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Abstract

Natural languages show a tendency to minimize the linear distance between heads and their dependents in a
sentence, known as dependency length minimization (DLM). Such a preference, however, has not been consistently
replicated with neural agent simulations. Comparing the behavior of models with that of human learners can reveal
which aspects affect the emergence of this phenomenon. In this work, we investigate the minimal conditions that may
lead neural learners to develop a DLM preference. We add three factors to the standard neural-agent language
learning and communication framework to make the simulation more realistic, namely: (i) the presence of noise
during listening, (ii) context-sensitivity of word use through non-uniform conditional word distributions, and (jii)
incremental sentence processing, or the extent to which an utterance’s meaning can be guessed before hearing it
entirely. While no preference appears in production, we show that the proposed factors can contribute to a small but
significant learning advantage of DLM for listeners of verb-initial languages.

Keywords: neural-network based simulations, language universals, dependency length minimization, artifi-

cial language learning
1. Introduction

When several word order options are available to
convey a message, human language speakers pre-
fer the order that reduces the overall length of syn-
tactic dependencies (Arnold et al., 2000; Gildea
and Temperley, 2010; Futrell et al., 2020). The
origins of such DLM preference remain subject of
debate (Culbertson and Adger, 2014; Fedzechk-
ina et al., 2018). Is this preference acquired by
abstracting statistics from linguistic input, shaped
by cognitive biases of human information process-
ing, or arising from the pressure to communicate
efficiently? A fruitful approach to studying the in-
fluence of human cognitive biases and processes
like language learning and use in shaping linguis-
tic structure is to simulate them computationally
(De Boer, 2006; Steels, 1997). Recent advances
in machine learning and computational linguistics
have yielded powerful (neural-network based) artifi-
cial learners that can deal surprisingly well with the
complexity of human languages and can be used
to set up increasingly realistic simulations. Artificial
neural networks rely on statistical learning for ac-
quiring representations and assume minimal induc-
tive biases specialized for language. By comparing
the behavior of models with that of human learn-
ers, we can gain insights into the types of linguistic
knowledge that can be statistically learned, and
which aspects are shaped by additional cognitive
constraints or communication pressures. These
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comparisons may also reveal that neural network
models lack important human-like biases, which in
turn can explain the limited abilities of current lan-
guage models to generalize in linguistically sound
ways (Chaabouni et al., 2021; Portelance et al.,
2021; Ren et al., 2020; Warstadt and Bowman,
2022).

Previous simulation work in the context of DLM,
however, has produced contradictory patterns:
in production tasks involving miniature artificial
languages, LSTMs were found to prefer shorter-
distance dependencies (Chaabouni et al., 2019)
while pre-trained Transformers like BART and T5
were not (Zhao, 2022). These two studies, however,
are not comparable to each other due to different
architectures, (pre-)training regimes, and miniature
languages. Moreover, these studies adopted lin-
earized meaning representations which could be
implicitly biased towards shorter dependencies.

In this work, we investigate the minimal condi-
tions that lead neural learners to develop a prefer-
ence for shorter dependencies, while using a more
principled setup. To this end, we follow an artifi-
cial language learning paradigm and avoid any pre-
training of the networks to rule out that the observed
preferences are inherited by statistical properties
of real-language training corpora. Secondly, we
use miniature languages that are directly inspired
by an artificial language learning experiment with
human subjects (Fedzechkina et al., 2018), which
provides clear expectations on the results of our
simulations. Lastly, we represent meaning in a way

5819

LREC-COLING 2024, pages 5819-5832
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0



that is not biased toward any specific linear order,
following recent work on the simulation of language
universals (Lian et al., 2023).

In the standard version of this controlled setup,
we find that RNN-based learners do not show any
DLM preference in production, nor do they show
any ease of learning the shorter-dependency lan-
guages compared to their longer-dependency coun-
terparts.

We proceeded to consider three additional fac-
tors that may trigger DLM in the neural learners
while making the simulation more realistic, namely:
(i) the presence of noise during listening (Gibson
et al., 2013; Brochhagen et al., 2017; Futrell and
Levy, 2017), (ii) the strongly non-uniform nature of
word distributions and selectional preferences in
real languages (Katz and Fodor, 1963; McRae et al.,
1998), and (iii) incremental utterance processing
(Futrell and Levy, 2017; Kamide et al., 2003), i.e.
the extent to which the meaning of utterances can
be guessed before hearing them entirely. The re-
sults still fail to display a DLM preference in produc-
tion. However, we find evidence that the proposed
factors contribute to a small but significant learning
advantage of shorter dependencies for listening
agents under noisy conditions, as well as a higher
incremental listening accuracy regardless of the
presence of noise.

