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Abstract
This paper introduces a new task, abstractive multi-video captioning, which focuses on abstracting multiple videos
with natural language. Unlike conventional video captioning tasks generating a specific caption for a video,
our task generates an abstract caption of the shared content in a video group containing multiple videos. To
address our task, models must learn to understand each video in detail and have strong abstraction abilities
to find commonalities among videos. We construct a benchmark dataset for abstractive multi-video captioning
named AbstrActs. AbstrActs contains 13.5k video groups and corresponding abstract captions. AbstrActs is
available at https://github.com/ku-nlp/AbstrActs. As abstractive multi-video captioning models, we explore
two approaches: end-to-end and cascade. For evaluation, we proposed a new metric, CocoA, which can evaluate
the model performance based on the abstractness of the generated captions. In experiments, we report the impact
of the way of combining multiple video features, the overall model architecture, and the number of input videos.
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1. Introduction
Video captioning has attracted much attention as
a fundamental task in vision-and-language re-
search (Li et al., 2019; Aafaq et al., 2019b; Krishna
et al., 2017). In the standard setting, models are
presented with a video and generate a sentence
that describes its content (Venugopalan et al.,
2015b). In another popular setting, called dense
video captioning (Krishna et al., 2017), models ex-
tract clips from the video, each representing a dis-
tinct event, and generate a caption for each clip.
In both settings, the focus is on describing a given
single video in detail.
In this paper, we shed light on another important
aspect of video comprehension: abstractive video
understanding. To elaborate, we examine the two
videos in Fig. 1. We can, for example, describe the
left video as “adults in sportswear are dancing in
front of a mirror” and the right video as “elementary
school girls are dancing in a gym.” However, we
can also abstractly comprehend both videos and
collectively describe them as “a group of people is
dancing in a gym.” Such abstractive understand-
ing is the key to identifying commonalities among
videos.
Abstractive video understanding can help analyze
large amounts of video data. One effective way to
analyze large amounts of video data is video clus-
tering (Jain, 2010). Auto-labeling to video clusters
is a direct application of abstractive video under-
standing. Auto-labeling is necessary because it
is difficult to know the common content of videos
in each cluster and the tendency of a large num-
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Abstraction

A group of people is dancing in a gym.

Figure 1: Example of abstractive multi-video cap-
tioning. The inputs are multiple videos. The output
is the caption that describes the shared informa-
tion in the videos.

ber of clusters. Abstractive video understanding
can identify and describe the shared information
in videos, i.e., it can generate a label from a video
cluster, which can promote video data analysis.1
Unfortunately, abstractive video understanding is
difficult to learn through conventional video cap-
tioning. This is because conventional video cap-
tioning focuses on providing diverse and concrete
descriptions of a single video (Aafaq et al., 2019b;
Li et al., 2019). Therefore, in order to learn to ab-
stract video content appropriately, we need to con-
sider a task focusing on information abstraction.
In this paper, we propose a new task, abstractive
multi-video captioning, for abstractive video under-
standing. This task requires that models describe
information shared by multiple videos as much as

1Although generating captions for each video with
conventional models and then summarizing them can
be another way, we show that abstractive video cap-
tioning performs significantly better.

https://github.com/ku-nlp/AbstrActs
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possible. In order to solve this task, models need
to not only understand each video in detail but also
have strong abstraction abilities to find commonal-
ities among videos.
We construct AbstrActs, a dataset for abstractive
multi-video captioning. AbstrActs consists of video
groups, their corresponding abstract captions, ab-
stractness scores of the abstract captions, and
scores representing the degree of agreement be-
tween the video and the caption.
We explore model variants for the task and eval-
uate their performance on AbstrActs. Specifically,
we investigate the impact of the way of combining
multiple video features, the overall model architec-
ture (end-to-end and cascade), and the number of
input videos.2 For evaluation, we propose a new
metric, CocoA, which evaluates the model perfor-
mance based on the correlation coefficient of ab-
stractness scores between abstract captions and
generated captions.

2. Related Work
We discuss video captioning datasets, video
captioning models, and multi-image vision-and-
language tasks.

