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Abstract

Sequence-to-sequence models have become the de facto standard for Abstract Meaning Representation (AMR)
parsing due to their high-quality performance. However, these systems face efficiency challenges because of
their large model size and computational time, which limit their accessibility within the research community. This
paper aims to break down these barriers by introducing a novel linearization and system that significantly enhances
the efficiency and accessibility of previous AMR parsers. First, we propose our novel Compact linearization that
simplifies encoding, thereby reducing the number of tokens by between 40% and 50%. Second, we present
CLAP, an innovative modular system that maintains the model’s high performance while achieving remarkable 80%
reduction in training and inference times. Furthermore, CLAP is compatible with multiple autoregressive Language
Models (LM) and tokenizers, such as BART, T5, and others. These advancements underscore the importance
of optimizing sequence-to-sequence models in AMR parsing, thus democratizing access to high-quality semantic

analysis. Our code is publicly available at https://github.com/SapienzaNLP/clap/.
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1. Introduction

Semantic Parsing is the subfield of Natural Lan-
guage Understanding that aims to encode the
meaning of natural language into a machine-
interpretable structure. In the last decade, one
of the formalisms that has attracted the most at-
tention is Abstract Meaning Representation (Ba-
narescu et al., 2013, AMR). AMR embeds the se-
mantics of a sentence in a directed acyclic graph,
where concepts are represented by nodes, seman-
tic relations between concepts by edges, and co-
references by reentrant nodes. Since AMR can act
as an interface that is easy to read for humans and
easy to interpret for machines, it has been applied
to multiple NLP areas, including Question Answer-
ing (Lim et al., 2020; Bonial et al., 2020b; Kapa-
nipathi et al., 2021), Text Summarization (Hardy
and Vlachos, 2018; Liao et al.,, 2018), Human-
Robot Interaction (Bonial et al., 2020a), Informa-
tion Extraction (Rao et al., 2017), Machine Trans-
lation (Song et al., 2019), and has also been ex-
tended to non-English languages (Anchiéta and
Pardo, 2020; Wein et al., 2022; Linh and Nguyen,
2019; Azin and Eryigit, 2019; Blloshmi et al., 2020;
Navigli et al., 2022; Martinez Lorenzo et al., 2022).

State-of-the-art AMR parsers currently depend
on transformer sequence-to-sequence architec-
tures, as introduced into the task by Bevilacqua
et al. (2021) through SPRING, an autoregres-
sive model based on BART (Lewis et al., 2020).
SPRING converts texts into linearized represen-
tations of AMR graphs (see linearization in Fig-
ure 1). In the post-processing, the linearization is

(z0 / move-01
:ARGO (z1 / person
:name (z2 / name
:opl "Pablo"
:op2 "Picasso" ) )
:ARG1 (23 / hometown
:poss zl
:ARGO-of (z4 / have-location-91
:ARG1 (z5 / city
:name (z6 / name
:opl "Malaga" ) ) ) )
:ARG2 (z7 / city
:name (z8 / name
:opl "A"
:op2 "Corufla" ) )
:time (z9 / date-entity
:year 1891 ) )

Figure 1: AMR graph of: “In 1891, Pablo Picasso
moved from his hometown Malaga to A Corufia”.

converted into an AMR graph.

In an attempt to push SMATCH (Cai and Knight,
2013) performance, there has been a recent
emphasis towards the creation of larger models
with more parameters and more complex train-
ing pipelines, such as pre-training on structural
graph information (Bai et al., 2022), incorporat-
ing shallow semantic information (Chen et al.,
2022), modifying ancestor information during de-
coding (Yu and Gildea, 2022), enabling cross-
lingual alignment extraction (Martinez Lorenzo
et al., 2023b), adding a structural graph informa-
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tion task during training (Cheng et al., 2022; Va-
sylenko et al.,, 2023), or even ensemble AMR
graphs (Martinez Lorenzo et al.,, 2023a). This
trend has resulted in significant efficiency chal-
lenges, whereby the extensive training times and
high computational costs involved in such initia-
tives hinder their widespread adoption and acces-
sibility for researchers with limited resources.
Therefore, the objective of this paper is to make
AMR parsing more efficient and make it more
accessible to the research community. This is
achieved through the following contributions:

* Introducing a Compact Linearization, which
reduces the total number of tokens by approx-
imately 40-50%.

» Presenting the CLAP model, which is an effi-
cient and modular AMR parser, leading to a
reduction of 80% of train and inference time
compared to previous parsers.

» Conducting a comparative analysis of the per-
formance of popular autoregressive models,
such as T5 and BART, in AMR parsing.

