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Abstract

Diffusion models have become a powerful generative modeling paradigm, achieving great success in continuous
data patterns. However, the discrete nature of text data results in compatibility issues between continuous diffusion
models (CDMs) and pre-trained language models (PLMs). That is, the performance of diffusion models even
degrades when combined with PLMs. To alleviate this issue, we propose to utilize a pre-trained decoder to convert
the denoised embedding vectors into natural language instead of using the widely used rounding operation. In this
way, CDMs can be more effectively combined with PLMs. Additionally, considering that existing noise schedules in
text diffusion models do not take into account the linguistic differences among tokens, which violates the easy-first
policy for text generation, we propose a linguistic easy-first schedule that incorporates the measure of word
importance, conforming to easy-first-generation linguistic features and bringing about improved generation quality.
Experiment results on the E2E dataset and five controllable tasks show that our approach can combine the merits

of CDMs and PLMs, significantly outperforming other diffusion-based models.
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1. Introduction

Diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020) have recently emerged as state-of-
the-art generative models, achieving high-quality
synthesis results in the realm of modeling continu-
ous data such as images (Ho et al., 2020), audio
(Kong et al., 2020), and video (Ho et al., 2022). Dif-
fusion models have also achieved great success in
controllable generation and text-to-image systems,
such as DallE 2 (Ramesh et al., 2022) and Imagen
(Saharia et al., 2022).

The success of diffusion models in controllable
generation makes them attractive for the text do-
main. Prior works have explored two represen-
tative diffusion processes for text generation, i.e.,
discrete diffusion (Hoogeboom et al., 2021; Austin
et al., 2021), and continuous diffusion (Li et al.,
2022). Discrete diffusion extends diffusion models
to discrete state spaces while continuous diffusion
performs the diffusion process in continuous latent
representations of word embeddings and decodes
the continuous generations with a rounding step.

Although there has been great progress, extend-
ing diffusion models to generate text data is still a
challenging task. We observe that when combined
with the pre-trained language models (PLMs) (De-
vlin et al., 2019; Lewis et al., 2020), the dimension-
ality of word embeddings becomes significantly
high (e.g., 768 for BERT). In such cases, the KNN
rounding operation fails to effectively decode the
high-dimensional embedding vectors into natural
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language, resulting in incompatibility between the
continuous diffusion models (CDMs) and PLMs,
i.e., the performance of CDMs even degrades
when combined with PLMs (Li et al., 2022).

Besides, existing noise schedules in text diffu-
sion models do not consider the linguistic differ-
ences among tokens in a sequence, which violates
the easy-first policy for text generation, causing
the inaccurate generation of keywords and rare
words. Therefore, there is an urgent need for a
more effective method of integrating continuous
diffusion models and pre-trained language mod-
els while considering the word importance in the
noise schedule. In this work, we propose Diffusion-
LEF, which aims to achieve the aforementioned
goals. Specifically, we utilize a pre-trained en-
coder BERT (Devlin et al., 2019) to transform dis-
crete text into embedding vectors, which are then
subjected to diffusion operations. On the decod-
ing side, we rely on a pre-trained BART Decoder
(Lewis et al., 2020) to directly convert the de-
noised embedding vectors into natural language
text, without the need for rounding operations. In
addition, we introduce a linguistic easy-first sched-
ule that considers linguistic features as the metric.
This schedule aligns with the principle of generat-
ing text in an easy-first manner and ultimately en-
hances the quality of text generation.

Plug-and-play controllable generation
(Dathathri et al., 2019) enables the genera-
tion of text with controllable properties (such as
sentiment, style, or topic) without the need for
further fine-tuning or retraining of the language
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model. And continuous diffusion models have
been argued to be effective in plug-and-play con-
trollable generation tasks (Li et al., 2022). Hence,
we follow the previous work and conduct experi-
ments on the E2E dataset Novikova et al. (2017)
and five controllable tasks including Semantic
Content, Parts-of-Speech, Syntax Tree, Syntax
Spans, and Length. The results indicate our
Diffusion-LEF achieves competitive performance
compared with recent baseline models with re-
spect to both generation quality and fine-grained
control ability.

