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Abstract
Skeleton-aware sign language recognition (SLR) has gained popularity due to its ability to remain unaffected by
background information and its lower computational requirements. Current methods utilize spatial graph modules
and temporal modules to capture spatial and temporal features, respectively. However, their spatial graph modules
are typically built on fixed graph structures such as graph convolutional networks or a single learnable graph,
which only partially explore joint relationships. Additionally, a simple temporal convolution kernel is used to
capture temporal information, which may not fully capture the complex movement patterns of different signers. To
overcome these limitations, we propose a new spatial architecture consisting of two concurrent branches, which
build input-sensitive joint relationships and incorporates specific domain knowledge for recognition, respectively.
These two branches are followed by an aggregation process to distinguishe important joint connections. We then
propose a new temporal module to model multi-scale temporal information to capture complex human dynamics.
Our method achieves state-of-the-art accuracy compared to previous skeleton-aware methods on four large-scale
SLR benchmarks. Moreover, our method demonstrates superior accuracy compared to RGB-based methods in
most cases while requiring much fewer computational resources, bringing better accuracy-computation trade-off.
Code is available at https://github.com/hulianyuyy/DSTA-SLR

Keywords:Sign language recognition, skeleton data, dynamic feature graph aggregation, complex temporal
movement patterns.

1. Introduction
Sign language is the primary means of communi-
cation for deaf individuals, conveyed through dy-
namic hand gestures, body posture, and facial
expressions (Dreuw et al., 2007; Ong and Ran-
ganath, 2005). However, understanding sign lan-
guage can be challenging and time-consuming for
the hearing people, requiring significant time and
effort. Fortunately, recent advancements in ma-
chine learning and computer vision have made
significant progress in the automatic interpretation
of sign language. These technologies greatly facil-
itate communication for deaf individuals, enabling
them to interact more smoothly with others in their
daily lives.
Sign language recognition (SLR) can be broadly
categorized into two types: vision-based SLR and
skeleton-aware SLR. Vision-based SLR directly
predicts signs from RGB image streams, which
can be computationally expensive. Skeleton-
aware SLR involves predicting a single sign la-
bel from a sequence of 2D or 3D skeleton rep-
resentations. Compared to vision-based SLR,
skeleton-aware SLR requires much fewer compu-
tations from 2D (Kay et al., 2017; Yan et al., 2018)
or 3D (Liu et al., 2019; Shahroudy et al., 2016)
skeleton inputs and is less affected by environ-
mental factors like camera motion, lighting condi-
tions, and changes in viewpoint (Liu et al., 2020),
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which is thus more robust in extracting human ac-
tion representations.

Current methods for skeleton-aware SLR (Tunga
et al., 2021; Jiang et al., 2021b; Boháček andHrúz,
2022) often use a combination of spatial graph
modules and temporal modules to capture spa-
tial and temporal features, respectively. However,
there are two main limitations to these methods.
Firstly, current methods rely on graph convolu-
tional networks (GCNs) with a fixed graph struc-
ture or a single learnable graph, which can hinder
the modeling of dynamic connections between hu-
man body joints that are specific to different input
samples. Secondly, current methods typically use
a simple temporal convolution to capture tempo-
ral information, which may not be able to effec-
tively model the complex temporal dependencies
present in sign language.

In this paper, we address the aforementioned lim-
itations from two aspects. First, we propose to
enhance the flexibility of spatial modules to com-
prehensively capture the correlations between dif-
ferent body joints. Specifically, we introduce a
graph correlation module that dynamically builds
spatial graphs for each input sample in a channel-
wise manner, eliminating the need for a predefined
graph based on the human body structure. Fur-
thermore, we introduce virtual super nodes in ad-
dition to the physical human body joints to incorpo-
rate specific domain knowledge into the model. An
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adaptive graph is then constructed to distinguish
the inherently important connections between hu-
man joints. Secondly, to capture the complex tem-
poral movements of various input samples, we
propose a parallel temporal convolutional mod-
ule to aggregate multi-scale temporal information.
This module consists of a series of temporal con-
volutions with varying receptive fields, which en-
ables capturing human dynamics across a wide
range of temporal durations.
With the advantages of high spatial and tempo-
ral capacity, our proposed method achieves new
state-of-the-art accuracy on four commonly used
SLR benchmarks. Especially, compared to vision-
based methods which typically demand much
higher computations and memory usage, our
model achieves superior results in most cases with
a better accuracy-computation trade-off, thereby
bringing us one step closer towards real-life appli-
cations. Several ablation experiments confirm the
effectiveness of our proposed modules.