Our findings offer new insights into the essential
elements that contribute to the development of DLM
preferences in purely statistical, neural-network
based learners. More generally, we demonstrate
the importance of making simulations more real-
istic by considering factors, such as noise, com-
plex input distributions, and incremental sentence
processing, that are typically overlooked in neural
agent emergent communication models .

2. Background

Dependency length minimization While natural
languages exhibit a wide range of variations, cer-
tain patterns occur more frequently than expected
by chance in world languages. Many such patterns
result from a trade-off between the need to reliably
exchange information and the cost of language pro-
duction and processing (Kemp and Regier, 2012;
Gibson et al., 2019; Kirby et al., 2015). DLM, or
dependency locality, is one of the statistical lan-
guage universals that has been hypothesized to re-
sult from processing efficiency during incremental
production and comprehension and communica-
tive efficiency in sending and receiving utterances.
Hawkins (1994) proposes that reducing the linear
order between related constituents minimizes the
search time required for an incremental language

'All code and data are available at:
github.com/yuging0304/DLM_exp

https://

parser to determine the correct head of a phrase.
Another proposal (Gibson, 1998) is that long de-
pendencies exert extra pressure on working mem-
ory in both language parsing and generation by
requiring speakers to keep word representations
in the working memory for a longer time. Whether
it is due to a memory constraint or search-time
constraint, DLM is regarded as inherent to the un-
derlying language processing mechanism which
is commonly assumed to be universal rather than
dependent on a given speaker’s language. Specif-
ically, DLM refers to the tendency of natural lan-
guages to minimize the linear distance between
words linked in the grammatical head-dependent
relationships (Futrell et al., 2015). For example,
users of verb-initial languages tend to place short
postverbal constituents before long ones (Wasow,
2002). In contrast, users of verb-final languages
(i.e., languages that place the verb after its depen-
dents) typically prefer long preverbal constituents
before short ones (Yamashita and Chang, 2001).
The universality of DLM has been established by
both psycho-linguistic studies (Gibson, 1998; Grod-
ner and Gibson, 2005) and corpus-based analyses
(Cancho et al., 2004; Liu, 2008; Futrell et al., 2015).
The latter study, in particular, found that the ob-
served word orders of human languages have a
shorter dependency length than random baselines
even though the level of DLM optimization varies
considerably (Futrell et al., 2015). The origin of
DLM has also been investigated with the artificial
language learning paradigm (Fedzechkina et al.,
2018, 2020; Zhao, 2022). These studies found that
subjects exposed to novel miniature languages sys-
tematically restructured the input toward shorter
dependency lengths, regardless of the order prefer-
ences found in their native language. The artificial
languages used in our work (Figure 3) are directly
inspired from Fedzechkina et al. (2018).

Neural-network based simulations An increas-
ing number of researchers adopt neural networks
to explore the extent to which abstract linguistic
knowledge can be acquired via statistical learning,
or whether specific inductive biases are needed for
linguistic patterns to emerge. Some of these stud-
ies were specifically focused on DLM: Chaabouni
et al. (2019) trained sequence-to-sequence LSTM
agents to communicate about paths in a simple
grid world using miniature languages. Their exper-
iments show higher learning speed for the local-
dependency languages, which results in increased
production of local utterances across generations
of a simulated iterated learning procedure. Since
their meaning representation was itself a sequence,
it cannot be ruled out that the RNN sequence-to-
sequence agents were actually biased towards
languages having less reordering w.r.t. the input
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meaning sequence. In a different study, Futrell
and Levy (2019) found that RNNs trained on En-
glish texts prefer ordering short constituents before
long ones regarding several DLM-related linguistic
phenomena (heavy NP shift, particle shift, dative
alternative, and genitive alternative). Zhao (2022)
did similar tests using pre-trained transformers (i.e.
BART (Lewis et al., 2020) and GPT2 (Radford et al.,
2019)) and found these models acquire human-like
word order preferences that are consistent with the
DLM principle. However, the same models did not
show a similar preference in production tasks involv-
ing an artificial semi-English language, which might
be due to the total lack of memory constraints in the
transformer architecture (through the self-attention
mechanism). In summary, the essential elements
contributing to the emergence of DLM preferences
in neural learners remain largely unknown.

3. Experiment

We follow the Neural-agent Language Learning
and Communication framework (NeLLCom), which
was recently developed by Lian et al. (2023) for the
replication of language universals with neural learn-
ers. In this framework, neural-network agents are
trained to exchange messages in a simplified world
of agent-patient-action triplets (e.g. Tom-Jerry-
chase) using pre-defined miniature languages. Lis-
tening is defined as the process of converting a se-
quence of symbols (utterance: w) into an unordered
set of items (meaning: m), whereas speaking is
the reverse process of converting a meaning into
an utterance. After a listening/speaking training
phase based on supervised learning (SL), pairs
of agents communicate with each other using the
learnt language while maximizing communication
success via reinforcement learning (RL). Specifi-
cally, both agents’ goal is to maximize the listener’s
ability to reconstruct the intended meaning m, given
a speaker-generated utterance 4. Testing is per-
formed on meanings not observed during any train-
ing phase.