To sum up, the main contributions of this work
are as follows:

* We propose Diffusion-LEF, which effectively
combines with the pre-trained language
model BERT, leveraging the merits of both
the diffusion models and pre-trained language
models.

* We introduce a linguistic easy-first schedule
that takes into account the linguistic features
of words, bringing about higher-quality text
generation.

» Experiments show that Diffusion-LEF
achieves competitive performance with
recent baseline models on different control-
lable generation tasks.

2. Related Works

2.1. PLMs for Text Generation

Recently, pre-trained language models (PLMs)
have achieved significant success in text genera-
tion tasks (Qian et al., 2021). Most PLMs adopt an
auto-regressive paradigm to generate text during
pre-training and fine-tuning (Li et al., 2021). For
example, the work based on GPT (Radford et al.,
2019; Brown et al., 2020) converts different tasks
into language modeling by predicting tokens se-
quentially. BART (Lewis et al., 2020) utilizes an
auto-regressive decoder to recover corrupted text
during pre-training. T5 (Raffel et al., 2020) masks
spans of words in the input text, and then predicts
the masked tokens in a sequential manner.

Since PLMs have achieved remarkable perfor-
mance on various text generation tasks, we expect
to integrate PLMs into text diffusion models to im-
prove the quality of generated text. He et al. (2022)
have explored the combination of pre-trained de-
noising language models with absorbing-state dis-
crete diffusion models. This integration allows for
leveraging the strengths of both models, result-
ing in a more comprehensive approach. However,
their method is only effective for discrete diffusion
models, and when combined with continuous dif-
fusion models, it actually leads to a performance

decline. In this work, we introduce a more effec-
tive way of combining continuous diffusion models
with pre-trained language models, thus combining
their respective advantages.

2.2. Diffusion Models for Text Generation

The great success of diffusion models in contin-
uous domain (Ho et al., 2020) has attracted re-
searchers to explore modeling in discrete domains,
e.g., text generation. Existing text diffusion models
can be broadly divided into two categories: dis-
crete diffusion (Hoogeboom et al., 2021; Austin
et al., 2021), and continuous diffusion (Li et al.,
2022). Discrete diffusion performs the diffusion
process on discrete text tokens, while continuous
diffusion is conducted on continuous signals.

Sohl-Dickstein et al. (2015) first introduced the
diffusion process in the discrete domain and pro-
posed a binomial diffusion process to predict the
binary representation of continuous data. Recent
works have further explored diffusion processes
that are more applicable to text. Hoogeboom et al.
(2021) respectively explores the diffusion process
for discrete states with categorical transition ker-
nels, uniform transition kernels, and absorbing ker-
nels. However, replacing continuous diffusion with
a discrete corruption process affords some flexibil-
ity (Dieleman et al., 2022).

There are also some works exploring continu-
ous diffusion for textual data modeling. Bit Diffu-
sion (Chen et al., 2022) encodes discrete data as
binary bits, treating these bits as real-valued fea-
tures. DiffusionLM (Li et al., 2022) applies stan-
dard diffusion operations on the word embedding
space and uses the rounding technique to map
continuous space to discrete space during the re-
verse process. DiffuSeq (Gong et al., 2023) ex-
tends DiffusionLM to sequence-to-sequence set-
tings by using an encoder-only Transformer and
partial noising to define the diffusion process. Dif-
ferent from DiffuSeq, SeqgDiffuSeq (Yuan et al.,
2023) uses an encoder-decoder Transformer ar-
chitecture and proposes adaptive noise schedule
techniques. Despite making some progress, previ-
ous work ignored the differences between tokens
in a sequence, leaving significant room for im-
provement in terms of text generation quality. In
this work, we aim to utilize a linguistic easy-first
schedule to improve it.

2.3. Plug-and-Play Controllable Generation

Plug-and-play controllable generation aims to pro-
duce text with controllable attributes, allowing
users to manipulate specific attributes without
any further fine-tuning or re-training. Most plug-
and-play approaches adopt an auto-regressive
paradigm to generate texts: Dathathri et al. (2019)
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utilized gradient-based methods to modify the hid-
den representations of an auto-regressive lan-
guage model to conform to specific control guid-
ance. Yang and Klein (2021) introduced a tech-
nique that involves adjusting the significance of
predicted tokens using reweighting methods. Ad-
ditionally, Krause et al. (2021) and Liu et al.
(2021) expanded on this approach by fine-tuning
a smaller language model to enhance the weight-
ing of token predictions.

