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Abstract
The efficacy of neural "retrieve and generate" systems is well established for question answering (QA) over unstruc-
tured text. Recent efforts seek to extend this approach to knowledge graph (KG) QA by converting structured triples
to unstructured text. However, the relevance of KG triples retrieved by these systems limits their accuracy. In this
paper, we improve the relevance of retrieved triples using a carefully designed re-ranker. Specifically, our pipeline (i)
retrieves over documents of triples grouped by entity, (ii) re-ranks triples from these documents with context: triples in
the 1-hop neighborhood of the documents’ subject entity, and (iii) generates an answer from highly relevant re-ranked
triples. To train our re-ranker, we propose a novel "triple-level" labeling strategy that infers fine-grained labels and
shows that these significantly improve the relevance of retrieved information. We show that the resulting "retrieve,
re-rank, and generate" pipeline significantly improves upon prior KGQA systems, achieving a new state-of-the-art
on FreebaseQA by 5.56% Exact Match. We perform multiple ablations that reveal the distinct benefits of our
contextual re-ranker and labeling strategy and conclude with a case study that highlights opportunities for future works.
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1. Introduction

Question answering (QA) poses a significant chal-
lenge impacting many downstream applications. A
popular and effective approach to QA over textual
data is to employ a "retrieve-then-generate" (Lewis
et al., 2020; Guu et al., 2020; Borgeaud et al.,
2022) pipeline, in which a retriever extracts im-
portant information from textual documents and a
generator synthesizes this retrieved information to
produce an answer. Recent works have demon-
strated that employing a re-ranker to increase the
relevance of retrieved information before answer
generation achieves state-of-the-art results on pop-
ular text QA benchmarks (Lee et al., 2022; Chowd-
hury et al., 2022). Given the broad efficacy of
these retrieval-based approaches, the extension
and application of such systems to structured data
sources, such as Knowledge Graphs, is a natural
research direction.

Knowledge Graphs (KGs), such as Freebase
(Bollacker et al., 2008) and Wikidata (Vrandečić
and Krötzsch, 2014), are high-quality, richly struc-
tured sources that contain unique information not
easily found in unstructured text. QA over KGs
(KGQA) remains a popular parallel QA challenge.
While semantic parsing approaches have tradition-
ally dominated KGQA leaderboards, recent studies
like Unik-QA (Oguz et al., 2022) and DecAF (Yu
et al., 2023) have sought to extend the retrieve-
then-generate approach to KGQA by converting

∗ Work done during an internship at Amazon.

<subject, relation, object> triples into natural lan-
guage sentences. The primary challenge of this
line of research is the substantial scale and com-
plexity of KGs, which make it difficult to identify
the relevant triples necessary to generate a cor-
rect answer. Prior works like DecAF (Yu et al.,
2023) attempt to overcome this challenge with a
specialized "reader" module that produces a logical
form, which is executed against the KG to retrieve
relevant triples before answer generation. While
effective, this approach is limited: 1) requires exten-
sive logical form training data, which is not always
available, and 2) introduces latency due to logical
form execution.

This paper aims to identify important triples by
employing a carefully designed re-ranker. The re-
ranker improves the selection of triples by exploit-
ing “context": triples that share a subject entity with
the retrieved candidate triple. In this way, the con-
text provides extra information to help determine
the relevance of candidate triples to user ques-
tions. This rich context helps disambiguate similar
candidates by uncovering dependencies between
questions and the subgraph surrounding retrieved
triples, enhancing the accuracy of rankings. Specif-
ically, we 1) retrieve over "entity-centric" documents
that contain triples with the same subject entity, 2)
re-rank triples by relevance using context obtained
from the 1 hop neighborhood of retrieved subject
entities, and 3) generate a final answer using top-K
re-ranked triples.

