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Abstract

We focus on the problem of parsing procedural text into fine-grained flow graphs that encode actions and entities,
as well as their interactions. Specifically, we focus on parsing cooking recipes, and address a few limitations of
existing parsers. Unlike SOTA approaches to flow graph parsing that work in two separate stages — identifying
actions and entities (tagging) and encoding their interactions via connecting edges (graph generation) — we propose
an end-to-end multi-task framework that simultaneously performs tagging and graph generation. In addition, due
to the end-to-end nature of our proposed model, we can unify the input representation, and moreover can use
compact encoders, resulting in small models with significantly fewer parameters than SOTA models. Another key
challenge in training flow graph parsers is the lack of sufficient annotated data, due to the costly nature of the
fine-grained annotations. We address this problem by taking advantage of the abundant unlabelled recipes, and
show that pre-training on automatically-generated noisy silver annotations (from unlabelled recipes) results in a large

improvement in flow graph parsing.
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1. Introduction

Activities involving the use of procedural content
are abundant in our daily lives, e.g., following a
cooking recipe or a furniture assembly video. In-
telligent assistants can help guide users follow in-
structions in a procedure to accomplish a task. A
fundamental requirement for building systems that
help users follow a procedure, such as a cooking
recipe, is the ability to understand and represent
the dynamics of the underlying process, including
the actions and participating entities, as well as
how they interact and affect each other. Due to
the abundance of cooking recipe/video data, and
its widespread application, much work on proce-
dure understanding has focused on the cooking
domain. Rich and structured representations of
procedural (cooking) content have been shown to
enable an array of downstream tasks, including
cooking recipe search (Xie et al., 2010), retrieval
(Wang et al., 2008), or recommendation (Lo et al.,
2015), as well as recipe-to-video alignment in a
multi-modal setting (Dvornik et al., 2022).

One important aspect of procedure understand-
ing is learning to parse a recipe text into a flow
graph that encodes the actions and entities, as
well as the overall step-by-step process; see Fig-
ure 1 for an example. Much work has focused on
learning such graphs from cooking recipes (Xie
et al., 2010; Walter et al., 2011; Jermsurawong
and Habash, 2015; Kiddon et al., 2015; Pan et al.,
2020; Yamakata et al., 2020; Donatelli et al., 2021).
Early work has built complex fine-grained cook-

tWork done while at Samsung Al Centre Toronto.

ing flow graphs by relying on linguistic knowledge
and/or hand-crafted rules (Xie et al., 2010; Wal-
ter et al., 2011; Kiddon et al., 2015). To address
the limited scalability of such methods, others fo-
cused on the automatic generation of flow graphs.
Whereas some only focus on specific actions within
these, e.g., ingredient—instruction dependencies
(Jermsurawong and Habash, 2015) and instruction-
level temporal relations (Pan et al., 2020), more
recent work (Yamakata et al., 2020; Donatelli et al.,
2021) uses machine learning techniques to gener-
ate all elements of a flow graph from recipe texts.
These models rely on supervised approaches that
require rich manually annotated recipes that are
costly to acquire. Consequently, such datasets are
often very small, and thus impose limitations on
the general applicability of the parsers trained on
them. In addition, these models draw on separate
systems to first identify and tag the entities in a
recipe, and then connect them via relations to form
the final graph. This two-stage approach makes
the models less robust to tagging errors during in-
ference. Finally, current evaluations are limited to
a small test set, making it hard to draw conclusions
about real-world performance.

In this paper, we address the above-mentioned
limitations in existing flow graph parsing. Specifi-
cally, we experiment with end-to-end architectures
and small encoders that result in models with sig-
nificantly fewer parameters than SOTA models. In
addition, we draw on the use of automatically-
generated (noisy) training data to avoid the high
cost of generating fine-grained annotations re-
quired by SOTA models. Finally, we propose a
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Recipe:

1- Bring a large pot of lightly salted water
to the boil.