The work closest to ours is PPLM (Dathathri
et al., 2019), which has been successful on at-
tribute control (e.g., topic), but less effective on
complex control tasks (e.g., syntactic structure). In
this work, we achieved plug-and-play controllable
generation by updating the gradient of the middle
latent variables with classifier guidance during the
diffusion process and obtained promising results
in multiple complex control tasks.

3. Preliminary

Diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020) are a class of latent variable gener-
ative models, that realize the generation of target
data from noise (sampled from a simple distribu-
tion). It usually contains two processes: the for-
ward process and the reverse process.

3.1. Forward Process

The forward process gradually disrupts the data
sample z( using random noise. Specifically, given
an input data sample z, ~ ¢(x), the input data
is perturbed by gradually adding a small amount
of Gaussian noise until the input data becomes
completely noisy. The forward process produces
a Markov chain consisting of the hidden variables
L1, T

q (xt ‘ -thl) =N (wt; V1= thtflyﬁtl—) , (1)

where 5, € (0,1) is the pre-defined scaling ra-
tio of the noise variance at step t. Following a
pre-defined noise schedule, 3, increases as the
timestep grows, eventually corrupting x into a ran-
dom noise zy. Then, based on the reparameteri-
zation trick, any intermediate latent variable z; can
be sampled from z in closed form:

q (x| mo) = N (24 Varwo, VI—a I), (2)

where a; =1 — f; and @; = [[_; a.

3.2. Reverse Process

The reverse process aims to learn the inverse pro-
cess p(z:—1|z¢) of the forward process, which en-
ables step-by-step denoising to recover the de-
sired data sample z, from the random noise z.

Since the true p(z;—1|z;¢) in the reverse process
is intractable, a neural network py (x;—1 | ;) is de-
fined to approximate this distribution. When g;
is small enough, py (z;—1 | ;) can be modeled
as a Gaussian distribution with two parameters:
mean pyg (z¢,t) and variance Xy (x,t). Therefore,
po (x¢—1 | z¢) can be defined as follows:

Po (-1 | ) = N (@e—1;5 po (x4, 1), g (¢, 1)) ,
3)
where 14 (-) and Xy(+) are parameterized by a de-
noising network x4 like U-Net (Ronneberger et al.,
2015) or Transformer (Vaswani et al., 2017).

The learning objective of diffusion models is
trained to maximize the marginal likelihood of
log pg (9) by minimizing the variational lower
bound (Sohl-Dickstein et al., 2015):

Lub = Eq [Dki (¢ (z7 | z0) |lpe (z7))]
+Eq |1y Dre (¢ (ze-1 | @, 20) ||po (-1 | 2, 1))

—logpy (zo [ 21),

(4)
where E,(-) denotes the expectation over the joint
distribution ¢(z¢.7). However, this objective is usu-
ally unstable and requires many optimization tricks
to stabilize (Nichol and Dhariwal, 2021). To ad-
dress this issue, we follow Ho et al. (2020) to ex-
tend and reweight each KL divergence termin L,
and obtain a mean squared error loss:

T

Lampie = By [l (@, 30) = o (2, D], (5)
t=1
where () is the mean of the posterior

q(xi—1 | xe,20), and pug() is the predicted
mean of py (x;—1 | 2¢), which is predicted by the
parameterized neural models. Through different
parameterization strategies, the prediction objec-
tive can also be either the noise (Ho et al., 2020)
or original data z (Li et al., 2022).

4. Approach

In this section, we present the main design of our
proposed Diffusion-LEF for controllable text gen-
eration. The overall diagram of Diffusion-LEF is
shown in Figure 1.