Existing KGQA benchmarks do not include la-
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Figure 1: The illustration of 1) classic retrieve-then-
generate pipeline without re-ranking, 2) re-ranking
with the document-level labeling strategy (triples
from the same document have the same label, e.g.,
Triple 1-1 and 1-2 are both labeled as positive), and
3) re-ranking with the triple-level labeling strategy
(triples from the same document may have different
labels because they are individually labeled based
on relevance, e.g. Triple 1-1 and 1-2 are labeled
as positive and negative, respectively ).

bels for re-ranker training. This work studies
two labeling strategies that exploit KG structure
to derive these labels automatically: 1) a naive
"document-level" labeling strategy that coarsely
categorizes triples by their presence in a rele-
vant document and 2) a novel "triple-level" labeling
strategy that leverages the co-occurrence of topic
and answer entities to granular, higher quality la-
bels. For example, given the question "Who is
Justin Bieber’s brother," "document-level" labeling
considers all triples containing "Jaxon Bieber" as
positives. In contrast, the "triple-level" strategy
only considers the most relevant triple <Jaxon
Bieber, sibling, Justin Bieber> as pos-
itive. Figure 1 shows the difference between 1) the
traditional “retrieve then generate" pipeline and the
“retrieve, re-rank and generate" pipelines, and 2)
“document-level" and “triple-level" labeling strate-
gies for training the re-ranker.

We extensively study the ability of the contex-
tual re-ranker to improve the relevance of retrieved
triples and overall KGQA performance on the pop-
ular FreebaseQA (Jiang et al., 2019) and We-
bQSP (Yih et al., 2016) benchmarks. This paper:
1) shows that incorporating a contextual re-ranker
is an efficient and accurate way to increase the
relevance of the information provided to the gener-
ator and improve KGQA performance, increasing

the Exact Match score on FreebaseQA by 5.56%
over the prior state of the art; 2) investigates two
novel labeling strategies to infer labels for contex-
tual re-ranker training and studies its benefits on re-
ranker and overall KGQA performance; 3) demon-
strates how to construct "entity-centric" retrieval
documents to produce context that improves the
re-ranker performance for the KGQA task.

2. Related Work

In this section, we discuss prior studies closely
related to this work.

KGQA Semantic parsing and Information re-
trieval are two primary approaches to KGQA, with
semantic parsing receiving the bulk of study his-
torically. In general, given the question, these ap-
proaches aim to rank or generate SPARQL queries
that can answer the question using the entity re-
lationships. For example, approaches such as
QGG (Lan and Jiang, 2020), and SPARQA (Sun
et al., 2020) use pre-defined templates and/or con-
straints to identify logic forms. RnG-KBQA (Ye
et al., 2022) enumerates and ranks a pool of
candidate logic forms and applies a sequence-to-
sequence generator to provide final ones. Another
recent approach ArcaneQA (Gu and Su, 2022)
reduces the search space with dynamic program
induction. These approaches usually rely on the
SPARQL executor to provide final answers.

Another major class of approaches is based on
information retrieval. For example, PullNet (Sun
et al., 2019) iteratively retrieves subgraphs around
the topic entity and identifies answer entities us-
ing graph convolutional networks. Besides KGs,
Graft-Net (Sun et al., 2018) also considers textual
information and retrieves heterogenous subgraphs
to answer questions. EmbedKGQA (Saxena et al.,
2020) learns representations of all entities and
ranks entities based on scores between the ques-
tion and entity representations.

More recently, a few studies started to apply
sequence-to-sequence language models to directly
generate answers. For example, KGT5 (Saxena
et al., 2022) trains a sequence-to-sequence model
to directly generate answers; Unik-QA (Oguz et al.,
2022) first uses an entity linking model to identify a
subgraph, then applies a dense retriever to retrieve
relevant facts and finally apply the sequence-to-
sequence model to generate answers using the
retrieved facts. Since most prior approaches are
based on entity-linking systems, another recent pa-
per DecAF (Yu et al., 2023) proposed to get rid of
the entity linker and directly retrieve data from an
indexed KB. With the retriever, DecAF is trained to
generate both logic forms and direct answers and
combine their results. Both Unik-QA and DecAF
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Figure 2: The proposed framework for KBQA. The framework contains three modules: Retriever,
contextual Re-ranker and Generator. It works with the following steps: 1) verbalize KG and create
an index for the documents, 2) retrieve documents with the question, 3) concatenate individual triples
with context for triple-level re-ranking, 4) re-rank all retrieved triples, and 5) combine the question and
top-ranked triples, and generate answers.