2.1. Video Captioning Datasets
Over the past few years, several datasets have
been constructed for video captioning. The most
widely-used datasets include HowTo100M (Miech
et al., 2019), VATEX (Wang et al., 2019),
MSR-VTT (Xu et al., 2016), and MSVD (Chen
and Dolan, 2011). HowTo100M is by far the
largest video-caption dataset, containing 136M
video-caption pairs and 23k types of actions.
HowTo100M is used for pretraining vision-and-
language models. VATEX, which is the source
data for AbstrActs presented in this paper, is char-
acterized by its large number of captions. VATEX
has ten English and ten Chinese captions for each
video. VATEX has 41, 250 videos and 412, 500 En-
glish captions in total.
ActivityNet Captions (Krishna et al., 2017) and
YouCook2 (Zhou et al., 2018) are datasets for
dense video captioning with multiple captions cor-
responding to video clips, each of which corre-
sponds to a single event happening in the video.
YouCook2 is a dataset with captions for long, un-
segmented videos restricted to the cooking do-
main. YouCook2 contains 2, 000 videos describing
89 different cooking recipes for 176 hours.

2.2. Video Captioning Models
Video captioning models are given a video and
generate the caption. First, video captioning mod-

2Codes for our models are available at
https://github.com/ku-nlp/
Abstractive-Multi-Video-Captioning

els extract video features using pretrained video
encoders, typically constructed as either a CNN-
based model (Tran et al., 2015; Carreira and Zis-
serman, 2017; Xie et al., 2018) or Transformer-
basedmodel (Dosovitskiy et al., 2021; Arnab et al.,
2021; Luo et al., 2021; Liu et al., 2022; Berta-
sius et al., 2021). Most previous studies rely on
CNN-based video encoders (Wang et al., 2018;
Aafaq et al., 2019a; Zhang and Peng, 2019),
but Transformer-based models are becoming pop-
ular in recent studies (Luo et al., 2020; Tang
et al., 2021; Lin et al., 2022). Then, extracted
video features are processed to generate cap-
tions. To this end, while early studies rely on
LSTM-based models (Gao et al., 2017; Pan et al.,
2017; Yan et al., 2019), recent studies increasingly
use Transformer-based models (Zhou et al., 2018;
Wang et al., 2018).
Note that the main focus of existing video caption-
ing models, as well as datasets, is to make the
specific content of a single video recognizable and
to generate accurate captions. In this paper, we
rather focus on understanding video information
abstractly.

2.3. Multi-image Vision-and-Language
Tasks

There are a handful of studies on vision-and-
language tasks considering multiple images.
ISVQA (Bansal et al., 2020) is a task of visual
question answering from multiple images. The
model answers natural language questions given
multiple images showing the same location from
different views. Context-aware group captioning is
a task of image group captioning (Li et al., 2020b).
The model generates a caption that summarizes
multiple target images in the context of another
group of related reference images.
Our task focuses on generating a caption from
multiple videos and thus can be viewed as a tem-
poral extension of previous studies on multi-image
language generation tasks.

3. Task Definition
Abstractive multi-video captioning is a task to gen-
erate an abstract caption for multiple videos. The
input is a video group G with n videos. The output
is an abstract caption y that describes the shared
content of the video group G as much as possible.
Our goal is to learn an abstractive multi-video cap-
tioning model pθ(y|G) from training data, where θ
is the set of model parameters.
Fig. 1 shows an example of abstractive video cap-
tioning. The caption “A group of people is danc-
ing in a gym.” is a good abstract caption for the
video group; the phrase “a group of people” appro-
priately abstracts “adults in sportswear are danc-
ing” shown in the left video and “elementary school

https://github.com/ku-nlp/Abstractive-Multi-Video-Captioning
https://github.com/ku-nlp/Abstractive-Multi-Video-Captioning
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Abstractness Score

Abstract Caption a person is doing an exercise in a gym

Video Group
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TER Scores 10                    ...                  8

Figure 2: Sample of AbstrActs. AbstrActs is built
from VATEX (Wang et al., 2019).

girls” shown in the right video, describing the com-
monalities between them.
We define a well-abstracted caption as a sentence
that explains the shared information of multiple
videos as much as possible. Note that we do not
allow over-abstraction. This is because highly ab-
stract captions such as “People are doing some-
thing.” are not helpful. However, if we consider
abstractive single-video captioning, it is difficult to
determine if a caption is overly abstract because
the clear criterion is hard to establish. This is why
we consider abstractivemulti-video captioning; we
consider the minimum level of abstraction at which
commonalities among given videos can be found
to be the criterion for over-abstraction. Thus, in our
task, the caption “People are doing something.”
for the video group in Fig. 1 is regarded as an
overly abstract caption as it violates the require-
ment that the shared content must be described
as much as possible.