2- Add pasta and cook for 8 minutes.

3- In a large non-stick pan, melt all the
cheeses and mix them with the milk.

4- Add the cream and stir well.

5- Season to taste.

6- Toss the pasta with the cheese sauce,
stir thoroughly.

7- Serve hot.
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Figure 1: A sample recipe and its flow graph from Yamakata et al. (2020)’s dataset. Nodes encode
cooking entities, e.g., Action and Food. Edges encode pairwise relations among nodes, e.g., cheese is
the “target” (t) of the melt, and non-stick pan is its “destination” (d).

new evaluation framework that overcomes the sen-
sitivity of current evaluations to the composition of
the test set. The following paragraphs describe our
contributions in more detail.

End-to-end Architecture. Previous work on flow
graph parsing draws on two separate systems to
identify named entities in a recipe, and to connect
them via relations to form the final graph. We
instead build an end-to-end architecture where de-
cisions made in either (entity tagging or graph gen-
eration) task can inform the other. Because of
the end-to-end architecture, we can also simplify
the input representation by deploying a single set
of pre-trained word embeddings as input features.

We show that the performance of our model is
comparable to previous models while having sig-
nificantly fewer parameters and lower complexity.
Ad(ditionally, we show that we can keep competitive
performance while further reducing the model size
by around 70% by using a light-weight encoder.
In addition, our end-to-end model is more robust
to tagging errors since it is trained on its own tag
predictions (in contrast to SOTA model trained with
ground-truth tags).

Addressing Data Scarcity. We hypothesize that
the small size of annotated training data could im-
pact performance. To alleviate this problem, we
follow work in semantic parsing that uses automati-
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cally generated silver data to address data scarcity
(e.g., Van Noord and Bos, 2017; Xu et al., 2020;
Tedeschi et al., 2021; Xia et al., 2021). Specifically,
we use an existing flow graph parser (Donatelli
et al., 2021) to parse a large set of unlabelled
recipes, which we use as additional (noisy) train-
ing data for our end-to-end model. Our results
show that using silver data yields an average per-
formance improvement of around 6—8 F1 points.

Comprehensive Evaluation. We conduct a thor-
ough evaluation of existing and new models. We
show that due to the small size of existing evalua-
tion sets, performance can vary greatly on different
recipes. We propose a new way of evaluation to ad-
dress this sensitivity to the composition of test data.
Finally, we perform ablation studies and error anal-
ysis to understand how performance is affected by
different factors.

We believe the above contributions will help es-
tablish standard frameworks for data generation,
modeling, and evaluation of flow graph parsers for
procedural understanding.

2. End-to-end Flow Graph Parsing

We discuss our architecture in Section 2.1, elab-
orating on our contributions over SOTA. We then
discuss our motivation behind the use of the SOTA
model to generate silver data, and how this ad-
dresses data scarcity.

2.1.

Our end-to-end model is based on several archi-
tectural changes to the state-of-the-art method of
Donatelli et al. (2021), where we combine the two
stages of entity tagging and graph generation into
a single pipeline, effectively jointly learning to tag
and parse an input recipe. By doing so, we draw
on multi-task learning and simultaneously learn to
tag and parse an input recipe, using a single input
embedding. This is in contrast to the model of Do-
natelli et al. in which the tagger and parser draw
on different embeddings, and are completely inde-
pendent of each other. A high-level comparison of
the two architectures is shown in Figure 2. The fol-
lowing paragraphs elaborate on our modifications
to the model of Donatelli et al..

Unified Architecture

Simplified input representation. We use the
same BERT embedding for both tagging and pars-
ing." Specifically, we encode a recipe with n words
as ri.,, where r; is a word-level embedding taken

'Initial experiments with a larger text encoder, BART
(Lewis et al., 2019), did not show improvements over
BERT, and hence we did not conduct further experiments
with BART.

from BERT (Devlin et al., 2018) subword represen-
tations via averaging. This is in contrast to the input
layer of Donatelli et al. where the input recipes are
encoded separately in the tagger and the parser
using a combination of different character and word
embeddings.