are closely related to this paper. Similar to De-
cAF, we remove the entity linking model for more
efficiently solving the real-world problem. Similar
to Unik-QA, our system focuses on direct answer
generation without using logic form annotations.

Retriever - Re-ranker - Generator The retriever
and re-ranker pipeline has been successfully used
in many previous studies in different natural lan-
guage tasks (Lewis et al., 2020; Borgeaud et al.,
2022). Typically, an efficient retriever obtains rele-
vant documents from a large collection and a more
powerful cross-encoder re-ranker refines results
with respect to a downstream task. Different from
these prior works, we 1) focus on using a KG in-
stead of natural language text which 2) significantly
changes the techniques required to develop a pow-
erful re-ranker.

Triple Selection Most factual questions require
specific KG triples to provide answers; triple se-
lection is thus an integral component in the devel-
opment of KGQA systems. Since KG triples can
be converted into natural language sentences, this
task can be construed as a subgenre of the popular
answer sentence selection task (Garg et al., 2019;
Jedema et al., 2022). Recent studies (Lauriola
and Moschitti, 2021; Han et al., 2021; Liello et al.,
2023) have shown that contextual information can
significantly improve AS2 accuracy.

3. Retrieve-Rerank-Generate

In this section, we first formalize the KGQA task
and then provide details of the proposed pipeline
consisting of Retriever, Re-ranker, and Generator,
as shown in Figure 2.

3.1. KGQA Task Formulation

A KG can be denoted as G = {⟨es, r, et⟩ |es, et ∈
E, r ∈ R} where E and R represent the entity
set and the relation set, respectively. Each triple
⟨es, r, et⟩ ∈ G shows the existence of the relation r
between the source entity es and the target entity et.
Given a natural language question q represented
by a sequence of word tokens, the task of KGQA
aims to find an answer a to q using triples from
G. The answer a can either be a natural language
sequence or an entity in E.

3.2. Modules

The proposed pipeline works in three steps as
shown in Figure 2: 1) retriever takes a user-given
question as the input and retrieves N relatively
relevant documents from the pre-defined KB, 2)
re-ranker selects the most informative triples from
the above documents, and 3) generator leverages
both the question and top-ranked triples from the
previous step to generate final answers.

3.2.1. Retriever

In line with prior works (Yu et al., 2023; Oguz et al.,
2022; Guu et al., 2020), we employ both BM25
(Robertson and Zaragoza, 2009) (i.e. sparse)
retrieval and DPR (Karpukhin et al., 2020) (i.e.,
dense) retrieval methods to obtain relevant doc-
uments from our indexed KG. BM25 (Robertson
and Zaragoza, 2009) leverages TF-IDF (Ramos,
2003) scores for word matches between a query
and our indexed KG. DPR (Karpukhin et al., 2020)
consists of two BERT-base (Devlin et al., 2019)
models to encode questions and documents into
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Figure 3: The architecture of the contextual re-ranker. Each input has: question, candidate triple, and
context (other triples from the same document and share the same subject entity as the candidate triple).
The output is either 0 (irrelevant) or 1 (relevant).

low-dimensional embedding spaces. The two mod-
els are trained with a contrastive objective such that
the similarities between the encodings of a ques-
tion and its relevant documents are maximized.

The "verbalization" of KG triples to text is a well-
studied problem that can be addressed with both
templates (Oguz et al., 2022) and generative mod-
els (Agarwal et al., 2021). For example, the triple
“<Will Smith, Age, 54>” can easily be verbalized
with a template to produce “Will Smith’s Age is
54”. We use this template strategy to verbalize KG
triples as single factoid sentences.

