
uators are known to be more relevant to human
evaluators than traditional metrics, our method is
considered to have achieved state-of-the-art per-
formance without leveraging SERP.

FD+M+E vs Comparison model
Comparison model Gemini-pro GPT4

FD+M 72.33 90.65
FG (QD/QD) 59.05 78.59

SR 74.08 63.86

Table 6: Win ratio of FD+M+E that competed with
the other models. Gemini-pro and GPT4 are used
as LLM evaluators.

5.3.3. Combine LLM Editing with Previous
Methods

We applied LLM editing to previous models that
used SERP as input. Table 5 shows that the ef-
fect of LLM editing varies depending on the perfor-
mance of the models. Similar to Table 3, LLM edit-
ing tends to improve overall Set BLUE-mean and
Set BERTScore performance. However, LLM edit-
ing tends to decrease Term Overlap performance,
and changes in Exact Match performance vary
depending on the model. LLM editing substan-
tially enhances the performance of models such
as EFC, which demonstrate inferior performance
overall. We demonstrate that LLM editing is an ef-
fective technique for regenerating semantic facets
regardless of the small model.

6. Conclusion

The proposed method generates facets using
only queries, which eliminates the dependency on
search engines. To address the limitation of not
being able to utilize SERP as input, we propose
two strategies: multi-task learning and LLM editing.
Multi-task learning helps the small model better
understand the query. LLM receives prior informa-
tion from a small model and generates improved
facets. Even without SERP, FD+M+E shows simi-
lar performance to FG in automatic evaluation and
achieves the best performance in LLM-based eval-
uation. LLM editing is a way to effectively combine
small models and LLMs in various NLP tasks, rather
than using them separately. Therefore, our method
can be extended to various NLP tasks.
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Figure 1: Overview of previous methods and our method.

query FD+M FD+M+E ground-truth

carrots carrots for sale, carrots care carrots nutrition, carrots health benefits,
carrots recipes

grow carrots, cook carrots,
store carrots, freeze carrots

orange orange tree, orange flower orange fruit, orange juice,
orange tree, orange flower

orange the color, orange the fruit,
orange the company

firewall firewall windows 10, windows 7,
windows 8, windows xp

firewall types, firewall software,
firewall hardware, firewall configuration firewall hardware, firewall the movie

Table 7: Examples generated by FD+M and FD+M+E

Model average number
of a set

average length of
generated facets

proportion of query
included in facet

proportion of duplicate
facets in a set

FD+M 2.39 17.9 61.87 0.038
FD+M+E 4.13 16.67 57.33 0.013

groud-truth 3.01 15 47.96 0

Table 8: Statistics of facets generated with FD+M, FD+M+E, and ground-truth

### User:
The facets for ‘{query}’ are ‘{facets}’. As in the format above,
generate facets related to the query within 5, separated by ‘,’.

### Assistant:
The facets for ‘{input query}’ are

Table 9: Prompt for E(zero) model. This prompt
instructs LLM to generate the facet without any
prior information, where {query} and {facets} are
not examples, but strings themselves.

### User:
The facets for ‘{example query1}’ are ‘{correct facets1}’.
The facets for ‘{example query2}’ are ‘{correct facets2}’.

### Assistant:
The correct facets for ‘{input query}’ are

Table 10: Prompt for E(few) model. It shows only
few-shot demonstrations, not facet modifications.

A. Details of Editing Prompt

Table 9 and Table 10 show prompts for E(zero) and
E(few), respectively. Since E(zero) lacks informa-
tion about facets, it provides structured information
about the format and number of facets in the ”###
USER” section. We also experiment with other
LLM sizes in Appendix C. In the prompt of OO
13B, special phrases are guided to use ”Instruc-
tion” and ”Response”. Therefore, the prompt of OO
13B is composed of ”User” and ”Assistant” replaced
with ”Instruction” and ”Response”, respectively. We

used the same generation configuration settings
for all LLMs.