Reduced tagger complexity. We reduce the
complexity of the tagger by removing the CRF
layer. Recall that the tagger assigns each word
a cooking-related tag (e.g., action, food, etc.). Sim-
ilar to Donatelli et al., we use a BiLSTM with an
MLP layer on top to obtain tag logits s;.,,, but we re-
move the additional CRF layer, while yielding better
performance and reducing computational complex-
ity. The CRF classifier has an additional runtime
complexity of O(nK?), where K is the number of
possible tag labels, which is 21 in our case (consid-
ering the BIO tagging scheme), whereas the MLP
classifier has O(n) complexity.

Joint tagging and parsing. We unify the tagger
and parser module via directly feeding the tagger
output as vectors into the parser. To do this, we
first transform the s;.,, logits from the tagger into
near-one-hot representations via a softmax func-
tion with a low temperature (i.e., softargmax or a
differentiable argmax.) to obtain sparse tag vectors.
We then pass these learned tag vectors through a
feed-forward layer to form dense representations
that are concatenated with the recipe encoding 1.,
to serve as the input to the parsing module.

Our parsing module is the same as that of Do-
natelli et al., which is essentially the Biaffine parser
of Dozat and Manning (2016). The Biaffine parser
consists of three main components: a BIiLSTM
module that enchances the input representations,
a Biaffine scorer that scores the presence of an
edge as well as its label for every pair of nodes, and
a Maximum Spanning Tree algorithm that gener-
ates the output based on the learned edge scores.?

Our tagger uses the standard cross-entropy loss
between predicted and ground-truth tags. The
parser draws on two separate cross-entropy ob-
jectives: (i) to predict the presence of an edge
between each pair of nodes; and (ii) to predict an
edge label should it exist. These three objectives
are used to jointly train our end-to-end model.

2.2. Silver Data Pre-training

A major limitation for fine-grained flow graph pars-
ing is the lack of sufficiently large annotated data.
Recent work in semantic parsing and entity tag-
ging has shown that pre-training on a large cor-
pus of automatically generated noisy silver data

®Note that due to the application of the MST algorithm,
predicted flow graph outputs are actually (inverse) trees.
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Figure 2: Comparison between our proposed architecture and that of Donatelli et al. (2021). The straight,
black rectangles represent operations, while the rounded rectangles represent data. Solid arrows are
connections that preserve the gradient chain, and dashed arrows are those that break it.

is beneficial (Van Noord and Bos, 2017; Xu et al.,
2020; Tedeschi et al., 2021; Xia et al., 2021). Fol-
lowing these, we automatically annotate a large
collection of unlabelled recipes using the model of
Donatelli et al. (2021) to be used as silver data for
pre-training.

For a model to benefit from silver data, it should
be sufficiently different from the model used for
generating the data. We believe this is true for our
case for the following reasons:

» There are several important differences be-
tween our model and that of Donatelli et al.,
including an end-to-end architecture, unified
input embedding, and the use of predicted
tags vs. ground-truth tags for training the pars-
ing module.

The final flow graph predictions of Donatelli
et al.’s model are produced by applying a Max-
imum Spanning Tree (MST) algorithm on top
of predicted edge scores. We thus expect
these to provide additional supervisory signal
because they are different from the output of
the greedy decoding used during training.

3. Experimental Setup

Gold data. We use the English Recipe Flow
Graph corpus (Yamakata et al., 2020), consisting
of 300 annotated recipes. In this dataset, recipe
instructions are annotated with a set of 10 cooking
entity tags, including Ac(tion), F(ood), and T(ool).