However, grouping verbalized triples into re-
trieval documents with meaningful structure re-
mains an open problem. Prior work either treats
each relation as its retrieval document, such as
in Unik-QA (Oguz et al., 2022) or applies length-
based splitting of randomly grouped triples of the
same subject entities, such as in DecAF (Yu et al.,
2023). The prior option results in many retrieval
documents that lack significant contextual informa-
tion, such as other relations about the same entity,
while the latter potentially split a triple into separate
documents. We employ an alternative approach
to document generation, where relations sharing
the same subject are consolidated into a single
document, presented randomly. The condition is
that each triple must be contained within a single
document. Our document generation method de-
creases the number of documents in our index,
enhancing retrieval efficiency. Simultaneously, it
ensures that each relation is situated within the
context of other relations featuring the same sub-
ject entity and placed within the same document.

3.2.2. Contextual Re-ranker

Recent studies for answer re-ranking on text docu-
ments have demonstrated the significant benefits
of contextual information, such as sentences within
the same paragraph of a target sentence (Lauriola

and Moschitti, 2021; Han et al., 2021). Inspired
by this prior work, we hypothesize that such con-
textual information can also be helpful for triple
re-ranking within the KGQA setting. The notion
of context used in these prior works assumes a
natural ordering of information; that is, it assumes
that sentences within the same paragraph as a tar-
get sentence contain helpful contextual information.
The document generation strategy is designed to
fulfill this assumption by ensuring that relations
within the same document share the same subject
and provide useful contextual information.

Contextual Re-ranking Model We extend the
ELECTRA-large (Clark et al., 2020) contextual
re-ranker proposed by Lauriola and Moschitti
(2021) as our re-ranker backbone. Given a ques-
tion q, the retriever retrieves a list of documents
[D1, D2, · · · , Dm] where each document Di =
[T1, T2, · · ·Tn] contains a list of triples. For each
triple of each document Tj ∈ Di, the context Cj

of Tj is the concatenation of other triples in the
same document T1···j−1+Tj+1···n. The input to the
re-ranker is the concatenation q, Tj , and Cj , where
these three types of input have different token type
embeddings. Figure 3 shows an example of the
input and output of the model. In line with prior
work, the re-ranker is trained with a classification
objective such that the positive triple has label 1
while the negative triple has label 0.

Labeling Strategy The process of assigning
high-quality labels is essential for re-ranker training.
Prior studies (Glass et al., 2022) use document-
level labels for re-ranking documents, in which all
documents containing the gold answer are given
positive labels. In our framework, this approach
degrades label quality by effectively teaching the
model that every triple from the correct document is
relevant to the question. For example, consider the
question “who is Justin Bieber’s brother” and its
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Figure 4: The illustration of the input and output of
the FiD. Each re-ranked triple is concatenated with
the question and encoded individually. More details
of FiD can be found in the original paper (Izacard
and Grave, 2020).

answer, “Jaxon Bieber”. Suppose we retrieve two
documents: “Justin Bieber sibling Jaxon Bieber.
Justin Bieber people person ethnicity Canadian”
and “Jaxon Bieber sibling Justin Bieber”. Using the
"document-level" labeling strategy, the irrelevant
triple “Justin Bieber ethnicity Canadian” receives
the same label as the highly relevant triple “Jaxon
Bieber sibling Justin Bieber only because they are
from the same document. We hypothesize that
the "false positive" cases introduced by this label-
ing strategy impede the ability of the re-ranker to
differentiate between highly relevant and largely
irrelevant triples.

We propose to mitigate this shortcoming with
a fine-grained "triple-level" labeling strategy; this
strategy gives a positive label to triples that con-
tain the gold answer and a topic entity. If no such
triple exists, it removes the topic entity constraint
and checks only for the gold answer. This fallback
check is introduced because topic entities are not
always provided in dataset annotations, and the
answer entity and topic entity are not always within
a single hop.