Chain-of-thought prompting (CoT) (Wei et al.,
2022) and contrastive chain-of-thought prompting
(CCoT) (Chia et al., 2023) are effective techniques
in LLM prompting. CoT enhances performance
by prompting LLM to generate rationales along
with responses. Our goal is not to find a better
prompt for facet identification but to improve per-
formance by combining the fine-tuned small model
and LLM. Therefore, we leave the exploration of
better prompts for future research.

B. Statistics of Generated Facet Set

Table 7 shows examples of our model. For carrots,
LLM editing modifies facets through suffixes of nutri-
tion, recipes, and health benefits. For orange, LLM
editing adds two facets while maintaining some of
the facets predicted by FD+M. For firewall, LLM
editing adds a firewall prefix and creates a wider
range of facets.

Table 8 shows facet statistics of the proposed
model. LLM editing increases the number of ex-
isting facets from an average of 2.39 (FD+M) to
4.13 (FD+M+E) because LLM finds intentions that
FD+M could not cover. The average length of each
generated facet does not differ significantly. Fur-
thermore, we also measure the extent to which the
query string is important in constructing facets. As
shown in the example in Table 7, the intention of the



5865

LLM Model Term Overlap (F1) Exact Match (F1) Set BLEU-mean Set BERTScore (F1)

HB 7B (HyperbeeAI, 2023) E(few) 0.1905 0.0241 0.206 0.8691
FD+M+E 0.2495 0.049 0.3657 0.878

OO 13B (Lee et al., 2023) E(few) 0.1852 0.0355 0.3148 0.8677
FD+M+E 0.2477 0.0477 0.3721 0.878

UP 30B (Upstage, 2023) E(few) 0.2101 0.0424 0.3511 0.8803
FD+M+E 0.2381 0.0518 0.3772 0.8812

Table 11: Performance based on other LLMs. Bold indicates the best performance.

LLM Average ARC HellaSwag MMLU TruthfulQA
UP 30B 67.02 64.93 84.94 61.9 56.3
OO 13B 63.19 61.52 82.27 58.85 50.11
HA 7B 59.89 56.31 79.01 52.55 51.68

Table 12: LLM benchmark performance reported
on LLM leaderboard

facet including the query string is intuitively clear.
However, in terms of measurement results, the or-
der of query inclusion rates is higher for FD+M >
FD+M+E > ground-truth. In other words, we con-
firmed that query string is not an essential element
in configuring facets, and LLM editing removes
queries from facets as needed. For example, there
are cases where the ground-truth sample has the
query ”internet explorer” and the facet is ”windows
10”. When the generated facet set contains du-
plicate facets, it can negatively impact the overall
performance of the facet set. As a result of mea-
surement, LLM editing further improves the facet
set by removing duplicate facets. Through the dis-
tribution of the generated facet set, we gain insights
that limiting the number of duplicate facets and the
total number of generated facets can improve future
performance.

C. Effects of LLM Size

We conducted experiments on LLM(7B, 13B) in
addition to LLM(30B). Table 12 shows LLM bench-
mark performance. As the size increases, LLM per-
formance improves. Table 11 shows the facet gen-
eration performance of FD+M+E when using dif-
ferent LLMs(7B, 13B, 30B). We observe that even
when utilizing LLM(7B, 13B), for editing instead
of LLM(30B), there is still a notable performance
improvement. Smaller LLMs tend to have higher
performance in Term Overlap. Therefore, LLM edit-
ing is an effective prompt technique regardless of
the size of LLM.

In the case of E(few), which does not use the
small model, there is a significant difference in per-
formance between LLM(30B) and LLM(13B,7B).
That is, in few-shot inference, similar to the LLM
benchmark, larger LLMs generally outperform
smaller LLMs. However, when combined with a
small model, the difference between FD+M+E is re-
duced, which shows that the role of the small model

is crucial in generating facets of LLM. The small
model serves as an intermediary bridge between
the query and facets because it has learned the
distribution of facets through the training dataset.
With the assistance of this small model, LLM can
generate the desired facets. We attempted various
other LLMs, but it was challenging to find an LLM
that excelled in all four metrics. This is considered
a trade-off related to LLM size, and further research
is needed to achieve better results in all metrics.
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