2. Linearization

The autoregressive nature of AMR parsers makes
decoding challenging because longer predictions
slow down model inference. To address this issue,
we introduce Compact linearization, a technique
that maximizes compression.

2.1. Penman

Initially, AMR parsers followed the Penman (PM)
linearization, which is the encoding used in the re-
lease files of the official dataset AMR 3.0 (Knight
et al., 2020) (see in Figure 1 with 83 tokens). How-
ever, LMs and their tokenizers struggle with this lin-
earization due to: i) the presence of redundant to-
kens, such as slashes, ii) hard-to-process tokens,
like quotation marks; and iii) the lack of special to-
kens for node identifiers, which are merely letters
followed by numbers (e.g. z0).

2.2. DFS

Bevilacqua et al. (2021) introduced a Depth-First
Search (DFS)-based linearization which encodes
AMR graphs to make them readable for autore-
gressive models and isomorphic in order to revert
them to canonical AMR graphs. This is achieved
by introducing special tokens for node identifiers
(<p:0>), and for identifying literals (<I>). Figure 2
exemplifies DFS-based linearization (71 tokens).

( <p:0> move-01
:ARGO ( <p:1> person
:name ( <p:2> name
:opl <1> Pablo <\1»>
:0p2 <1> Picasso <\1> ) )
:ARGl ( <p:3> hometown
:poss <p:1l>
:ARGO-0f (<p:4> have-location-91
:ARG1 ( <p:5> city
:name (<p:6> name
:opl <1> Malaga <\1>))))
:ARG2 ( <p:7> city
:name ( <p:8> name
:opl <1> A <\1>
:0p2 <1> Corufa <\1> ) )
:time ( <p:9> date-entity
:year 1891 ) )

Figure 2: DFS-based linearization of Figure 1.

move-01
:ARGO person
:name Pablo Picasso )
:ARG1 hometown
:poss person
:location city
:name Malaga )1
:ARG2 city#2
:name A Coruna )
:time date-entity
:year 1891 )

Figure 3: Our Compact linearization of Figure 1.

2.3. Compact

Nevertheless, the DFS-based linearization still ex-
hibits redundancies and complex structures that
could be simplified, such as in named entity struc-
tures (see the Pablo Picasso representation in Fig-
ure 2). To address these issues, we propose our
novel Compact linearization. Firstly, we eliminate
redundant tokens like slashes and parentheses,
retaining only the closing parenthesis when return-
ing to a parent node. Additionally, we remove wiki
tags from the raw AMR graphs, as the parser’s pri-
mary objective is to establish the underlying struc-
ture. The incorporation of wikilinks is deferred until
later stages using BLINK (Wu et al., 2020). Sub-
sequently, we streamline redundant structures, in-
cluding named and URL entities, and dereify node
structures like have-location-91. Lastly, we elimi-
nate the variables (<p:X>) within the graphs, pre-
serving solely the original node words. A unique
identifier is appended to the new concept when the
graphs contain duplicate concepts. In this way, we
reduced the total amount of tokens for our exam-
ple to 28 (see Figure 3).
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3. CLAP Model

The latest autoregressive AMR parsers are built
on top of SPRING (Bevilacqua et al., 2021), an
autoregressive model that converts texts into lin-
earized representations of AMR graphs. However,
the SPRING system exhibits significant inefficien-
cies in training and inference, and the specialized
tokenizer and rule-based post-processing also hin-
der its adaptability for leveraging other LMs. As
a solution, we propose our Compact Lineariza-
tion with an Adaptable Parser (CLAP), which inte-
grates the previous Compact Linearization, simpli-
fies the model tokenizer and post-processing and
leverages the latest NLP frameworks in order to
enhance the training phase.

3.1.

SPRING relies on a complex pipeline for tokeniz-
ing the DFS-based linearization, which involves
adding over 3,000 new tokens to accommodate
all possible pointers (e.g., <p:0>, <p:1>, etc.), re-
lations (e.g., :ARGO, :ARG1, :ARGO0-of, etc.), and
PropBank (Palmer et al., 2005) frames (e.g., move-
01). While this approach may reduce the total
number of tokens by not splitting spans like "move-
01” into separated tokens ("move” and "-017), it
also leads to an increase in model size, impacting
memory usage and restricting the maximum num-
ber of tokens per batch. Furthermore, introducing
special tokens for each edge, such as :0p7 and
:op2, hampers the model’s ability to learn sequen-
tial relationships. Notably, in the case of lengthy
names, the model struggles to discern the order
between :0pX and :op(X+1). To address these is-
sues, our modified vocabulary includes only the 25
different relations of AMR, along with special to-
kens for node differentiation (e.g., #1, #2, etc.), a
token for inverse relations (-of), and additional to-
kens to differentiate and preserve the meaning of
frames through combinations (e.g., -01, -02, etc.).
This approach results in a smaller vocabulary, en-
hancing the efficiency of the model.