These entities effectively form the nodes of the flow
graph, connected via edges whose labels specify
the relation between a pair of nodes. Further de-
tails on the annotation can be found in the original
paper. An example is shown in Fig. 1. Unless
stated otherwise, we use the train/validation/test
splits introduced by Donatelli et al. (2021), referred
to as D21.3

Silver data. For silver data, we sample 10K
recipes from the Recipe1M dataset (Marin et al.,
2019), such that their distribution in terms of length
(number of tokens) resembles that of D21. We
choose recipes whose length is within two stan-
dard deviations of the average recipe length in D21
(13042 x 71), excluding short recipes (shorter than
20 tokens). These recipes are automatically parsed
using the model of Donatelli et al. (2021), and are
used to pre-train our model. Section 5.1 presents
an ablation over the size of silver training data to
explain why we selected 10K recipes. We split the
10K recipes into 80% training, 10% validation, and
10% test.

Evaluation. Following prior work (Yamakata
et al., 2020; Donatelli et al., 2021), we report Pre-
cision, Recall, and F1 for tagging and parsing. For
parsing, we noted that while the results reported
in Yamakata et al. consider edge labels (labelled

5The released D21 dataset is missing 3 of the original
recipes, containing a total of 297 recipes, divided into
238 training, 30 validation, and 29 test recipes.
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Model Training Data P R F1

Donatelli (2021) original D21 744 704 723
Donatelli® original D21 742 69.5 T1.8
Donatelli® corrected D21  72.8 684 70.5

Table 1: Unlabelled parsing results on D21 test; f marks re-produced results; ® indicates best results out
of 20 runs. Training data is either original, or corrected.

Parser
Model Size Tagger Labelled Unlabelled
Donatelli?® 294M  86.3 61.5 70.5
Ours 129M 88.3 68.2 76.7
Ours (LW) 40M 86.7 67.2 76.0

Table 2: Comparing F1 of our original and light-weight (LW) models on D21 test, trained with silver+gold.
Donatelli et al.’s best re-produced results are also given.

edge prediction), those in Donatelli et al. do not
(confirmed with the authors). Labelled edge predic-
tion considers the labels assigned to edges to de-
termine correctness, whereas unlabelled prediction
only considers the presence or absence of an edge
between a pair of nodes. For completeness, we
report both labelled and unlabelled edge prediction
results. Additionally, the two studies use different
evaluation schemes: whereas Yamakata et al. re-
port results using 10-fold cross-validation, Donatelli
et al. (D21) split the dataset into 80% training, 10%
validation, and 10% test, and report results on the
test set. In our evaluation, we observed a notable
gap (around 7-8 F1 point) between performances
on validation and test portions. Thus, in addition to
reporting results on the D21 test set, we report av-
erage and standard deviations over 30 runs of each
model, where each run uses a different random
80%/10%/10% train/validation/test split. We be-
lieve this is a better evaluation scheme, compared
to cross-validation or single test split, because of
the very small size of the data.

Implementation details. We implement our
models using PyTorch, AllenNLP, and Transformers
libraries (Paszke et al., 2017; Gardner et al., 2017;
Wolf et al., 2019). For re-producing the results of
Donatelli et al. (2021), we use their implementa-
tion.*. We use a batch size of 16 for silver data
training and a batch size of 8 for training on gold
data (D21). When exclusively trained on silver data
or D21 data, the models are trained for 40 epochs
and 80 epochs, respectively. When first trained
on silver data and then fine-tuned on D21 data,
the model is trained for 80 epochs and then fine-
tuned for 100 epochs. All models are trained using
the Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 1e-3, using labelled precision as
the early stopping criterion. Note that we use the

4https ://github.com/interactive-cookbook/ara

D21 or 1K silver validation sets for early stopping.
We use the pre-trained bert-base-uncased (Wolf
et al., 2019), and keep it frozen during training. For
the light-weight model, we use the 6-layered ver-
sion of MiniLM (Wang et al., 2020). Temperature
parameter for softargmax is fixed at 1e-3 in all ex-
periments. We performed all the experiments on a
single Nvidia A6000 GPU with 48GB memory.