4.1. Diffusion with pre-trained language
models

To perform standard diffusion operations on dis-
crete text, we utilize a learnable embedding layer
or an encoder E() to bridge the discrete space and
continuous space. In order to leverage the prior
knowledge of the language model, we can directly
replace the embedding layer with the pre-trained
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Figure 1: The overview of Diffusion-LEF.

language model. Specifically, given the input sen-
tence d with [ tokens d = wy,, the encoder E()
maps the discrete tokens to the continuous space
and gets the hidden representations of input to-
kens as the initial state in diffusion models:

o = wyy = E (wiy), (6)

Later, we perform the standard diffusion oper-
ation on the tokens’ latent variable representation.
For decoding, we use a pre-trained BART Decoder
D() to reconstruct the original input:

w i = D(z) = D(E(w)), @)

BART is a pre-trained language model that fol-
lows an encoder-decoder architecture. It is specif-
ically trained as a denoising autoencoder, where
it learns to reconstruct uncorrupted language text
given input language utterances with masked to-
kens. This training process enables BART to effec-
tively generate clean and coherent text output. By
contrast, T5 is pre-trained to generate masked to-
kens of given corrupted text rather than fluent text.
Therefore, BART is more suitable for our task, and
we use BART-base as the decoder. To enhance ef-
ficiency, we freeze the parameters of BART while
retaining only the trainable parameters of the de-
noising network x4 ().

4.2. Linguistic Easy-First Schedule

Existing noise schedules in text diffusion models
are mainly derived from image generation tasks,
such as the linear schedule (Ho et al., 2020) and
the cosine schedule (Dhariwal and Nichol, 2021).
These noise schedules do not consider the lin-
guistic differences, i.e., importance and frequency,
among tokens in a sequence. They treat all tokens
equally in both forward and reverse process, which

violates the easy-first policy (Kasai et al., 2020) for
non-autoregressive text generation. The easy-first
policy dictates that the model tends to first gener-
ate commonly used words as context for generat-
ing rare words later on. Failure to follow this pol-
icy can lead to tricky problems, such as inaccurate
generation of key or rare words.

We propose the linguistic easy-first schedule to
apply the easy-first policy to diffusion text gener-
ation. First, we need to define the importance I
of words in a sentence. In this work, the impor-
tance I is defined based on their relevance and
the amount of information they convey:

Word Relevancy

We use the TextRank (Mihalcea and Tarau,
2004) score as the metric to assess word rele-
vancy within a sentence. By calculating the score
of each node based on the weight between nodes,
we determine the importance of each word in the
sentence. A higher score assigned to a node in-
dicates greater significance of the corresponding
word within the sentence.

In a sentence, if a word w; corresponds to a
node v;, and there exists an edge between node
v; and another node v; corresponding to another
word w;, then the weight of the edge is defined as
follows:

1

)= (8)
|Out )|

weight (v;, v;
where Out,,) represents the set of outdegree of
node v;. The score of node v; is defined as follows:

score (v;) = (1 —d)

Y ) T

weight(v;,v;)
) weight(vj,vk)

score (vj) ,

(9)
where In(,, represents the set of indegree of
node v;, d represents the damping coefficient, typ-
ically set to 0.85.

Vi EOut(vj
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The amount of Information

We use entropy H (Bentz and Alikaniotis, 2016;
He et al., 2022) to measure the amount of infor-
mation of word w within a sentence. A word with
higher entropy might contain greater unpredictabil-
ity and information content in the given context and
thus is more important compared to words with
lower entropy. The formula for calculating entropy

H(w) = —p(w) log(p(w)), (10)
p(w) = Zé;“’ - (1)

where p(w) represents the probability of the word
w and f is the word frequency in the corpus.

In practice, we combine two metrics of word rel-
evancy and the amount of information(normalized)
to determine the importance I of the word w in one
sentence d as follows:

H(w)
S Hw)

Based on the introduced importance I of words
in a sentence, we sort the words in descending or-
der according to their importance and divide them
into m buckets Wi.,,, where the lower-indexed
buckets contain more important words. During
the forward process, we add noise to words with
higher importance before words with lower impor-
tance, so that during the reverse process, easy
(low importance) words emerge earlier than hard
(high importance) words, which conforms to the
easy-first-generation linguistic features and helps
to achieve better generation quality. Specifically,
at each step ¢, we add a small amount of Gaus-
sian noise to the hidden representation of word w;
in bucket W|%|:

score(w)

Y wreq Score (w')

I(w) = (12)

q(wiq1 | wig) = N (wi,t+1§ V(L= 5t)wi,tvﬂtl) )

(13)
where the hyperparameter 3; is the amount of
noise added at diffusion step t¢.