4. Dataset Construction
We construct a new dataset for abstractive video
captioning named AbstrActs. Fig. 2 shows an ex-
ample in AbstrActs. An example consists of a
video group, a human caption, abstractness, and
TER scores. A video group is a collection of videos
that have commonalities. A human caption is a
manually assigned abstract caption for the video
group. We use human captions as gold labels of
abstractive multi-video captioning. Abstractness
is a score that indicates the degree of abstrac-
tion of an abstract caption. A TER score indicates
the content agreement between each video in the
video group and the abstract caption, calculated
using an off-the-shelf textual entailment recogni-
tion (TER) model. We use TER scores to evaluate
the quality of abstract captions and filter out noisy
data.
AbstrActs is built from VATEX (Wang et al., 2019).
First, we construct video groups by performing a
similarity search on videos in VATEX. Then, we
use crowdsourcing to assign human captions to
the video groups. Next, we define and calculate
the abstractness of each abstract caption. Finally,
we calculate TER scores using a TER model.

4.1. Video Group
We collect video groups, each of which contains
videos with shared information, by performing
video retrieval on the videos in VATEX. First, we
extract video features of all videos using a pre-
trained video encoder. In this study, we employed
the CLIP4Clip (Luo et al., 2021) model. Then,
we group videos by performing a k-nearest neigh-
bor search on video features. We retrieve the top
six similar videos for every video to form a group.
Considering that the number of videos should be
greater than the minimum problem set at two, we
decided on six as the number of videos in the video
group. We used Faiss (Johnson et al., 2019) to
perform a k-nearest neighbor search.

4.2. Abstract Caption
We use crowdsourcing to annotate video groups
with abstract captions. In order to increase the
reliability and uniformity of abstract captions, we
instruct crowdworkers to keep the following rules:
(1) Do not write captions that describe the content
that does not appear in the videos. (2) Do not write
captions that simply list the events in each video.
(3) Do not write captions that sum up the number
of people or objects for each video. The instruc-
tion part of the crowdsourcing interface is shown
in Appendix A.
To prevent over-abstraction in abstract captions,
we also instructed crowdworkers to write a well-
abstracted caption that explains the shared infor-
mation of multiple videos asmuch as possible. We
assigned one annotator to each video group, and
the annotators varied by video group. After repeat-
ing annotations with 50 video groups and instruc-
tions improvements, we confirmed that the anno-
tated captions correctly describe the shared video
content. Then, we started the annotation of the
remaining video groups.

4.3. Abstractness Score
We define the abstractness score for investigating
the abstractness of abstract captions in AbstrActs.
Each video in VATEX has ten captions annotated.
The abstractness score is calculated between the
abstract caption annotated by crowdworkers in our
work and the original video captions in VATEX in
a video group. Each video group only has one ab-
stractness score.
We use WordNet (Miller, 1995) to calculate an ab-
stractness score. WordNet is a lexical database of
English. Words are grouped into sets of cognitive
synonyms (synsets). Super-subordinate relations
among synsets are organized as a tree structure.
We use the distance on the tree for calculating an
abstractness score.
We define the similarity between word w1 and
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word w2 as follows:

similarity(w1, w2) =
1

1 + path(syn(w1), syn(w2))
(1)

path(syn(w1), syn(w2)) is the number of edges of
the shortest path between two synsets on the tree.
We calculate an abstractness score a by following
equations:

a = 1− f(Wa, V ) (2)
f(Wa, V ) = mean

Wv∈V
g(Wa,Wv) (3)

g(Wa,Wv) = mean
wv∈Wv

h(Wa, wv) (4)

h(Wa, wv) = max
wa∈Wa

similarity(wa, wv) (5)

Wa is a set of nouns and verbs that appears in an
abstract caption. V is a set of captions for a video
in a video group. Wv is a set of nouns and verbs
that appears in a caption of a video. wv is a word
in Wv. wa is a word in Wa.
The abstractness score is a real number that
ranges from 0 to 1. A higher abstractness score
means a greater semantic difference between an
abstract caption and a video caption.