4. Results

We perform an extensive set of experiments to
understand the effect of our end-to-end architec-
ture and a light-weight encoder, as well as the use
of silver data for training. In addition, we empiri-
cally show that a multi-split evaluation framework
is more suited for the task of flow graph parsing
given the small size of the existing evaluation data.

Re-producing existing SOTA. Our goal is to per-
form a comprehensive analysis of Donatelli et al.
(2021)’s parser, as well as our end-to-end model.
Donatelli et al. (2021) report the performance of
their parser on D21 test (with predicted and ground-
truth entity tags). We first aim to re-produce the
results of Donatelli et al., focusing on predicted
tags only, since we assume no access to ground-
truth tags at inference time.®> Table 1 shows re-
ported and re-produced results of Donatelli et al.
under two settings of the training data: original,
and corrected, where two erroneous labels are re-
placed by the correct ones, in consultation with
the data creators.® This correction, although nec-
essary to clean the data, results in some drop in
performance. We perform all our experiments with

We re-produce the results of Donatelli et al. using
their released code, so we can run their model on other
data splits and settings.

®Labels s and v are replaced by d and v-tm, respec-
tively.
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Labelled Unlabelled
Model P R F1 P R F1
Donatelli®T 63.5 59.7 61.5 728 684 70.5
Donatellif®v  71.3 67.7 69.5 80.5 764 784
Ours’T 64.4 61.9 63.1 727 69.8 71.2
OurstV 72.9 69.8 71.3 80.7 77.2 78.9

Table 3: Parsing results (best out of 20 runs) on D21 T(est) and V(alidation); * marks re-produced results.

Model Training Tagger Labelled Unlabelled
Ours® gold 87.5 63.1 71.2
Ours  silver 88.0 66.6 75.6
Ours  silver +gold  88.3 68.2 76.7

Table 4: Tagging and parsing F1 on D21 test, using different combinations of gold and silver data for

training.

the correction. When reporting best results out
of several runs, each run uses a different random
seed and the labelled edge prediction F1 on vali-
dation is used to find the best model.

Our end-to-end parser performance. Table 3
reports results of our model as well as that of Do-
natelli et al., when trained and tested on the D21
splits. Note that the reported results of Yamakata
etal. (51.1,37.7,43.2 for P, R, and F1, respectively,
for labelled edge prediction) are not comparable
to those in Table 3 since they were done using
10-fold cross-validation (folds are not available for
experimentation). We observe a small advantage
for our model (between .5 and 1.8 in F1). However,
both models show a large performance difference
(around 8 F1 points) between validation and test
results. We return to this issue later.

Effect of silver data pre-training. Table 4 shows
the benefit of pre-training our model with silver data
followed by fine-tuning on gold, showing more than
5 points increase in parsing F1, compared to the
best model trained with gold only. Compared to
the baseline model, this shows an 8.8% relative
improvement (76.7 vs. 70.5). Importantly, this
advantage is not due to a better tagger (tagging
performance is comparable), suggesting that the
benefit is likely due to better edge prediction by the
parser.

Evaluation using multiple splits. We observed
a large performance gap between validation and
test results (Table 3). To alleviate this sensitivity to
dataset split, we design an experiment where we
use 30 different random splits of D21 for training
and evaluation, where each split is composed of
80% training, 10% test, and 10% validation recipes.
Table 5 reports average and standard deviation
over the 30 runs, demonstrating the superiority

of our model when pre-trained on silver and fine-
tuned on gold data, resulting in an improvement
of around 6-8 F1 points. Importantly, standard
deviations are small for all models and training
sets, suggesting that the performance gap between
the different splits is rather small. We argue that
for a small dataset, performing experiments over
multiple splits provides a better evaluation scheme
and removes sensitivity to a particular spilit.