2. Related Work
2.1. Sign Language Recognition
Sign language recognition (SLR) aims to clas-
sify an input video into a single sign label, which
can be roughly divided into vision-based SLR and
skeleton-aware SLR. Vision-based SLR usually
receives RGB videos or RGB+D videos as inputs.
Hand pose is used as guidance to pool spatio-
temporal featuremaps from different layers of a 3D
CNN in (Hosain et al., 2021) to capture multi-cue
features. SignBERT (Hu et al., 2021a) performs
self-supervised pre-training on available sign data
and incorporates hand prior in a model-aware
method to model hierarchical context. SAM-
SLR-v2 (Jiang et al., 2021a) proposes to fuse
the representations of multiple modalities to en-
hance the representations. Despite high accu-
racy, these vision-based methods usually require
a lot of computations. Skeleton-aware SLR meth-
ods receive skeleton sequences as inputs to per-
form recognition, which aremore invariant to back-
ground information and more lightweight in 2D or
3D format compared to RGB streams, thus re-
quiring fewer computational resources. Previous
skeleton-aware SLRmethodsmostly rely on graph
networks to process non-Euclidean skeleton data
by treating human body joints as graph nodes.
SAM-SLR (Jiang et al., 2021b) proposes a sign
language graph convolutional network and a sepa-
rable spatial-temporal convolutional network to ex-
ploit skeleton features. SLGTformer (Song, 2022)
leverages learnable graph relative positional en-
codings and temporal twin self-attention to guide
skeleton feature extraction. SPOTER (Boháček
and Hrúz, 2022) introduces new normalization and
augmentation techniques as well as a transformer-
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Figure 1: Overview for our proposed model.

based framework to handle skeleton data. We
argue that the graph structure adopted in these
methods may not well fit complex human dynam-
ics and propose to dynamically build graph struc-
tures.

2.2. Skeleton-based Action Recognition
Skeleton-based action recognition aims to recog-
nize human actions from a series of input skeleton
sequences. Earlier methods always adopt convo-
lutional neural networks (CNNs) or recurrent neu-
ral networks (RNNs) to depict action representa-
tions by modeling human dynamics as a pseudo-
image (Ke et al., 2017; Li et al., 2017, 2018a) or a
series of coordinates along time (Du et al., 2015;
Liu et al., 2016; Li et al., 2018b; Zhang et al., 2017;
Si et al., 2019). Nevertheless, they overlook the in-
ternal relationships between joints which are bet-
ter captured by graph networks due to their natu-
ral advantage over handling non-euclidean data.
ST-GCN (Yan et al., 2018) has first proposed to
model the human structure as a spatial graph by
representing joints as nodes and bones as edges
with a spatial-temporal graph convolutional net-
work (GCN). However, the spatial receptive field
in GCN is only limited to 1-hop neighbors and the
edge weights are fixed in such conditions. Some
late methods propose to leverage the higher poly-
nomial order of the skeleton adjacency matrix to
enlarge the spatial receptive field, where distant
joints can exchange messages directly (Gao et al.,
2019; Li et al., 2019). Some other methods pro-
pose to attach an attention-based adaptively com-
puted graph along with the predefined graph to
better exploit relationships between all joints and
alleviate the predefined edge weights (Shi et al.,
2020; Zhang et al., 2020; Xu et al., 2022; Ke et al.,
2022; Su et al., 2021; Yang et al., 2021; Chen
et al., 2021).
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3. Methods
Fig 1 illustrates the overview of our proposed
method, which consists of r blocks followed by a
global average pooling layer, a fully connected (fc)
layer, and a softmax function for recognition. Each
block is first composed of a concurrent graph cor-
relation module and a super node transform mod-
ule to dynamically capture spatial joint relation-
ships, followed by a dynamic graph aggregation
module to distinguish inherently important joints.
Three consecutive parallel temporal convolutional
modules are followed to perform temporal model-
ing to capture complex human dynamics. In this
section, we will first describe the process of build-
ing skeleton graphs and then provide a detailed
explanation of our proposed method.