Li et al. (2022) observes that the nearest neigh-
bors of words in the embedding space stay con-
stant after corruption and attributes this phe-
nomenon to the small initial noise scale in tra-
ditional schedules. Thus, it introduces the sqrt
schedule which has a higher initial noise scale and
increasing rate, while gradually slowing down to
avoid producing too many highly corrupted latent
variables. Following the work of Li et al. (2022), we
apply the sqrt noise schedule to gradually increase

Bt
5t:1_\/t/T+s7 (14)

where s is a small constant that corresponds to the
starting noise level.

We incorporate the measure of word importance
into the noise schedule and name it as linguistic
easy-first schedule, which fully considers the lin-
guistic features of tokens. During the forward nois-
ing process, harder (high importance) words be
added with less noise, which is beneficial for main-
taining training stability.

4.3. Self-Conditioning

In the reverse process of standard diffusion mod-
els, the denoising network only makes predic-
tions based on the current latent variable xz; and
time step t. Chen et al. (2022) proposed the
self-conditioning technique, which adds the pre-
dicted output from the previous timestep to the
denoising network. This is formulated as z; =
xg (x4, t,T411 ). It has demonstrated significant
improvements in text generation quality and has
become a widely-used technique in text diffusion
models (Dieleman et al., 2022; Gao et al., 2022).

We apply the self-conditioning technique to our
Diffusion-LEF. During the inference state, the sam-
pling procedure is essentially iterative. Therefore,
the sampling process does not require any addi-
tional modifications. However, we need to mod-
ify the training procedure due to the unavailability
of z,1. Specifically, for each training step ¢, with
probability p = 0.5, we do not provide any estimate
of the data for self-conditioning. In this case, z; ¢ =
zg (¢, t, 0 ) is trained by setting the previous pre-
dictions 7., to 0. With probability 1 — p, we mimic
the inference behavior by first computing the value
of Z; g = xg (x4, t, ) and then computing the ad-
ditional estimate 2, = z¢ (24, ¢, sg(Z;9) ), where
sg() is the stopping gradient operation. In the sec-
ond case, we do not backpropagate through the
first estimated z; 4.

4.4. Denoising Network Architecture

In the forward process, the initial latent variable z
is gradually noised into a series of noisy latent vari-
ables z;.7. The reverse process needs to grad-
ually denoise zp back to z,. We define the de-
noising network as zy(x¢, t), which is based on
the Transformer (Vaswani et al., 2017) architecture
with 12 layers and a hidden dimension of 768.

To obtain the reconstruction, we project the la-
tent z; onto the input dimension of the Transformer,
pass it through the Transformer, and subsequently
process it with a LayerNorm (Ba et al., 2016) and
a linear layer.

For the decoding strategy, we follow Diffu-
sionLM (Li et al., 2022) to use the Minimum Bayes
Risk (MBR) decoding (Kumar and Byrne, 2004).
When applying MBR decoding, we make use of
the generated sequence candidates set C for each
sample. By calculating the expected risk R for

5555



each candidate sequence within the set, MBR de-
coding aims to find the candidate sequence sx that
minimizes this expected risk.

* =argmin R(s) = argmin

5" = argmin R(s) g'\CIZ

s'ec

(15)

where r (-, -) represents a specific risk function, and

we use the negative BLEU score following Diffu-

sionLM. The sequence candidates within the can-

didate set C are generated from the diffusion mod-
els using various random seeds.