Using a light-weight text encoder. We use the
6-layered version of MiniLM (Wang et al., 2020) as
our light-weight encoder (replacing BERT in Fig. 2
(ours).). Table 2 reports the tagging and parsing
results for the original and the light-weight (LW)
version of our model. Interestingly, we observe a
very small drop in performance, with a significant
reduction in model size of around 70%. When com-
pared to the Donatelli et al.’'s model, Ours (LW)
has a superior performance (5+ points increase in
parsing F1) with 86% fewer parameters.

5. Ablations and Error Analysis

F1 score
o o o
N w »

I
o

0.0

[0,5] [6,10]
Distance bins

[11,300]

Figure 3: Distance-specific F1 (on D21 validation
set) for the models of Donatelli et al. and Ours
trained with either silver data, or silver+gold.
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Model Training Labelled  Unlabelled
Donatelli"  gold 67.9+1.8 759+1.6
Ours gold 66.2+2.0 73.9+23
Ours silver 75.5+20 81.5+1.7
Ours silver + gold 75.7+19 81.7+1.7

Table 5: Parsing F1 (average + standard deviation) over 30 random test splits of the D21 data.

Edge Label Gold Data Silver Data
t 41.2% 42.6%
0 18.6% 17.6%
d 13.9% 15.2%
f-eq 6.3% 71%
t-comp 4.3% 4.2%
v-tm 4.3% 4.2%
a 3.7% 3.0%
f-part-of 2.5% 1.7%
f-comp 2.0% 2.3%
a-eq 1.2% 0.5%
t-eq 1.1% 0.7%
t-part-of 1.0% 0.9%
f-set 0.1% 0.0%
Total 11.8K 357.2K

Table 6: Relative frequency of each edge label
in the gold and silver training sets, sorted by fre-
quency in gold data. The last row shows the total
number of edges in each dataset.

In this section, we perform some error analyses
to understand the role of an end-to-end versus a
two-stage model. We also look at the breakdown
of performance for different relations, as well as
different head-dependent distances.

5.1.

To determine the optimal size of silver data, we
train our model with different silver training data
sizes (from 3.2K to 8K) and evaluate on 1K silver
test recipes. We show unlabaled F1 score for these
different models in Figure 4. We observe that per-
formance starts to saturate despite the increase in
training size. We set the silver data size to 8K.

Optimal Size of Silver Data

5.2. Cascading Errors

The baseline model (Donatelli et al., 2021) consists
of a tagger and a biaffine parser component, where
the predictions of the parser build on top of the pre-
dictions provided by the tagger. One of the critical
weaknesses of systems with multiple components
is that errors made in an earlier stage cascade
to the following decisions. In addition, the base-
line model’s parser is trained with the gold tags,
which can lead to the exposure bias problem when
transitioning to predicted tags during inference.
Table 7 shows the percentage of parsing errors

0.86

0.85

o
@
Iy

Unlabaled F1 score
o
2]
w

0.82

0.81

4800 6400
Silver training size

Figure 4: Unlabelled F1 score for models trained
with different silver data training sizes, from 3.2K to
8K, tested with the same 1K silver test data.

made by the baseline and our models, when the
tag prediction is correct vs. when it is wrong. When
comparing Ours (gold) with the baseline (first row),
we see a slight increase in errors with correct tags,
but a sharp decline in errors when the tags are
wrong. This is probably due to the fact that our
model is being trained using predicted tags. So,
the parser knows how to handle an incorrect tag
prediction better, but does worse on correct tags
since it has seen noisy tag inputs during training.
When using silver data for pre-training, we see
a similar decline in parsing errors when tags are
predicted incorrectly, and slightly lower error rate
for correctly predicted tags. Overall, the model that
uses both silver and gold data has the lowest rate
of parsing errors. This shows that pre-training on
silver data and fine-tuning on gold data results in
successfully reducing the parser’s dependence on
correct tag predictions, hence a robust model.