To study DLM in this work, we expose the agents
to various flexible-order case-marking miniature lan-
guages where long- and short-dependency utter-
ances occur with different distributions (illustrated
in Figure 3 and explained in detail in Section 3.2).
If the learners have an intrinsic bias towards DLM,
we expect to observe (i) a higher learning accuracy
for the language that has overall shorter dependen-
cies, and/or (ii) a speaker’s preference to produce
short-dependency utterances during testing.

3.1. Agent Architectures

The listening network has a sequence-to-linear
structure (see Figure 1). The input utterance is

passed to the listening agents’ RNN encoder? and
consumed word by word until the EOS token. The
listener then passes the last hidden state to n par-
allel linear layers, one for each aspect of the mean-
ing. Finally, each of the n elements is generated
through a softmax layer. The speaking network has
a mirrored linear-to-sequence architecture (see Fig-
ure 2).
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Figure 1: RNN-based listening agent
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Figure 2: RNN-based speaking agent

To experiment with different dependency lengths,
we expand Lian et al. (2023)’s original meaning
space composed of action-agent-patient triplets
({A,a,p}, n = 3) by adding optional modifier
phrases to agent and patient: p, and p,, respec-
tively. Each modifier phrase consists of three items
corresponding, respectively, to adposition, adjec-
tive, and inanimate noun in Fedzechkina et al.
(2018)’s experiment (e.g. by frozen river). Thus,
the resulting meaning space has n = 9.

3.2. Miniature Languages

Following Fedzechkina et al. (2018), we design
(i) a verb-initial language that has flexible order
(either verb-subject-object (VSO) or verb-object-
subject (VOS)), and nouns that can be modified
with postnominal prepositional phrases (e.g., Jerry

2Following Lian et al. (2023), we use Gated Recurrent
Units, or GRU (Cho et al., 2014) in all experiments. In
the preliminary phase of our experiments, we observe
similar results obtained from LSTM and GRU models.
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Verb-Initial Condition

Verb-Final Condition

Subject Modified (SM) Meaning: CHASE TOM ON GREY SKIBOARD JERRY NONE NONE NONE

5

1
Utterance-VSO: chase
| Verb |

Tom on grey skiboard Jerry mk

| Short Dependent |

| Long Dependent |

2
1

Utterance-VOS: chase Jerry mk
| Verb | | Short Dependent |

Long Dependent |

|
Tom on grey skiboard *i Utterance-OSV: Jerry mk
|

2

Object Modified (OM) Meaning: CHASE TOM NONE NONE NONE JERRY BY FROZEN RIVER
5

2
1

Utterance-VSO: chase Tom
| Verb | | Short Dependent |

5
71N
Utterance-VOS: chase Jerry mk by frozen river om

| Verb |

| Long Dependent |

| Long Dependent | | Short Dependent |

|
Jerry mk by frozen river * i Utterance-SOV: Tom

Utterance-OSV: frozen river by Jerry mk Tom

Utterance-SOV: grey skiboard on Tom Jerry mli chase *
| Long Dependent | | Short Dependent | | Verb |
5
1
grey skiboard on Tom chase
| Short Dependent | | Long Dependent |
1
frozen river by Jerry mk chase
| Short Dependent | | Long Dependent |
2
NS

chase
| Short Dependent | | Verb |

| Long Dependent |

Figure 3: The miniature languages used in our simulations, inspired from Fedzechkina et al. (2018). Case
marking (‘mk’) occurs after all objects. Shaded parts contain utterances expressing the same meaning.
Curved arrows represent grammatical dependencies between the verb and its two dependents. Numbers
represent dependency lengths, measured in words. Since the relative positions of other constituents
stay the same for each condition, we operationalize DLM as minimizing the linear distance between the
verb and the head of subject and the head of the direct object. Total dependency length is minimized
(starred) by placing short-before-long dependents in the verb-initial language (left), and vice versa by
placing long-before-short dependents in the verb-final language (right). For simplicity, case markers are

not counted when calculating dependency length.

by frozen river for the meaning describing the scene
JERRY BY FROZEN RIVER; (ii) a verb-final language
that also has flexible order (SOV/OSV), and nouns
that can be modified with prenominal prepositional
phrases (e.g., frozen river by Jerry for the mean-
ing JERRY BY FROZEN RIVER). The ordering of the
adposition (e.g., by) relative to its dependent (e.g.,
frozen river) and head (e.g., Jerry) follows the typo-
logically frequent distribution (e.qg., frozen river by
Jerry for JERRY BY FROZEN RIVER in the verb-final
language) (Fedzechkina et al., 2018, 2020; Zhao,
2022).