The Model’s Vocabulary

3.2. Tokenizer

SPRING faces a significant challenge with its spe-
cialized tokenizer, which struggles to handle com-
plex structures and hinders seamless integration
with different autoregressive models. However,
thanks to our Compact linearization method and
small extra vocabulary, our system uses the origi-
nal tokenizer of the selected language model with-
out modifications. Consequently, our system can
seamlessly integrate with other autoregressive
models, such as mBART, T5, and Long-T5. The
simplified tokenizer facilitates flexible model selec-
tion and opens doors for future advancements and

explorations in the AMR parsing domain.

3.3. Decoding Graphs

After SPRING has generated the DFS-based lin-
earized graph, it is transformed into PM graphs.
However, this process involves multiple manual
rules to address potential errors introduced by the
model, such as hallucinations or corrupted predic-
tions. These rules are tightly coupled with the to-
kenizer, limiting the model’'s portability across dif-
ferent model architectures. In contrast, our new
approach eliminates the need to revert to PM lin-
earization. Instead, we iterate over the predicted
sequence, extracting the triplets directly. Then, we
construct a new AMR graph based on the list of
triplets. This strategy allows our system to adapt to
other autoregressive models without needing man-
ually created, rule-based corrections.

3.4. Efficient Training

To ensure optimal training efficiency, we leverage
the latest version of PyTorch Lightning (Falcon and
The PyTorch Lightning team, 2019). In addition,
we utilize Adafactor (Shazeer and Stern, 2018) as
our optimizer and implement a dynamic batch size
strategy based on the number of tokens; we maxi-
mize GPU utilization and significantly expedite the
training process. This adaptive approach ensures
optimal resource allocation, resulting in a simpli-
fied system architecture that is adaptable and has
higher training efficiency.

4. Experimental Setup

4.1. Dataset

We evaluate our model using the AMR 3.0 cor-
pus (LDC2020T02), which contains 55635, 1722,
and 1898 sentence-AMRs in the training, valida-
tion, and test sets, respectively.

4.2. Metrics

Our work is evaluated across multiple dimensions:
(i) comparing the total number of tokens in the
training and test sets, assessing the efficiency
of our novel linearization approach; (ii) measur-
ing training time per epoch and inference time on
the test set in order to evaluate the efficiency of
our models; and (iii) employing the SMATCH met-
ric (Cai and Knight, 2013) in order to assess the
parsing performance, which quantifies the similar-
ity between AMR graphs based on triplet overlap-

ping.
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Model Training Inference

name Hyper. Vocab. Linear. | B. Size B. Total Tokens Time (h) | B. Size B.Total Tokens Time(s) SMATCH

— CLAP 60M  32.279 PM | 15,000 946 7,149,589 7 | 10,000 34 308,682 240 76.3
il g CLAP 60M 32,279 DFS | 15,000 482 5,185,376 4| 10,000 25 221,472 94 80.1
®  CLAP 60M 32,279 CMP | 15,000 260 2,529,214 2 | 10,000 13 107,699 37 80.2

- o CLAP 140M 50,459 PM | 12,000 631 5,558,900 8 | 10,000 27 242,714 80 80.4
g:: & CLAP 140M 50,459 DFS | 12,000 452 4,376,811 4 | 10,000 24 187,947 65 81.4
m < CLAP 140M 50,459 CMP | 12,000 304 2,476,757 3 | 10,000 11 103,732 29 81.3
o CLAP 220M 32,279 PM 6,500 1,423 7,149,589 10 | 10,000 34 308,682 180 775

£ & CLAP 220M 32,279 DFS 6,500 1,046 5,185,376 6 | 10,000 25 221,472 149 82.5
< CLAP 220M 32,279 CMP | 6,500 549 2,529,214 4 | 10,000 13 107,699 37 82.5
CLAP 400M 50,459 PM 6,000 1,206 5,558,900 17 | 10,000 27 242,714 147 81.5

E g, SPRING 400M 53,587 DFS 4,000 2,806 4,040,794 45 | 10,000 51 180,086 134 83.0
g & CLAP 400M 50,459 DFS 6,000 1085 4,376,811 14 | 10,000 21 187,947 67 83.0
CLAP 400M 50,459 CMP | 6,000 567 2,476,757 8 | 10,000 11 103,732 29 83.1

o CLAP 770M 32,279 PM 2,000 4,477 7,149,589 37 | 10,000 34 308,682 403 83.0

2 2 CLAP 770M 32,279 DFS 2,000 3,257 5,185,376 27 | 10,000 25 221,472 227 84.0
2 CcLAP 770M 32,279 CMP | 2,000 1,670 2,529,214 12 | 10,000 13 107,699 98 84.0