4.4. TER Score
Textual entailment recognition (TER) is the task
of determining the entailment relationship between
two sentences. Given a premise sentence and a
hypothesis sentence, models determine whether
the hypothesis sentence is true (entailment), false
(contradiction), or undetermined (neutral), sup-
posing that the premise sentence is true (Storks
et al., 2019).
We use TER to evaluate the quality of abstract
captions. We suppose that if many of the origi-
nal captions of a video are entailed by the abstract
caption, the abstract caption should appropriately
abstract the shared content and thus be of high
quality. Such an automatic quality evaluation is
helpful in filtering out noisy examples, which are
inevitably included as we rely on crowdsourcing or
heuristics for data collection.
We assign a TER score to each pair of a video and
an abstract caption. We perform TER regarding
each of the original captions as a premise and the
abstract caption as a hypothesis. We regard the
number of original captions that entail the abstract
caption as the TER score and assign it to the pair.
We performed TER with SemBERT (Zhang et al.,
2020a), a state-of-the-art TER model. We first ex-
cluded videos with a TER score of zero from a
video group (making the number of videos of a
video group possibly fewer than two), and then ex-
cluded video groups with fewer than two videos.

Training Validation Test
Video Groups 10,983 830 1,674
Videos 38,514 2,452 5,157
Unique Videos 16,732 1,475 2,848
Videos per Group (avg.) 3.5 3.0 3.1
Abstractive Captions 10,983 830 1,674

Table 1: The statistics of AbstrActs. Videos in-
dicate the total number of videos in each video
group, including duplicates. Unique videos indi-
cate the number of unique videos in each split.

4.5. Analysis of AbstrActs
Tab. 1 shows the statistics of AbstrActs. We fol-
lowed the data splitting of VATEX. The training,
validation, and test videos and captions were ob-
tained by processing VATEX’s training, validation,
and test data, respectively. Video groups in ev-
ery split had three or more videos on average.
Videos in AbstrActs contained 600 types of human
actions, listed in Kinetics-600 (Kay et al., 2017;
Carreira et al., 2018).
Fig. 3 shows the distribution of abstractness
scores in the training set. Abstractness scores
were concentrated around 0.7, with a minimum
value of 0.4 and a maximum value of 1.0. The re-
sult indicates that abstract captions are different in
content from existing single-video captions.

Figure 3: Abstractiveness score distribution of
training data.

Fig. 4 shows the distribution of TER scores in the
training set that indicate how well a video and an
abstract captionmatch. We found that human cap-
tions have high TER scores, indicating that hu-
man captions properly abstract the video content
in video groups. We observed the same tendency
in the validation and test splits as well.

5. Abstractive Captioning Models

We construct abstractive captioning models as
Transformer-based models. We explore various
model variants to see what sort of improvements
can be effective for abstractive multi-video caption
generation.
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Figure 4: TER score distribution of training data.
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Figure 5: Example of soft alignment with two video
features V1 and V2.

5.1. Combination Methods for Multiple
Features

As Transformer-based models take a single se-
quence of features as input, multiple video fea-
turesmust be processed into the form to feed them
into the Transformer.
We explore two methods for inputting multiple
video features: concatenation and soft alignment.
Concatenation is a naive implementation to com-
bine multiple video features, which performs a
frame-wise concatenation of video features. This
method does not consider differences between the
contents of different frames in each video.
Soft alignment combines multiple video features
by focusing on one video and collecting simi-
lar frames from the other videos, which shares
the same idea as the attention mechanism (Bah-
danau et al., 2014). Fig. 5 shows an overview of
soft alignment. The frame-wise similarity between
multiple video features is calculated first, and then
the similarity weights the video features before be-
ing combined. By applying frame-wise soft align-
ment to n types of video features V1, V2, ..., Vn, one
video features Valign is obtained by the following
equation:

Valign = concat(V1, V
′
2 , ..., V

′
n), (6)

where
V ′
i = Wi · Vi. (7)