The meanings are descriptions of scenes that
have only one long constituent (i.e. only sub-
ject or object has adpositional-phrase modifica-
tion). For all languages, half of the meanings
are subject-modified (SM), while the other half
are object-modified (OM). The subject and object
are never the same within a single meaning. For
each meaning, there are two possible utterance
orderings (SO or OS). For all local languages, i.e.,
skewed local and uniform_local, utterances are
generated by placing short dependents closer to
the head verb (see Figure 3, starred utterances).
Similarly, for long languages, i.e., skewed_long and
uniform_long, utterances are generated by plac-
ing long dependents closer to the head verb (see
Figure 3, non-starred). For languages mixed with
both local and long dependency utterances, i.e.,
skewed and uniform, we sample half of the subject-

modified meanings and then generate local depen-
dency utterances, then generate long dependency
utterances for the other half of the subject-modified
meanings. We repeat the same steps for object-
modified meanings. See Figure 3 for an illustration
of both languages.

The two languages share a common lexicon con-
sisting of six transitive verbs, six animate nouns,
four adpositions, three adjectives, and three inan-
imate nouns, leading to vocabulary size |V| of
6+6+4+3+3+1(marker)=23.

3.3. Noisy Communication

Real-life communication between speakers and
listeners is often subject to various sources of
noise and errors that occur during transmission,
for instance due to external factors or limited lis-
tener attention (Gibson et al., 2013; Brochhagen
et al., 2017). While this aspect is not often consid-
ered when designing neural network agent-based
simulations (but see Ueda and Washio (2021);
Chaabouni et al. (2022) for exceptions), it may play
an important role in the emergence of DLM and
other universals. Notably, Futrell and Levy (2017)
found that a model of sentence processing in which
the context is noisy predicts that short dependency
sentences will be easier to process.

To simulate noise, we adopt a word dropout
technique with dropout rate ¢ with which randomly
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chosen parts of the input are masked to the listener.

§ ~ Bernoulli(p), p € {0,0.1,0.2} (1)
Specifically, words that are sampled by a Bernoulli
distribution (with probability p ranging from 0 to 0.2
in our setup) get their word embedding replaced
by that of a dummy mAsk token which is never up-
dated during training (Gal and Ghahramani, 2016;
Sennrich et al., 2016).

While probabilistic dropout is commonly used to
avoid overfitting when training neural networks, we
apply it here to both training and testing to simulate
what listeners will encounter during their learning
and communication. This approach allows us to
more accurately replicate real-world communica-
tion scenarios, where listeners must rely on vari-
ous cues and context to comprehend the speaker’s
message under imperfect transmission conditions.

3.4. Conditional Word Distributions

Artificial language learning experiments with hu-
man participants or neural agents typically assume
meaning spaces where all items are uniformly dis-
tributed (Fedzechkina et al., 2016). In reality, how-
ever, human languages exhibit highly skewed word
frequency distributions resembling Zipfian patterns.
Moreover, certain word combinations tend to co-
occur much more frequently than others, an es-
pecially well-known tendency for verbs and their
arguments, called selectional preference (Katz and
Fodor, 1963). More generally, Futrell et al. (2019)
demonstrated that syntactic heads and their depen-
dents are characterized by word pairs with espe-
cially high mutual information.

Incorporating more realistic input distributions in
artificial language learning simulations may be cru-
cial to ensure generalizability of findings to real lan-
guages (Hupkes et al., 2019). In our context particu-
larly, endowing head-dependent pairs with realistic
statistical properties may be needed to simulate
the emergence of DLM. In fact, while human sub-
jects have a pre-existing notion of head-dependent
relations and are likely to recognize such relations
in the novel artificial language provided in the lab,
our neural learners have no prior experience of lan-
guage or the world and simply perceive sequences
of random symbols at the beginning of training.

By introducing verb-subject/object selectional
preferences in our language design, we test
whether shorter dependencies may strengthen the
listener’s ability to recover missing bits of a sen-
tence by relying on the presence of frequently co-
occurring words in the nearby context. Concretely,
we construct a skewed and a uniform version of
the verb-initial and verb-final languages. In the
skewed version, we account for the tendency of
certain animate nouns to co-occur more frequently

with specific verbs, as well as their varying proba-
bilities of taking agent or patient roles given each
transitive verb. Thus, animate nouns have differ-
ent probabilities of being agent or patient given a
particular verb. To generate the skewed version of
each language, we use the following discrete distri-
butions which roughly correspond to six equally
spaced sample points from the Zipf distribution
(Zipf, 1949), as shown in Equation 2 (/V stands for
the number of elements; k is the rank counting from
1; s is the exponent parameter). We set the number
of elements N as 6 and the exponent parameter
s as 1.5: Pagent = [0.55,0.19,0.11,0.07,0.05,0.04]
for the probabilities of six randomly shuffled ani-
mate nouns being the agent given each verb, and
the same distribution for the probabilities of six ran-
domly shuffled animate nouns being patient given
each verb.