Before training the re-ranker, we first infer gold
documents from the KB. For each training question,
we traverse over the one-hop subgraphs from both
the topic and answer entities. If both entities are
involved in a triple, the corresponding document
is identified as gold. During training, we process
both the inferred gold documents and retrieved
documents to create positive and negative samples
for the re-ranker using either the "document-level"
or "triple-level" strategy.

3.2.3. Generator

Given a question q, the retriever retrieves N docu-
ments D1, D2, · · ·DN , and the re-ranker produces
a confidence score for each triple Tj ∈ Di for any i.
The triples are re-ranked based on their confidence
scores. Only top-K triples are selected and used
for answer generation. We use Fusion-in-decoder
(FiD) (Izacard and Grave, 2020) as the genera-
tor for better information aggregation. FiD uses

sequence-to-sequence Transformer-based models
T5 (Raffel et al., 2020) as the backbone, encodes
documents individually, and aggregates informa-
tion by incorporating all encoded documents during
decoding. In detail, for each selected triple Tj , FiD
encodes it with

Pj = Encoder(q;Tj)

where Pj is the hidden representation of Tj . The
token embeddings of all passages in the last layer
of the encoder are concatenated and passed to the
decoder. The decoder generates answers following

a = Decoder(P1; · · · ,PK)

where a is the generated answer represented as a
sequence of word tokens.Figure 4 shows an exam-
ple input and output of the generator.

4. Experimental Evaluation

4.1. Knowledge Graph

As most of the public benchmark KGQA datasets
are created based on Freebase (Bollacker et al.,
2008), in line with prior work (Yu et al., 2023), we
use the full Freebase pre-processed by Wang et al.
(2021) as the KG in our experiments. The total
number of entities, relations, and triplets are about
88 million, 20k, and 472 million, respectively. Apply-
ing our document generation strategy as described
above with at most 10 triples per document results
in an index of 107 million documents.

Retriever We evaluate 3 retrieval techniques:
BM25 (Robertson and Zaragoza, 2009), DPR
(Karpukhin et al., 2020), and a balanced hybrid
that sums BM25 and DPR scores, all implemented
using Pyserini (Lin et al., 2021). To fine-tune DPR,
we label all documents with a least one triple con-
taining both the topic entities and answer entities
as positive and leverage BM25 to retrieve hard
negatives. Yu et al. (2023) showed that while
BM25 and DPR produce comparable results on
FreebaseQA, DPR works better on WebQSP. We
thus use BM25 to retrieve 500 documents per Free-
baseQA question and a Hybrid retriever to retrieve
1000 documents per question on WebQSP.

Re-ranker For each dataset, we extend the
ELECTRA-large architecture proposed by Clark
et al. (2020) and adapted to the contextual sen-
tence selection task by Lauriola and Moschitti
(2021). The re-ranker is trained with a maximum
sequence length of 256 and a learning rate 1e-5
for at most 5 epochs. The best training checkpoint
is selected using the answer Hit@5 on the dev split
of each dataset.
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Model FreebaseQA WebQSP
Hit@1 LF? Hit@1

FILM (Verga et al., 2021) 63.3 - -
CBR-SUBG (Das et al., 2022) 52.1 Yes 72.1
PullNet (Sun et al., 2019) - Yes 67.8
ReTrack (Chen et al., 2021) - Yes 74.7
DecAF (large, 100) (Yu et al., 2023) 79.0 Yes 80.7

Unik-QA (Oguz et al., 2022) (base) - No 76.7
Unik-QA (Oguz et al., 2022) (large) - No 79.1
DecAF - Answer only (large, 100) 79.0 No 74.7
Ours (base, 50) 80.9 No 71.8
Ours (large, 50) 84.3 No 76.9
Ours (base, 100) 80.2 No 77.2
Ours (large, 100) 84.2 No 77.8

Table 1: The overall performance of our framework. The columns LF? indicate whether the model uses
logic forms. FreebaseQA does not have logic from annotations. DecAF - Answer only is a variant of
DecAF that does not leverage logic forms. For each category (use or ignore LF), results with the best
performance are highlighted in bold font, while those with the second-best performance are underlined.