Here, Wi is the similarity matrix for the video fea-
tures V1 and the video features Vi. Let V1 ∈ RT1·M

and Vi ∈ RTi·M , where T1 and Ti denote the num-
ber of frames in V1 and Vi, respectively, and M
is feature dimension for each frame. Then Wi is
a matrix ∈ RT1·Ti . The similarity between each
frame of the two videos is computed as follows:

Wi(t1, ti) =
V1(t1) · V T

i (ti)

|V1(t1)||Vi(ti)|
(8)

The feature Valign(t) at a frame t is the result of
collecting features similar to the feature V1(t) from
other video features Vi and then combining them
by weighting by similarity. The sequence length l
of the features Valign is equal to that of the video
features V1.
The dimensions of the soft alignment feature in-
crease in proportion to the number of input videos.
For instance, the dimensionality of video features
when using six videos as input is three times larger
than when using two videos as input. When us-
ing more than three videos as input, we change
the dimension of the input layer of the model cor-
responding to the dimensionality of the input video
features, and we padded zeros to the portion of the
features corresponding to the missing videos dur-
ing soft alignment for video groups including fewer
videos.

5.2. End-to-End Model
The end-to-end model learns to directly generate
an abstract caption from an input video group. The
end-to-end model has two advantages compared
to the cascade model described next. First, it is
free from error propagation. Second, the model
can take full advantage of the information in the
given videos.
Fig. 6a shows an overview of the end-to-end
model. First, n input video features are obtained
by a pretrained video encode. Then, the sequence
of features Vmulti is obtained using either the con-
catenation method or the soft alignment method
described in Sec. 5.1. The transformed features
Vmulti is input to the Transformer-based video en-
coder to obtain the sequence of features z =
fenc(Vmulti) = (z1, z2, ..., zl). The l is the length of
the combined features Vmulti.
Finally, the abstract caption y is generated using a
Transformer-based language decoder. The word
yt = fdec(y, z) at decoding step t is generated
based on the previously generated word sequence
y = (y1, y2, ..., yt−1) and the feature sequence z.

5.3. Cascade Model
The cascade model combines a single-video cap-
tioning module and a multi-sentence abstraction
module. The single-video captioning module
takes a single video as input and generates the
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Figure 6: Two models for abstractive captioning. The end-to-end model directly generates an abstract
caption from multiple videos. In the cascade model, the single-video captioning module first generates
concrete captions for each video, and then the multi-sentence abstraction module generates an abstrac-
tive caption from them.

caption. The multi-sentence abstraction module
takes multiple captions as input and generates the
abstract caption.
Fig. 6b shows an overview of the cascade model.
First, the single-video captioning module gener-
ates a caption for each video using the Trans-
former model. The resulting video captions are
then encoded into sequences of word embeddings
with a pretrained word embedding model. The
resulting multiple caption features are converted
into a single sequence of features using a soft
alignment method similar to the one presented in
Sec. 5.1. The difference is that instead of conduct-
ing soft alignment on video features, we do it on
word embeddings of multiple captions. Finally, the
transformed features are input to the Transformer
to generate the abstract caption.
The advantage of the cascade model is its
reusability. The performance of the cascade
model can be improved by replacing the single-
video captioning module with pretrained models.
The disadvantage is that there is a possibility of er-
ror propagation due to the nature of solving each
subtask independently and sequentially. If single-
video captioning produces poor captions, the ab-
stract caption produced by the multi-sentence ab-
straction module will also be of poor quality. Even
if the performance of the single-video captioning
module is adequate, there is a problem with miss-
ing information due to the conversion of video in-
formation into text. Spatio-temporal information
in a video is difficult to explain entirely with text.
Therefore, the caption generated by the single-
video captioning module can lose some shared in-
formation in multiple videos, restricting the multi-
sentence abstraction module from generating an
abstract caption that describes the shared infor-
mation as much as possible.

5.4. Cascade (Gold) Model
We consider the cascade (gold) model as the
upper-bound setting of the cascade model. This
model does not use the single-video captioning
module in the cascade model; instead, this model
feeds the gold captions of each video to the multi-
sentence abstraction module. As the gold caption
should fully describe the content of the video, the
gold caption can be regarded as a caption gener-
ated by a single-video captioning module with per-

fect performance. In both training and inference of
the cascade (gold) model, the input to the model
is the gold captions of multiple videos.