1 1
Hy o ks

f(k;s,N) = (2)
By contrast, the uniform versions assign an
equal probability to all animate nouns for be-
ing agents or patients with each verb, i.e.,
Pagent = [1/6,1/6,1/6,1/6,1/6,1/6], and similarly
for Ppatient-

For simplicity, all meaning items, except for sub-
ject and object, occur with uniform probability.

3.5. Data and Model Training

We train the agents on six different types of lan-
guage (skewed local, skewed, skewed long, uni-
form_local, uniform, uniform_Jlong) to study the in-
terplay between DLM and the above-mentioned
factors. To study speakers’ production preferences
after learning and communication, we focus on the
skewed and uniform languages, which have 50%
long- and 50% short-dependency utterances. A to-
tal of 1418 meaning-utterance pairs are generated
for each language. The data generation process is
explained in detail in Appendix A.

To evaluate the agents’ ability to convey new
meanings, we split the dataset into 66.7% for train-
ing and 33.3% for testing purposes.

The speaker network has an 8-dimensional em-
bedding layer followed by a 64-dim. GRU layer.
The listener has an 8-dim. embedding followed by
a 64-dim. GRU layer. Training used a batch size of
32 and was limited to maximum 60 epochs. Learn-
ing rate was set to 0.01. Experiments are repeated
with 40 random seeds for each language type.

3.6. Evaluation Metrics

Speaking Accuracy measures whether a gener-
ated utterance fully matches the one in the dataset
(1) ornot (0). For languages that combine short and
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long dependencies and therefore have two accept-
able utterances to express the same meaning, we
count 1 if any of the two gold utterances is matched,
otherwise 0°.

Listening agents are evaluated by meaning item-
level accuracy, which is the proportion of the 9
meaning items ({A, a, p, uk, p2, 3, ull), M;QN ,ufj}) that
are correctly predicted by the listener, averaged
over all test utterances.

To analyse the experimental measures, we fit
Bayesian multilevel linear models using the brms
(Burkner, 2017) package in R (R Core Team, 2023).
Our data involves complex structures where multi-
ple observations of accuracy measures are nested
within various experimental conditions and these
models provide a robust framework for analyzing
such data. We investigate the impact of epochs
(centered at the final epoch), conditional word distri-
butions (categorical: skew or uniform), noise levels
(categorical: dropout 0, 0.1, or 0.2), and depen-
dency conditions (categorical: local, mixed, or long)
on both speaking and listening accuracy. Values
for epoch were centered so that the intercept is
focused on agents’ learning performance at the
end, thereby ensuring that measured effects rep-
resent relationships between variables concerning
the final stable stage. Therefore, in our statistical
analysis, the reference point of epoch 0 represents
the final point of the epochs instead of the first
epoch. Importantly, we accounted for all possible
interaction terms among these factors to capture
relationships within the data. Default priors of the
brms package were used for all models. All mod-
els included four chains with 4,000 iterations each
and a total of 2,000 post-warm-up samples.

Additionally, we measure incremental listen-
ing accuracy by letting trained listeners process
varying-length prefixes of the utterances. This is
inspired by the fact that human listeners process
incoming input sentences incrementally without de-
lay and unfold parts of meaning when the input
is still incomplete (Kamide et al., 2003; Altmann
and Mirkovié, 2009; Futrell and Levy, 2017). For
instance, for length 2 in the utterance ‘chase Tom
behind white door Jerry mk’, we feed the prefix
‘chase Tom’ to a listening agent, which encodes
it into a hidden state via RNN and uses this to
predict the full intended meaning of the utterance.
Incremental listening accuracy is then calculated
similarly to item-level accuracy, but for each prefix
length. Note that we only apply incremental accu-
racy at test time. Using this metric as a reward to
optimize listening agents (Rita et al., 2020) is an
interesting avenue for future work.

All plotted accuracies are computed over the un-
seen test set and averaged over all random seeds.

3This corresponds to the permissive accuracy ap-
proach used to evaluate speakers in Lian et al. (2023).

4. Supervised Learning Results

This section presents the results of training speak-
ing and listening agents on languages with vary-
ing proportions of short/long dependencies, and
their interplay with the presence of noise and non-
uniform conditional word distributions.