4.5. Controllable Text Generation with
Diffusion-LEF

Our approach follows the setting of Plug-and-Play
controllable generation as DiffusionLM (Li et al.,
2022), which utilizes an external classifier to per-
form control over the latent variables z; in each in-
termediate step ¢ € [0, T] of the diffusion process:

Hp Tt— 1|‘Tfa ’

Following the cond|t|onal independence as-
sumption in previous work on controlling diffusion
(Yang and Klein, 2021), we decompose the joint in-
ference problem of p(x¢.r|c) into a series of control
problems at each diffusion step t:

(16)

I0T|

p(xi-1 | x,¢) < p (-1 | @) - p(c|zp-1,74)
= p($t—1 \ 9Ct) 'p(c \ ﬂﬁt—l)’
(17)
Therefore, for the ¢ step, we run gradient up-
dates on x; to generate x;_1:

Va, ,109p (zi-1 | ¢,¢) = AV, logp (211 | 24)
+ Ve, logp(c|mi-1),

(18)
where log p(x;_1|z;)is parameterized by the Dif-
fusion Transformer and logp(c|z:—1) is parameter-
ized by a neural network classifier. Both terms are
differentiable. Additionally, X is a fluency regular-
ization hyperparameter that trades off fluency and
control to enhance generation quality.

5. Experiments

5.1. Tasks and Datasets

We trained Diffusion-LEF on the E2E datasets
(Novikova et al., 2017) which is composed of
50,000 restaurant reviews that have been labeled
according to 8 different fields. Then we apply our
controllable generation method to four classifier-
guided control tasks, i.e., Semantic Content, Parts-
of-Speech, Syntax Tree, Syntax Spans, and one
classifier-free control task, i.e., Length.

For every control task, we sample 200 control
targets ¢ from the validation splits, and for each
control target, we generate 50 corresponding sam-
ples. To evaluate the fluency of text generated by
Diffusion-LEF, we use a teacher LM (i.e., a care-
fully fine-tuned GPT-2 model) and report the per-
plexity of the generated text under the teacher LM.
Lower perplexity indicates better sample quality
and fluency. For each control task, we define ac-
curacy metrics as follows:

Semantic Content. For a given field (e.g., eat-
Type) and value (e.g., coffee shop), the task is to
generate a sentence that includes the format of
field = value. We evaluate the accuracy of the gen-
erated sentences by examining the exact match
rate of the word mentions for 'value’.

Parts-of-Speech. For a given sequence of
parts-of-speech (POS) tags (e.g., Det Noun Verb
Det Noun), the task is to generate a sentence with
the same length and follow the exact given POS
tag sequence (e.g., The cat chased the mouse).
We evaluate the accuracy by checking for exact
matches between the word-level POS tags and the
corresponding tags generated by an oracle POS
tagger.

Syntax Tree. For a given syntactic parse tree,
the task is to generate a sentence with the same
parse tree. We evaluate the accuracy by first pars-
ing the generated sentence with an off-the-shelf
parser and report the F1 scores compared to the
given parse.

Syntax Spans. For a given (span, syntactic cat-
egory) pair (e.g., (1, 3, NP)), the parse tree of the
generated sentence should match the given syn-
tactic category over the given spans. We evaluate
the accuracy of the sentence by the exact match
rate of the given spans.

Length. For a given target length (e.g., 30), the
task is to generate a sentence within +2 of the
given target. We evaluate the accuracy by the
match rate of the sentence lengths.

5.2. Baselines

In our controllable text generation experiments,
we conducted a comparative analysis between
Diffusion-LEF and the following state-of-the-art
baseline models.

PPLM (Dathathri et al., 2019) increases the clas-
sifier probabilities and language model probabili-
ties by running gradient ascent on the pre-trained
language model activations. Since the classifier
of PPLM lacks location information, we only apply
PPLM to the task of controlling semantic content.

FUDGE (Yang and Klein, 2021) reweights the to-
kens predicted by a pre-trained language model. It
uses a discriminator that takes a sequence of pre-
fixes and predicts whether the full sequence satis-
fies the constraints.
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Semantic Content Part-of-Speech Syntax Tree Syntax Spans Length

Methods

Accuracy? Fluency| Accuracy? Fluency| Accuracy? Fluency| Accuracyt Fluency| Accuracy? Fluency|
PPLM 9.9 5.32
FUDGE 69.9 2.83 27.0 7.96 17.9 3.39 54.2 4.03 46.9 3.1
DiffusionLM 81.2 2.55 90.0 5.16 86.0 3.71 93.8 2.53 99.9 2.16
DiffusionLM+BERT 774 2.68 86.2 5.43 82.3 3.92 89.3 3.13 99.9 2.68
Diffusion-LEF 81.7 2.46 91.2 5.09 86.3 3.68 94.4 2.48 99.9 2.14
Diffusion-LEF+BERT 82.4 2.32 92.4 4.82 89.4 3.48 95.5 2.36 100 210

Table 1: Main results on five controllable generation tasks.