Generator We fine-tune FiD as our generator
using the original FiD implementation (Izacard
and Grave, 2020). We report our performance with
T5-base and T5-large (Raffel et al., 2020) as the
base model. The max sequence length to 400, and
the max answer length to 128 for both training and
evaluation. We report our results using 50 and 100
triples as input to the generator.

4.2. Datasets

We study our approach on two popular KGQA
benchmarks: WebQSP and FreebaseQA.

FreebaseQA (Jiang et al., 2019) consists of
questions whose answers are Freebase entities.
The train, dev, and test splits contain 20358, 3994,
and 3996 questions, respectively. The dataset only
contains annotations on topic and answer entities
but not logical forms. We use Hit@1 / Exact Match
as the evaluation metric.

WebQSP (Yih et al., 2016) is also based on
Freebase. The original data only contains train and
test splits. For training, we further split the training
data into train and dev splits with a ratio of 9:1. The
final train, dev, and test splits contain 2789, 309,
and 1639 questions, respectively. Besides topic
and answer entities, the data also contain logical
form annotations. We do not use logical forms in
our pipeline. We report Hit@1 as calculated by the
official WebQSP evaluation script.

4.3. Experiments

End-to-end KGQA Performance To demon-
strate the efficacy of our proposed pipeline, we

compare the end-to-end KGQA performance with
prior works in Table 1. Our approach outperforms
all prior work on FreebaseQA, including DecAF, the
prior state-of-the-art, by 5.56% Hit@1. We also
note that our (base, 100) and (base, 50) models
outperform the prior SOTA while using 550M fewer
parameters. On WebQSP, our approach exceeds
the performance of PullNet (Sun et al., 2019), Re-
Track (Chen et al., 2021), and CBR-SUBG (Das
et al., 2022) but falls short of exceeding the results
of Unik-QA and DecAF. We argue that DecAF main-
tains a slight advantage on WebQSP by exploiting
the significant volume of logical form training data
not used in our approach; we note a significant
3.1% improvement above the directly comparable
DecAF Answer-Only setting, which does not exploit
this additional data. While Unik-QA outperforms
our approach when using FiD-large as the genera-
tor, it relies on an entity-linking module. It only cre-
ates an index for retrieval of question-specific sub-
graphs. As explored in prior studies (Soliman et al.,
2022), entity linking modules tend to be dataset-
dependent, making retrieval-based approaches
more practical. Furthermore, rather than generat-
ing an index for each question or entity, our method
establishes a single index that can be conveniently
re-used for any question, potentially enhancing ef-
ficiency. Additionally, compared to Unik-QA with
FiD-base, the marginally superior performance of
our approach suggests that the re-ranking process
offers greater advantages for smaller-sized gener-
ation modules.

Effect of Context The term "context" is an im-
portant component of the input in our contextual
re-ranker. To better understand the effect of con-
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Ranking Method Retriever Re-ranker Generator
Hit@500 Hit@1 Hit@10 Hit@100 GT Triple Hit@100 Hit@1

No ranker 98.2 37.8 68.1 90.1 33.6 45.5
Doc-level Label 98.2 39.7 67.4 81.2 77.3 75.4

Triple-level Label 98.2 54.0 84.0 95.2 78.3 80.0

(a) Results on FreebaseQA

Ranking Method Retriever Re-ranker Generator
Hit@500 Hit@1 Hit@10 Hit@100 GT Triple Hit@100 Hit@1

No ranker 98.1 30.0 53.9 83.7 44.4 57.4
Doc-level Label 98.1 50.3 70.4 79.2 68.9 67.6

Triple-level Label 98.1 73.0 86.0 91.0 74.0 70.5

(b) Results on WebQSP.