4.1. Speaking Agents

During SL, long-dependency languages are
learned equally well at the end as local-dependency
languages (see Figure 4 (left) for the verb-initial lan-
guages, mostly similar results were found for the
verb-final languages (see Appendix B for some dif-
ferences).

1.0
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Figure 4: (a) Speaking accuracy as a function of
training epoch for verb-initial languages. (b) Pro-
duction patterns of speaking agents after learning
the verb-initial skewed language. Color denotes
word order (blue: OS, red: SO). Shading denotes
dependency length (dark: local, light: long). Utter-
ances not belonging to these categories are colored
in grey.

Languages with mixed dependency utterances
were found to be harder to learn for speaking
agents. Specifically, statistical analyses showed
significantly lower speaking accuracies in verb-
initial languages with mixed dependency utterances
compared to those with local dependency utter-
ances (b = -.042, Bayesian 95 % Credible Interval
[-.058, -.026]). Similarly, for verb-final languages,
languages with mixed dependency utterances led
to lower speaking accuracies compared to their
counterparts with local dependency utterances (b
=-.039, 95 % CI [-.055, -.023]). These differences
possibly result from the high variation and entropy
of languages with mixed dependency utterances.

Production preferences of speaking agents at
the end of training (Figure 4, right) show that RNN
learners preserve the distribution of long/short de-
pendencies found in the training data, thus not dis-
playing any DLM in a purely SL setting. This is
in contrast with Chaabouni et al. (2019)’s results
with sequence-to-sequence agents, but aligns well
with previous studies showing that neural learners
exhibit strong probability-matching behavior after
SL (Lian et al., 2021, 2023).
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4.2. Listening Agents

Figure 5 shows average listening accuracy under
different noise conditions (word dropout O: no noise,
0.2: maximal noise).
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Figure 5: Listening accuracy (meaning item-level)
as a function of training epoch. Color denotes word
frequency distribution (blue: skewed, orange: uni-
form). Darkness denotes the length of dependency
(dark: local, light: long). Results in this and subse-
quent plots are averaged over 40 random seeds.

Interplay between noise and DLM  Results show
that for verb-initial languages, listening accuracy is
significantly lower when noise is present or when
languages are of the long or mixed dependency
type. Specifically, listening accuracy is substan-
tially reduced by .050 under the noise level of 0.1
(b =-.050, 95 % CI [-.059, -.040]) and by .111 under
the noise level of 0.2 (b = -.111, 95 % CI [-.120,
-.101]) compared to no noise conditions. Compared
to local dependency languages, listening accuracy
is .022 lower for those of the long dependency type
(b =-.022, 95 % ClI [-.031, -.012]), and .010 lower
when the language is of mixed dependency type (b
=-.010, 95 % CI [-.020, -.001]). This indicates that
the learning accuracy of local verb-initial languages
surpasses that of long and mixed languages (/o-
cal>mixed>long). In addition, the advantage of
the local dependency language over the long de-
pendency one becomes stronger as the learning
process progresses through successive epochs or
as the noise level is increased, as evidenced by
the two-way interaction between epoch and long
dependency language type (b = -.029, 95 % ClI
[-.044, -.014]) and interaction between the dropout
level 0.1 and long dependency language (b = -
.015, 95 % CI [-.028, -.002]). Moreover, as the
learning process progresses through successive
epochs, we observed a significant three-way inter-
action between epoch, noise, and long dependency
language type. Specifically, the detrimental effect
of noise on listening strengthens over time for verb-

initial long-dependency languages (dropout 0.2: b
=-.033, 95 % CI [-.055, -.012]).

Though the difference is small, it suggests that
verb-initial languages with shorter dependency
lengths might be easier to learn for RNN-based
neural agents when noisy conditions are provided.

By contrast, in the verb-final languages, only
noise (e.g., dropout 0.2: b =-.109, 95 % CI [-.116,
-.103]) is a significant predictor of listening accuracy
apart from epochs. While local and long languages
are learned equally well without noise, a significant
interaction between the noise level 0.2 and the long
dependency language (b = .016, 95 % CI [.007,
.024]), indicates that long dependency languages
are learned better than local ones with noise. In-
terestingly, in their large-scale corpus study, Futrell
et al. (2015) also reported that real verb-final lan-
guages tend to show less DLM compared to verb-
initial languages, which instead seem to be highly
optimized for efficient processing. In addition, this
finding aligns with Jing et al. (2022)’s refined formu-
lation of dependency length optimization since the
DLM principle fails for certain verb-final languages.