Methods Semantic Content Part-of-speech Syntax Tree Syntax Spans Length
DiffusionLM 3.56 3.63 3.61 3.42 3.81
DiffusionLM+BERT 2.81 3.10 2.96 3.04 3.20
Diffusion-LEF 3.89 4.05 412 3.72 3.98
Diffusion-LEF+BERT 4.32 4.54 4.61 4.21 414

Table 2: Human evaluation scores of different methods on five controllable generation tasks.

Semantic Content

Accuracy  Fluency

Diffusion-LEF 81.7 2.46
w/o Ling. Sche. 81.5 2.52
w/o BART Decoder 81.4 2.49

Table 3: Ablation studies on the Semantic Content
task.

DiffusionLM (Li et al., 2022) learns an embed-
ding to map the discrete text into the continuous
space where it performs the Gaussian diffusion
process. Additionally, it introduces a rounding step
designed to map the embeddings back into dis-
crete texts.

5.3. Implementation Details

Our Diffusion-LEF is based on Transformer archi-
tecture with 12 layers and a hidden dimension of
768, with a sequence length n = 64, diffusion
steps T' = 500, and a sqrt noise schedule. We set
the embedding dimension to 128. When combined
with the PLM BERT, the embedding dimension is
set to 768. In this work, we use the BERT-base
with about 110M parameters and freeze the param-
eters in BERT. The number of word buckets m is
set to 3. We learn Diffusion-LEF with the AdamW
optimizer (Loshchilov and Hutter, 2017) for 20,000
steps with learning rate of 3e-4, dropout proba-
bility of 0.1, and batch size of 64. We use a lin-

ear warmup schedule starting with 1,000 warmup
steps. All experiments are conducted on 4 NVIDIA
RTX A6000 GPUs.

5.4. Experimental Results

Main Results We report the main experimen-
tal results of our Diffusion-LEF and baselines on
five controllable text generation tasks in Table 1.
Diffusion-LEF achieves the highest Fluency and
Accuracy scores on five controllable generation
tasks, indicating that Diffusion-LEF has excellent
text generation quality and fine-grained control
ability when equipped with the linguistic easy-first
schedule. Compared with the non-diffusion meth-
ods PPLM and FUDGE, the diffusion-based meth-
ods DiffusionLM and Diffusion-LEF both achieved
great improvements (e.g., 90.0 for DiffusionLM
and 91.2 for Diffusion-LEF vs. 27.0 for FUDGE on
the Part-of-speech task), indicating the applicabil-
ity of diffusion models on controllable generation
tasks.

It is observed that when combined with the pre-
trained language model BERT, the performance
of DiffusionLM has declined. One explanation for
this phenomenon is that the rounding operation to
bridge continuous space and discrete space suf-
fers from significantly high dimensions, which re-
sults in incompatibility between the continuous dif-
fusion models and the PLMs. Instead of employ-
ing rounding operations, our Diffusion-LEF relies
on the BART decoder to convert the denoised em-
bedding vectors into natural language. This strat-
egy effectively resolves the challenge of high di-
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Time Step T-t

Sentences

Input (Semantic Content)

food : Chinese

0 [mask] [mask] [mask] [mask] [mask] [mask] [mask] [mask]
200 The [mask] restaurant serves [mask] [mask] cuisine.
400 The [mask] restaurant serves authentic [mask] cuisine.
500 The Chinese restaurant serves authentic Sichuan cuisine.
Input (Length) 10
0 [mask] [mask] [mask] [mask] [mask] [mask] [mask] [mask] [mask] [mask]
200 The restaurant is [mask]and has a [mask] [mask].
400 The restaurant is [mask] and has a nice ambiance.
500 The restaurant is cozy and has a nice ambiance.

Table 4: Examples of the intermediate generated text of Diffusion-LEF on the Semantic Content and

Length task.

mensionality. As demonstrated in Table 1, when
combined with the PLM BERT, our Diffusion-LEF
exhibits improved performance compared to Dif-
fusionLM. This indicates that our method can effi-
ciently integrate with the PLMs and thus make full
use of the merits of both.