6. Experiments
We conduct experiments on abstractive captioning
using the models described in Sec. 5.

6.1. CocoA: Correlation Coefficient of
Abstractness Scores

BLEU-4 (Papineni et al., 2002), CIDEr (Vedan-
tam et al., 2015), METEOR (Banerjee and Lavie,
2005), and ROUGE-L (Lin, 2004) are de facto
standards in existing video captioning tasks. How-
ever, abstractive captioning is a task to generate
abstract captions, whose purpose is different from
existing video captioning tasks. Therefore, the cri-
teria for a good caption differs between the ab-
stractive multi-video captioning task and the ex-
isting video captioning task. For example, in the
case of abstractive multi-video captioning, not only
the word agreement between the correct label and
the generated caption but also the abstractness of
each word can be a criterion for evaluation. In ad-
dition, abstract captions generated by abstractive
multi-video captioning tend to have fewer words
than single-video captioning. This short caption is
incompatible with the evaluation criteria that use
n-grams in the sentence.
Motivated by the above, we propose a new metric,
CocoA, which can evaluate model performance
based on the abstractness score mentioned in
Sec. 4.3. The value of CocoA is the Pearson cor-
relation coefficient among the abstractness scores
of generated captionsAY and that of gold captions
AY ′ .

CocoA(AY , AY ′) =
cov(AY , AY ′)

σAY σAY ′
(9)

cov is the covariance. σAY and σAY ′ are the stan-
dard deviations of AY and AY ′ . We hypothesize
that a strong correlation exists between abstract-
ness scores when a model correctly generates an
abstract caption.

6.2. Experimental Settings
We conducted experiments on AbstrActs and VA-
TEX (Wang et al., 2019). Although each video
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Method CocoA BLEU CIDEr METEOR ROUGE-L
Concat 0.27 16.0 84.5 18.2 43.6
Soft 0.34 18.6 130.1 21.5 47.3

Table 2: Performance comparison of different
feature combination methods with the end-to-end
model. “Concat” and “Soft” denote for “Concate-
nation” and “Soft Alignment,” respectively.

Model CocoA BLEU CIDEr METEOR ROUGE-L
E2E 0.34 18.6 130.1 21.5 47.3
Cas 0.25 14.8 65.4 17.4 40.9
Cas (G) 0.33 17.5 103.5 19.8 44.1
T5 0.50 20.3 154.6 23.2 49.1

Table 3: Performance comparison of different
model structures. The T5 model is for reference.
“E2E,” “Cas,” and “Cas (G)” denote for “End-to-
End,” “Cascade,” and “Cascade (Gold),” respec-
tively.

group in AbstrActs contains up to six videos, we
fixed the number of videos to use to two except
in Sec. 6.5 to simplify the experiment settings. We
used two videos in each video group with the high-
est similarity scores in video retrieval when com-
posing the video group. We used VATEX for train-
ing the cascade models and for inference in the
cascade (gold) models. For evaluation metrics,
we used CocoA together with BLEU-4, CIDEr, ME-
TEOR, and ROUGE-L.

6.3. Feature Combination Methods
We compared concatenation and soft alignment,
the two methods for combining multiple features
into a single feature described in Sec. 5.1.
We conducted experiments with the end-to-end
model described in Sec. 5.2 comparing two types
of multi-input methods. For extracting video fea-
tures, we used the CLIP4Clip model. Tab. 2 shows
the results. The soft-alined method consistently
outperformed the naive concatenation method in
all the metrics regardless of the video encoder.
Soft alignment is different from the naive concate-
nation method in that soft alignment considers
the similarity of the contents between the differ-
ent frames of the videos. This difference helps the
models find the shared content in multiple videos.
We conclude from the experiments that it is bet-
ter to use the soft-aligned video features as input
to the end-to-end model, and thus, we adopt this
setting for the subsequent experiments.