Interplay between noise and conditional word
distributions The presence of noise affects the
learning accuracy of uniform languages more
severely than languages with skewed conditional
word distributions (see Figure 5). This holds for
both verb-initial and verb-final languages. Specifi-
cally, the Bayesian models show that noise interacts
with word distributions. In the absence of noise,
listeners achieve a similar level of accuracy when
learning uniform and skewed languages. However,
with increasing levels of noise, the listening accu-
racy of skewed languages is higher compared to
no noise (dropout 0.2, verb-initial: b = .023, 95 %
CI[.010, .036]; dropout 0.2, verb-final: b =.017, 95
% CI[.008, .026]), suggesting that selectional pref-
erences are indeed used as extra cues to recover
the intended meaning from context. For example,
the presence of certain verbs (e.g. teach) suggests
that a specific animate noun (e.g. professor) is a
more probable candidate for the agent vs. patient
of an utterance.

Per-category listening accuracy of verb-initial
languages Languages with skewed conditional
word distributions are less affected by noise than
uniform languages, with overall listening accuracy
remaining higher for skewed languages under in-
creasingly noisy conditions. Here we zoom in on
the accuracy of specific meaning items in a verb-
initial language, by plotting listening accuracy sep-
arately for each individual meaning item as a func-
tion of training epoch in Figure 6. We find that the
advantage of the skewed languages under word
dropout 0.2 concentrates on Action, agent, and
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Figure 6: Verb-initial language: Listening accu-
racy computed separately for each individual mean-
ing item, as a function of the training epoch. We see
similar results for {u, u2, 3, pu),, 2, p3}. There-
fore, only 11} and 1, are plotted here for illustration.

patient accuracy, but does not affect the modifiers.

Incremental listening accuracy As shown in
Figure 7, in verb-initial languages, shorter-
dependency languages are overall advantaged in
terms of incremental accuracy. Specifically, accu-
racy of long and local languages is comparable until
a prefix of length 3, but improves much faster for
local languages after that. The general trend with
increasingly long prefixes is that the accuracy starts
off similar, then becomes different in the middle and
eventually converges again by longer prefix or full
sentences. This observation suggests that in verb-
initial languages, the disambiguation of meanings
related to local dependencies tends to occur earlier

in the sentence. The language with mixed long and
local dependency utterances (skewed or uniform),
presents an intermediate level of complexity since
it includes both types of utterances.
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Figure 7: Incremental listening accuracy (meaning-
item level) as a function of prefix length.

In verb-final languages, we find a reversed
pattern: with increasing prefix length, the long-
dependency utterances are advantaged in the be-
ginning before converging around length 5. This
could result from the tendency in local utterances
of verb-final languages to start with a relatively long
prenominal prepositional phrase, not revealing any
information about the head and its dependents until
later.

5. Communication Learning Results

We investigate here whether the slight learning ad-
vantage observed for short-dependency languages
in verb-initial languages could lead to a progres-
sively stronger DLM of our languages across re-
peated RL communication rounds.

The results across 40 random seeds show a
consistent behavior of regularizing towards one
word order, but not towards shorter dependencies.
Figure 8 shows the production preferences of two
representative pairs of speaking/listening agents
trained on the skewed language without dropout.*
These show two opposite regularization strategies:
the first agent pair (a) quickly stops producing VOS
utterances and regularizes to VSO order, whereas
the second pair (ii) regularizes to VOS order. In
both cases, the distribution of local vs. long de-
pendencies remains uniform and the production
patterns of other seeds all resemble either one of
these two cases (cf. Appendix C).

We note that, in the language design we inherited
from Fedzechkina et al. (2018), word order regu-

“The production patterns of other seeds and for other
settings (uniform languages, with dropout) are all similar
in terms of regularization strategies.
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Figure 8: Individual production patterns of two se-
lected speaking agents during RL for the verb-initial
skewed language, no dropout. Color denotes word
order (blue: OS, red: SO). Shading denotes depen-
dency length (dark: local, light: long). Utterances
not belonging to these categories are colored in
grey. (a): Regularization towards SO word order.
(b): Regularization towards OS word order. Mean-
ing reconstruction accuracy per epoch is shown by
the blue line.

larization is in direct competition with dependency
length regularization. This did not turn out to be
a problem in their experiments, perhaps because
human subjects do not have a strong tendency
to regularize word order in the presence of case
marking, as observed by Fedzechkina et al. (2017).
However, neural agents were previously observed
to reduce word order entropy when communicating
(Lian et al., 2023), and this could explain why DLM
does not emerge in our communication setup.