Table 2: Re-ranker ablation studies on FreebaseQA and WebQSP. We show the retriever, re-ranker,
and generator performance regarding Hit@K. We additionally report the GT Triple hit rate following the
abovementioned triple-level labeling strategy. We report the generator performance using FiD-base with
20 passages per question to reduce the computation required.

text, we conduct a no context ablation, wherein
the re-ranker excludes contextual triples and only
considers a candidate triple and the question as
input. As with the default setting, the no-context
re-ranker is trained to classify the encoding of the
concatenated string. We utilize the same train-
ing data as in our default setting and fine-tune the
model based on a pre-trained AS2 model (Lauri-
ola and Moschitti, 2021). We evaluated the de-
fault setting and the no-context ablation using the
same retrieved documents and the same generator
(FiD-base), focusing solely on the top-20 re-ranked
triples during the final answer generation. The
results demonstrate that the contextual re-ranker
consistently outperforms its no-context counterpart,
achieving 82.4 vs. 81.3 on FreebaseQA and 76.8
vs. 75.9 on WebQSP. The results suggest that
the "context" offers valuable insights that enable
models to distinguish between candidates more ef-
fectively, allowing for a more precise identification
of the most relevant triples.

Effect of the Labeling Strategy To demonstrate
the significant benefits of our re-ranker within our
overall pipeline, we perform a no ranker ablation
and doc-level labeling ablation using document-
level labeling instead of our proposed triple-level
labeling. Table 2 reports the performance of differ-
ent components in the resulting ablated pipelines
in terms of hit rates. The retriever Hit@500 shows
that at least one correct document is retrieved
within the top 500 for nearly all questions in both
datasets. As shown Table 2, both re-ranker ap-
proaches substantially improve over the no-ranker
setting in terms of end-to-end KGQA performance
on both datasets, validating the benefit of incor-
porating a re-ranker in this setting. However, in-

cluding a re-ranker trained with "doc-level" labels
only improves the Hit@K performance for K val-
ues less than 100; this trend does not hold at
K>=100, and the performance degrades below
the no-ranker setting. This result supports the
claim that document-level labeling produces noisy
labels. A higher-quality labeling strategy (e.g., our
triple-level labels) creates a much more powerful
ranker. In other words, both re-ranker and end-to-
end KGQA performance are highly influenced by
the choice of the labeling strategy: our "triple-level"
strategy guides the model to differentiate relevant
and irrelevant triples better and thus provide the
most relevant information to the generator. We be-
lieve that extending and further improving re-ranker
label quality is a promising future direction.

In addition to the answer hit rate, we report the
gold/ground-truth (GT) triple hit rate, which mea-
sures the hit rate of "triple-level labels" in the ranker
output. We note that while the answer hit rate@100
varies by only 15%, the GT triple hit@100 and
end-to-end KGQA performance vary by a far more
significant amount. We additionally note that end-
to-end KGQA performance is within 2-4% of the GT
Triple hit rate, indicating the utility of our inferred
labels as a highly correlated indicator of the overall
KGQA performance.

Error Analysis To gain deeper insights into our
processing pipeline, we performed a randomized
selection of examples where our model produced
incorrect predictions. As is shown in Figure 5,
these examples were subsequently divided into
five primary categories:

1) Confusing Triples: In certain instances, the
selected triples, while relevant, were incorrect.
These confusing triples have the potential to mis-
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Figure 5: Examples for error analysis were sampled from both the FreebaseQA and WebQSP datasets.
Each example includes the raw question, the gold answers, the predicted answers from the best-
performing model, the error type, and a detailed rationale for the error.

direct the model, therefore degrading the overall
system performance. This emphasizes the neces-
sity for designing an effective labeling strategy. A
precise strategy with the proper granularity is im-
portant for improving the performance.

2) Strict Evaluation: In some scenarios, predic-
tions semantically align with the gold answers but
are still treated as wrong. It would be beneficial to
incorporate auxiliary metrics that evaluate seman-
tic equivalence, ensuring a more comprehensive
assessment of our task.