6.4. Model Architectures
We compared abstractive multi-video captioning
with the end-to-end and cascade models. For ex-
tracting video features, we used the CLIP4Clip
model. We used a pretrained word embedding

model from fastText (Bojanowski et al., 2017) for
feature extraction of the caption obtained from the
single-video captioning module.
Training of the cascade model was performed in-
dependently for each module. For training the
single-video captioning module, we used VATEX.
For training the multi-sentence abstraction mod-
ule, we used both AbstrActs and VATEX. Each
video in AbstrActs has gold captions in VATEX.We
trained the abstractive captioning module to gen-
erate the abstract caption from each video’s gold
captions in VATEX.
Tab. 3 shows the result. The end-to-end model
outperformed the cascade and cascade (gold)
models in all evaluation metrics. For reference,
we also provide the score of the T5 (Raffel et al.,
2020) model trained to abstract the gold captions
of each video in a video group. Note that we con-
catenate gold captions and input them into the T5
model.
One reason for the better performance of the end-
to-end model is that it does not have the error
propagation problem that can occur in the cas-
cade model. We manually investigated 50 infer-
ence results on the test set. We found that in 7
cases, the cascade model generated a poor ab-
stract caption due to the generation error in the
single captioning module. Fig. 7a shows an exam-
ple that the end-to-end model describes the chil-
dren in the two videos, while the cascade model
describes it as a “person.” Fig. 7b shows an ex-
ample of the generation of the cascade model. A
child is in the right video, but the single-video cap-
tioning module describes him in a more abstract
word “man.” This generation error propagates to
themulti-sentence abstraction module, which gen-
erates the overly abstract word “person” instead of
the expected words such as “child” or “kid.” The
end-to-end model uses the video features directly,
eliminating the risk of error propagation and pro-
ducing the preferred word “kid.”
We investigated the generated captions related to
their abstractness scores. Samples with different
abstractness scores may also have different dif-
ficulties in abstraction. Fig. 8a shows the exam-
ple with a low abstractness score. The two videos
have almost the same content: a person is swim-
ming in a pool. In this example, models correctly
generated an abstract caption from the videos.
Fig. 8b shows the example with a high abstract-
ness score. The left video shows a male hairstylist
combing and cutting a woman’s hair, and the right
video shows a female hairstylist washing and cut-
ting a man’s hair. The shared information in the
two videos is that a hairstylist works on a cus-
tomer. Models generated captions with improper
abstraction from these videos. It would be inter-
esting to evaluate and investigate the generated
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Ground Truth:   a baby is playing xylophone
End-to-End:      a kid is playing musical instrument
Cascade:          a person is playing a musical instrument
Gold-Cascade: a kid is playing a musical instrument

(a) Inference results

a young boy is sitting on a couch 
and playing with a toy xylophone

a man is sitting on a chair 
and playing with a xylophone

a person is playing a musical instrument

(b) Error propagation in the cascade model

Figure 7: Examples of the inference results with various types of model structures. Words highlighted in
blue represent a preferred generation, while words highlighted in red represent a poor generation.

Ground Truth:   a person is swimming in the pool
End-to-End:      a person is swimming in a pool
Cascade:          a person is swimming in a swimming pool
Gold Cascade: a person is swimming in a swimming pool

(a) Abstractness Score: 0.43

Ground Truth:   a hairstylist works on a customer
End-to-End:      a person is getting their hair washed
Cascade:          a person is doing massage to another person
Gold Cascade: a person is trimming hair

(b) Abstractness Score: 0.88

Figure 8: Inference examples with different abstractness scores. Highlighted words represent an ab-
straction. Words highlighted in the same color describe the same object in the videos.

#Videos CocoA BLEU CIDEr METEOR ROUGE-L
One 0.32 18.1 119.2 21.1 46.6
Two 0.34 18.6 130.1 21.5 47.3
Six 0.32 17.6 120.8 20.9 46.6

Table 4: Performance comparisons of different
numbers of video inputs for the end-to-end model.

caption more deeply regarding the abstractness,
which we leave as future work.