Table 1: Results through different systems and linearizations. Block best performance in bold. Row
Blocks: models by linearization. Column blocks: Model - model name, number of hyperparameters,
vocab size, type of linearization; Training - max batch size, total number of batches, total number of
tokens in the training dataset, time to train 50 epochs in hours; Inference - max batch size, total number
of batches, total number of tokens in the test dataset, inference time of test dataset in seconds, and

SMATCH score.

4.3. Models

We use SPRING as our baseline system, which
is based on the BART (Lewis et al., 2020) model.
In addition, we compare with our novel CLAP sys-
tem based on BART base and large, and Flan-
T5 (Chung et al., 2022) small, base and large. Fur-
thermore, to assess the benefits of our Compact
linearization, we train our system with three lin-
earizations: penman (PM), DFS-based (DFS), and
Compact (CMP). We highlight that we focus our
comparisons on SPRING rather than on the lat-
est models, since these subsequent approaches
build on top of SPRING, just modifying the training
strategies. Our main goal is to emphasize the dis-
tinction between different linearization techniques
and different systems, rather than that between dif-
ferent training strategies. To ensure a fair compar-
ison, we do not apply BLINK as a post-processing
phase to improve the Wikifications, and we care-
fully allocate the maximum batch size for each
model to fit the available GPU resources while
maintaining stable training conditions. The hyper-
parameters for our experiments include using the
Adafactor optimizer, 0.15 for Dropout, 0.0 for At-
tention Dropout, 0.01 for weight decay, and learn-
ing rates of 0.001 for T5 and 0.0001 for BART. We
utilize the Inverse Square Root (sqrt) learning rate
scheduler and employ a Beam size 5 for our ex-
periments.

5. Results

Table 1 comprehensively compares the number of
tokens processed and computation time between

SPRING and our CLAP system based on BART
and T5 and using PM, DFS and CMP linearization.
When we consider SMATCH performance, we ob-
serve that our CMP linearization and CLAP system
closely align with DFS and the original SPRING.

5.1. Linearization

The DFS-based linearization reduces the graph
number of tokens by 25-30% compared to PM.
However, our CMP linearization surpasses DFS
compression, achieving 55-65% reduction against
PM and around 45-55% with respect to DFS. This
enables faster processing, as the models only gen-
erate half of the tokens to construct the graphs.
Therefore, the CLAP model training time with CMP
linearization is on average 60% faster than using
PM and 50% faster than using DFS linearization,
and 75% and 65% faster in inference time, respec-
tively.

5.2. Systems

Comparing our DFS-based CLAP built on BART-
large against SPRING, our system generates
more tokens since its vocabulary is not special-
ized to DFS-based linearization (e.g., CLAP does
not have special tokens for the node identifiers,
so they are split). However, our system man-
ages the batches more efficiently, making them
three times smaller than SPRING, reducing the
training time by 69%. Additionally, the inference
time decreases by 50%. Furthermore, compar-
ing SPRING against our CLAP system based on
BART-large using CMP, we reduce the training
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time by 82% and inference time by 78%.

5.3. Compatibility

In contrast to SPRING, CLAP demonstrates en-
hanced modularity by adapting to different T5
and BART-based models. This adaptability un-
derscores a noteworthy observation: BART-based
models inherently generate fewer tokens than their
T5 counterparts. This difference in tokenization
arises from their inherent tokenization behaviour.
While T5 relies on Unigram, BART relies on Byte
Pair Encoding (BPE), resulting in vocabulary sizes
of 32,279 and 50,459, respectively. Consequently,
the larger vocabulary allocation of BART splits
words into fewer tokens. Nevertheless, our CMP
approach effectively mitigates this tokenization dis-
parity, resulting in a consistent number of tokens
between models.

6. Conclusion

Through our Compact linearization and our effi-
cient CLAP system, we enhance AMR parsing by
boosting its efficiency and flexibility. The Com-
pact linearization reduces the number of tokens
by 50%, and our CLAP system cuts training and
inference times by 80%, while maintaining pars-
ing performance. Our modular system ensures
easy transitions between different LMs, enhanc-
ing adaptability in AMR parsing, and paving the
way for new research and practical applications.
We make our code publicly available for the com-
munity in the following GitHub repository https:
//github.com/SapienzaNLP/clap/.
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