Human Evaluation In addition to automatic met-
rics, human evaluation is also highly valuable for
text generation tasks. To better demonstrate the
performance of Diffusion-LEF, we invite five grad-
uate students with proficiency in English as human
annotators to evaluate the text generated by differ-
ent models. The details are as follows: For each
control task, we randomly select 30 samples from
four models: DiffusionLM, DiffusionLM+BERT,
Diffusion-LEF, and Diffusion-LEF+BERT. Five an-
notators are asked to rate the samples using five
scores [1, 2, 3, 4, 5], where higher scores repre-
sent higher quality. The scoring criteria consist of
two factors: (i) fluency, which evaluates the read-
ability and fluency of the given sentence, and (ii)
controllability, which evaluates whether the given
sentence aligns with the specified control condi-
tion. To ensure fairness, the human evaluation is
carried out in a blind manner, where the annota-
tors are kept unaware of which model the output
sequence is related to. Table 2 shows the results
of the human evaluation. We can observe that
DiffusionLM+BERT has the lowest rating score,
while Diffusion-LEF+BERT has the highest rating
score, which shows a similar trend with the au-
tomatic metrics. That is, our proposed Diffusion-
LEF and Diffusion-LEF+BERT can achieve better
results than DiffusionLM, which fully proves the su-
periority of our proposed method.

5.5. Ablation Study

Our Diffusion-LEF includes several key designs,
i.e., linguistic easy-first schedule and the usage

of BART Decoder. Here, we conduct the ablation
studies on the Semantic Content task to verify their
effectiveness.

In Table 3, Ling. Sche. is short for linguistic
easy-first schedule, w/o Ling. Sche. represents
the removal of the linguistic easy-first schedule
from Diffusion-LEF and instead using the fixed sqrt
schedule, w/o Ling. Sche represents the removal
of BART Decoder and instead uses the rounding
operation. We can observe that after removing
the corresponding component, the performance of
Diffusion-LEF drops consistently, indicating the ef-
fectiveness of the designs we employed.

5.6. Case Study

In order to visually show the generation process
of Diffusion-LEF, we select two examples for pre-
sentation, as shown in Table 4. It can be ob-
served that on the Semantic Content task, easy
(low importance) words such as "the”, "restaurant”
and “cuisine” are generated earlier, while hard
(high importance) words such as "Chinese” and
"Sichuan” are generated with the increase of diffu-
sion steps. Additionally, the generated sentence
also includes the format of "field = value” (food =
Chinese). On the Length task, the words "the”,
”is” and "a” are also generated before "cozy” and
"nice”. The generated sentence also satisfies the
required length criteria. This fully shows that the
generation process of Diffusion-LEF follows the
easy-first-generation linguistic features, while also
enabling controlled generation.

6. Conclusion

In this work, we propose Diffusion-LEF, a text Dif-
fusion model effectively combined with pre-trained
language model BERT, which leverages the mer-
its of both diffusion models and pre-trained lan-
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guage models. In addition, we propose the lin-
guistic easy-first schedule that incorporates the
measure of word importance, conforming to easy-
first-generation linguistic features and bringing
about improved generation quality. Through ex-
periments conducted on the E2E dataset and
five controllable tasks including Semantic Content,
Parts-of-Speech, Syntax Tree, Syntax Spans, and
Length, we demonstrate the superior performance
of Diffusion-LEF compared with recent baseline
models in terms of generation quality and fine-
grained control ability.

Limitations

This work aims to efficiently integrate diffusion
and pre-trained language models for controllable
text generation with the linguistic easy-first sched-
ule. It is worth noting that the combination of pre-
trained language models may introduce biases
learned from the pre-training corpus into the gen-
erated texts. Another important limitation is the
slow speed of sample generation from diffusion
models due to the iterative nature of the sampling
process. Although some existing works, such as
DDIM (Song et al., 2020) and Dpm-solver (Lu et al.,
2022), have been dedicated to improving the infer-
ence speed, they may cause the mismatch of dif-
fusion trajectories between training and inference.
How to alleviate this matching problem will be a
future research direction.
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