5.3. Performance by Relation Type

Figure 5 shows F1 scores for labelled edge pre-
diction, broken down by each relation type (edge
label). Labels are sorted by frequency (based on
gold training data) from left to right, with their rel-
ative frequencies in the silver and gold training
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Figure 5: Label-specific F1 (on D21 validation set) for the models of Donatelli et al. and Ours trained with
either silver data, or silver+gold.

Model Training Wrong Correct
Tag Tag
Donatelli™® gold 70.3% 10.1%
Ours gold 56.2%  10.5%
Ours silver 59.0% 9.2%
Ours silver+gold 53.1%  9.3%

Table 7: Percentage of parsing errors (on D21 vali-
dation set) separated by whether the tag prediction
is correct or wrong. A prediction is considered to
contain a parsing error if either the head prediction
or edge label prediction is wrong.

sets given in Table 6. We observe that the best
overall model (Ours trained with silver + gold) has
slightly better performance than the baseline for
the most frequent labels (1, 0 and d) that form more
than 75% of the labels in the training data. For
the nine labels with lower frequency, we observe
large relative performance improvement for six of
them (f-eq, v-tm, f-part-of, a-eq, t-eq, and t-part-of),
comparable performance for two (t-comp, a), and
a notable decline in performance for one (f-comp).
This overall improvement could simply be the result
of having more data to learn from when training
on (noisy) silver data, especially demonstrating the
benefits of pre-training for low frequency items. Al-
though the decline in performance for the one label

requires further investigation.

5.4. Effect of Head-Dependent Distance

We perform an experiment to understand how dis-
tance between a head token and its dependent
affects the parsing performance. Figure 3 shows
parsing F1 for three models (baseline model of
Donatelli et al. (2021) as well as Ours trained with
silver or silver + gold) for three head—dependent
distance bins. E.g., the bin [0, 5] contains head—
dependent token pairs that are < 5 words away
from each other in the original recipes. As ex-
pected, we can see that as distance increases,
parsing performance goes down for all three mod-
els. However, our best model (trained on silver +
gold) shows more advantage over the baseline for
larger distances. Especially, our best model has a
relative improvement of 23.2% (over the baseline)
for the most distant pairs (the bin corresponding
to [11, 300]). These results further demonstrate the
benefit of using silver data for hard cases.

6. Limitations

Our experiments are limited to English data. Fur-
ther experiments are needed to validate the appli-
cability of our methods to other languages. Com-
parisons are performed against the most recent
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SOTA only, due to unavailability of other models.

7. Conclusions

We addressed several key challenges in flow graph
parsing of cooking recipes. In particular, we pro-
posed ways of automatically generating additional
training data, frameworks for better evaluation, and
a simple unified end-to-end architecture for build-
ing flow graphs from recipes. We introduced an
end-to-end model for jointly tagging and parsing
recipes into flow graphs that outperformed previ-
ous approaches, made use of silver data to further
boost performance, and could be made lightweight
with negligible loss in performance. Finally, we sug-
gested a new evaluation framework to alleviate a
problem we observed in using existing small test
data for evaluation. Our goal has been to establish
standard frameworks for data generation, model-
ing, and evaluation of flow graph parsers, in order
to help the community make progress on the task
of flow graph parsing from procedural text. Future
work will look into unifying aspects of flow graphs
with other graph-based semantic formalisms, such
as abstract meaning representations (Banarescu
et al., 2013).
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9. Ethical Considerations

In this paper, we proposed an end-to-end model
for recipe flow graph parsing. Our model uses
large transformer-based pre-trained language
models, which is known for having significant
GPU/memory/compute footprint due to prolonged
training schedules. Our work builds on top of such
pre-trained models. Importantly, we show that by
using a smaller scale language model, we can
achieve state of the art parsing performance, while
significantly reducing model size. Compared to
prior art, unifying the two tasks (tagging and pars-
ing) into a single pipeline eliminates the need for
redundant computational blocks, thus greatly re-
ducing memory and compute requirements.
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