3) Incomplete Labels: There exist questions
for which the predictions are accurate but are not
included in the gold answer set.

4) Complex Constraints: Certain questions
need the answer to satisfy all specified constraints.
However, our model does not consistently meet
these requirements. This can potentially be ad-
dressed by enriching the training dataset.

5) Relative Information: A subset of questions
needs to understand sequential or temporal infor-
mation. Our current system mainly focuses on
answer extraction rather than complex reasoning.
Future systems could integrate an enhanced gen-
eration module, focusing on complex reasoning
over multiple triples/documents.

Based on our analysis, we believe integrating
a ranking module for the KGQA task is beneficial.
The key to this approach is the choice of an ap-
propriate ranking model and developing a precise
labeling strategy to train the model, enhancing its
capability to select salient information while avoid-
ing ambiguities. Besides the research direction of
improving information selection, there is also po-
tential in exploring advanced generation modules
that reason within diverse constraints.

5. Conclusions and Future Work

In this paper, we introduce a retriever-re-ranker-
generator pipeline for KGQA and illustrate how to
design a high-performance re-ranker for this task.
Specifically, we improve the relevance of the in-
formation provided to the generator by applying
a contextual re-ranker to the retrieved triples. In
order to mitigate a lack of high-quality triple-level
labels in existing KBQA benchmarks, we also intro-
duce a novel triple-level labeling strategy to provide
high-quality labels for re-ranker training. We empir-
ically demonstrate that our contextual re-ranker is
able to identify salient information from a large KB.
As a result, we additionally show that our proposed
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retriever-re-ranker-generator pipeline increases the
KGQA state of the art on FreebaseQA by 5.56%.
We additionally note that the same pipeline im-
proves by 3.1% over the nearest comparable sys-
tem on WebQSP.

We identify three key directions for future work
in our research. First, we believe that improving
the context available to the re-ranker beyond the 1
hop neighborhood of retrieved triples will improve
its ability to surface complex information not ev-
idenced within a single triple. For example, the
context of the re-ranker could be extended to the
2-hop neighborhood of retrieved entities to provide
a richer context. This also leads to potential im-
provements in the labeling strategy that supports
multi-hop triples to train the re-ranker. Second,
we discuss that augmenting the re-ranker’s effi-
cacy can be achieved through the incorporation
of higher-quality labels, particularly when dealing
with complex questions that necessitate the consid-
eration of multiple significant entities. Examples of
such questions include those involving entity com-
parisons, aggregations, and other complex KGQA
scenarios. Third, we believe that extending our
re-ranker to rank generated logical forms, similar
to Ye et al. (2022). This expansion has the poten-
tial to facilitate the development of an efficient and
accurate unified system capable of handling both
simple and complex KGQA.

6. Limitations

There are a few limitations of our proposed frame-
work. First, our GT triple-level labeling strategy is
currently limited to questions whose answers in-
volve single-hop information. In order to enable
the ranker to perform well for questions that re-
quire multi-hop information may require an exten-
sion of our labeling strategy to consider the two-
hop neighborhood and beyond. Second, we do
not specifically address complex questions, such
as those involving aggregations, and it is thus un-
known whether our proposed re-ranker will be as
effective at ensuring all information relevant to an-
swering these questions is ranked highly. Third,
we focus on direct answer generation and do not
explore the benefits of reranking in the context
of SPARQL query generation, which has recently
been shown to be helpful for KGQA.

Lastly, we acknowledge that our proposed
pipeline consists of 3 components and the overall
parameter count ranges between 550M to 1.32B
parameters, depending on the retriever and gener-
ator backbone architectures chosen. While our ap-
proach is trained module by module on commodity
GPU (i.e. AWS p3.16 and p3.24dn), this presents
an unfortunate barrier to entry for researchers with-
out industry backing. We believe that this limita-

tion may be addressed through the application of
Low-Rank Estimation techniques, which is an in-
teresting line of future work toward democratizing
the benefits of our technique to a wider audience.
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