6.5. Number of Videos
We further investigated the impact of the num-
ber of input videos. In previous experiments, two
videos were fed to the models. We compared the
number of input videos with one, two, and six, us-
ing the end-to-end model as it consistently outper-
formed the cascade model. For the one video set-
ting, we randomly selected one video from a video
group.
Tab. 4 shows the result. We can see that using
one video performs worse than using two videos,
indicating the importance of understanding multi-
ple videos for the proposed task. Using the in-
put features from six videos did not have a posi-
tive impact; in all evaluation metrics, the two-video
setting outperformed the six-video setting. One
possible reason is that inputting many videos into
the model degrades each video’s information. We

fixed the number of parameters in the Transformer
of the end-to-end model. Even if the number of
input videos increases to six, the dimension of
features processed by the Transformer’s attention
mechanism remains the same. As the number
of input videos increases, the dimensions of the
feature values used per video decrease. In the
model where six videos are input, the information
for each video is compressed, leading to perfor-
mance degradation. Another possible reason for
performance degradation is zero-padding in the
soft alignment. We used zero-padding to shape
the features when performing soft alignment in a
video group with fewer than six videos. For exam-
ple, if only two videos are in a video group, all the
values in the matrix for the remaining four videos
are padded with zeros. This zero-padding may be-
come noise and prevent the model from learning.
Inference examples with different number of input
videos can be found in Appendix B.

7. Conclusion
We introduced a new task, abstractive multi-video
captioning, aiming at training models to find and
describe commonalities among videos. We con-
structed the benchmark dataset AbstrActs, con-
taining 13.5k video groups, 27k abstract captions,
abstractness scores, and scores representing the
degree of agreement between the video and the
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abstract caption. We proposed a new metric
named CocoA, which evaluates the model perfor-
mance in terms of the abstractness of captions.
We extensively explored model variants to see
what improvements can be effective for abstract
caption generation on AbstrActs. We hope the
dataset, the metric, and insights into models pre-
sented in this study facilitate future research on ab-
stractive multi-video captioning. In the future, we
plan to investigate the applicability of the models
for auto-labeling to video clusters.

8. Limitations
Actions in AbstrActs. In order to simplify
the problem setup, We built AbstrActs from VA-
TEX (Wang et al., 2019), in which each video in-
cludes just one representative action. However, a
video usually includes multiple actions and events.
To extend the present work, we need to expand
the dataset domain with videos that contain multi-
ple actions.

Constructing video groups. When collecting
video groups by video retrieval, we used the video
features extracted by CLIP4Clip (Luo et al., 2021).
This may lead to some bias if we use other video
encoders such as (Bain et al., 2021; Li et al.,
2020a) in experiments because the similarity of
videos depends on the video encoders being used
for extracting video features. Our future work is
evaluating the effect of the biases and consider-
ing another way of collecting video groups.

Applicability of the models. In this paper, we
did not address the applicability of the models for
auto-labeling to video clusters. To simplify the ex-
periment settings, we fixed the number of videos
to two except in Sec. 6.5. Besides, the result in
Sec. 6.5 indicates that using six videos as input did
not positively impact. Given the above, it is worth
considering if we can apply models to generate the
label of a large video cluster. Applying our model
to each of the two video pairs in a cluster to gen-
erate abstract captions and then further generate
more abstractive captions from them may address
the problem of many videos, which we leave as
future work.

9. Ethics Statement
We used Amazon Mechanical Turk to recruit the
crowdworkers at a price of 10 US dollars per hour
on average. By agreeing to work on the annota-
tion, crowdworkers have agreed to give the right to
use the annotation for research purposes. Videos
were shown to crowdworkers for annotation. The
videos were from VATEX, which does not contain
any harmful ones.
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A. Crowdsourcing Interface
Fig. 9 shows the instruction part of the crowd-
sourcing interface that we used to collect human
captions. We presented the task instructions with
an annotation example to the crowdworker. We
showed multiple videos in a video group to crowd-
workers and asked them to write an abstract cap-
tion describing the shared content in the videos.

B. Inference Examples With Different
Number of Input Videos

Fig. 10 shows the generated captions in the exper-
iments with the different number of input videos.
In the six-video setting, the model generated an
over-abstract caption, while the model generated
an appropriate caption in the two-video setting.
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Figure 9: Instruction part of the crowdsourcing interface for collecting human captions.

Ground Truth: a person is trying to walk on a rope
Two Videos:   a person is walking on a rope
Six Videos:     a person is doing gymnastics

Figure 10: Inference examples with different num-
bers of input videos. We used the top two videos
in this figure in the two-video setting.
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