6. Discussion

Neural-agent simulations of artificial language
learning are a promising approach to study the
origins of many language universals, however, de-
signing realistic simulations is essential to ensure
the generalizability of findings to real languages.
In this work, we focused on dependency length
minimization (DLM) and suggested three important
factors of human language processing and com-
munication that should be included in the experi-
mental setup: the presence of noise, non-uniform
conditional word distributions, and the importance
of incremental utterance processing. We found ev-
idence that the proposed factors contribute to a
small but significant learning advantage of shorter
dependencies for listening agents of verb-initial lan-
guages. Specifically, 1) under noisy conditions,
listeners learn the short-dependency verb-initial
language slightly better and faster than the long-
dependency one; 2) the presence of noise affects
the learning accuracy of uniform languages more
severely than languages with skewed conditional
word distributions. 3) the verb-initial local language
shows an advantage over the long one when eval-
uated incrementally.

In contrast, we don’t see the same results for
verb-final languages, where we even see a slight
advantage for long dependency languages, both
in SL with noisy conditions and in the beginning
during incremental processing. Interestingly, as
mentioned before, prior corpus studies have also
shown that the DLM principle doesn’t always apply
to verb-final languages (Futrell et al., 2015; Jing
et al., 2022).

For the speaking agents, we see no regulariza-
tion behavior towards DLM after SL, nor during com-
munication (RL). A possible reason is that in our
language design, languages with a mix of long- and
short-dependency utterances have both word order
alternatives to describe subject-modified scenes
and the same for object-modified scenes, making
it impossible for neural learners to regularize both
word order and dependency length. Under the
current setting, our learners seem to prefer the for-
mer over the latter. Future work could modify the
miniature language design so that both types of
regularization can happen concurrently.

Another possible solution may lie in the imple-
mentation of memory constraints (Vogelzang et al.,
2017), which have been proposed to be the main in-
fluencing factor for DLM in humans (Gibson, 1998;
Futrell et al., 2020). Although RNNs must compress
all processed information into a fixed-size hidden
representation, their memory limitations may not be
severe enough to induce a preference for placing
the head verb and its dependents close to each
other in our miniature languages, even when these
items are useful to restore missing parts of the input
in noisy conditions. Additionally, though RNNs have
inherent structural sequence-processing memory
biases, the precise process necessary to make
such memory constraints human-like is still a de-
bated topic. We are aware of one very relevant
proposal for a more cognitively plausible, memory-
limited neural architecture (Timkey and Linzen,
2023), which appeared concurrently to our work.
In future work, a more explicit control of memory
constraints, for instance through the use of masked
self-attention in transformer-like architectures, limit-
ing models’ contextual access explicitly, or using a
more cognitively plausible, memory-limited neural
architecture, could shed more light on the origins
of DLM and other language universals.
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A. Data Generation Details

For data generation, we first generate meanings
containing all combinations of adpositions, adjec-
tives, and inanimate nouns. Then for the skewed
language type, we combine all previously gener-
ated meanings with the most probable subject. For
the remaining subject candidates, we sample the
previously generated meanings and then combine
these meanings with subject candidates based on
the probability ratio. Then we repeat this step to
add the meaning category of the patient. Generat-
ing data by this simple method can guarantee that
items in categories other than Action, agent, and
patient occur with equal probability and the con-
ditional frequencies of Action, agent, and patient
strictly obey the selected discrete skewed distribu-
tion. For the uniform version, we generate all pos-
sible combinations of verbs, subjects, objects, and
their modifiers. Then randomly sample an equal
number of meanings.

B. Differences in learning curves for
speakers of verb-initial and
verb-final languages

Though mostly similar results were found for verb-
initial languages and verb-final languages, we ob-
serve a larger increase in accuracy as the training
progresses with additional epochs for both local
and uniform verb-final languages (see Figure 9),
as evidenced by the significant interaction between
epoch and skewed distribution (b = -.046, 95 % CI
[-.074, -.018]), and the interaction between epoch
and long dependency language type (b = -.042,
95 % CI [-.071, -.013]). No significant interactions
have been found for verb-initial languages. This
suggests that for verb-final languages the learning
curves for both local and uniform languages are sig-
nificantly steeper than long and skewed languages.
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Figure 9: Speaking accuracy as a function of train-
ing epoch for verb-final languages.

C. Individual Production Patterns

This appendix includes the production patterns of
40 speaking agents (random seeds) during com-
munication learning for the verb-initial skewed lan-
guage, no dropout (Figure 10). Around half reg-
ularize towards SO word order and another half
regularize towards OS word order. The produc-
tion patterns of other seeds and for other settings
(verb-final, uniform languages, with dropout) are all
similar in terms of regularization strategies.
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Figure 10: Production patterns of different speaking agents (random seeds) during communication learning
for the verb-initial skewed language, no dropout. Color denotes word order (blue: OS, red: SO). Shading
denotes dependency length (dark: local, light: long). Utterances not belonging to these categories are
colored in grey. Meaning reconstruction accuracy per epoch is shown by the blue line. Around half
regularize towards SO word order and another half regularize towards OS word order. Subplots are
organized manually to highlight groupings of comparable trajectories.
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