3.1. Graph Construction
Wearable motion capture devices such as Kinect
V2 (Pagliari and Pinto, 2015) have been widely
used in popular skeleton benchmarks such as
NTU RGB+D 60 (Shahroudy et al., 2016),
NTU RGB+D 120 (Liu et al., 2019) and NW-
UCLA (Wang et al., 2014). However, these de-
vices cannot provide precise annotations for the
hands, which are critical for SLR. To address this
limitation, we use a pretrained whole-body pose
estimation network (HRNet (Sun et al., 2019) from
MMPose (Contributors, 2020)) to offer annotations
for people in the videos, resulting in 133 keypoints
following the COCO format. To reduce the noise
contained in the large number of nodes, we reduce
the number of nodes to 27, which only contain 10
nodes for each hand and 7 nodes for the upper
body, which is based on the observation that sign
language is mainly conveyed by joints located in
the upper human body.
Given the input skeleton sequences, adjacent key-
points are connected in the spatial dimension ac-
cording to the natural connections of the human
body to form spatial graphs in GCNs. Formally,
a graph is represented as G=(V, E), where V =
{v1,...,vN } is a set of N graph nodes representing
joints and E is a series of graph edges represent-
ing connectivity (bones) between joints. An adja-
cent matrix A with size N×N is adopted to depict
the connectivity whereAi,j represents the connec-
tion strength between node i and j. Especially, A
is constructed as :

Ai,j =

{
1 if d (vi, vj) = 1

0 else
(1)

where d(vi, vj) calculates the minimum distance
between skeleton node vi and vj . The action se-
quences are represented as a feature tensor x ∈
RC×T×N where each node vn ∈ N has a C dimen-
sional feature vector over total T frames.
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Figure 2: Overview for the proposed graph corre-
lation module.

3.2. Graph Correlation Module
Recently, graph convolutional networks (GCNs)
are broadly introduced to model human body dy-
namics in action recognition and SLR. Specifically,
given the input tensor x ∈ RC×T×N , it performs
layer-wise graph convolution with 1-hop normal-
ized graph structure A at each time step as:

Y = σ(WXA) (2)

where Y is the output andW is a trainable weight
matrix. σ(·) acts as an activation function for out-
put. In the graph convolutional network, the graph
A is predefined according to human body struc-
ture in eq. 1 where each node can only aggre-
gate information from 1-hop neighbors with fixed
weights. However, distant nodes may still have
significant correlations in sign language recogni-
tion, and these connections are not well captured
by the fixed A. Moreover, the relationships be-
tween joints should be dynamically computed as
different joints may play distinct roles in different
sign language actions. We propose to dynamically
compute joint relationships for each input sample
to better capture important connections.
The overview of the graph correlation module is
shown in fig. 2. In each layer, the input features
x ∈ RCin×T×N pass through a linear layer and
a BatchNorm layer to obtain x̂, transforming the
channels into Cout. Afterwards, the features from
the query and key go through two 1×1 convolu-
tions to act as query and key, respectively. Then
the features are reshaped into RCmid×S×T×N to
compute the adjacent matrices. In this process,
S independent adjacent matrices are generated
to encode various joint relationships to expand
the network capacity, where Cmid=Cout/S. Fi-
nally, the features from both branches are multi-
plied to produce the expected adjacent matrices
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Â ∈ RS×N×N . To better represent the signifi-
cance of each subset, we introduce a learnable
parameter α that is randomly initialized and mul-
tiplied with the computed adjacent matrices. The
resulting ajacent matrices Â are passed through
a tanh activation function to transform their values
into the range of [-1, 1]. Negative values in Â are
expected to suppress corresponding messages,
while positive values are expected to aggregate
useful information from corresponding nodes. The
reshaped x̂ is finallt multiplied with the adjacent
matrices Â to aggregate information from other
body joints. It’s worth noting that in this process,
the adjacent matrices are dynamically and inde-
pendently computed for each input sample, getting
rid of the predefined pattern of previous methods.
Thus, it could dynamically build relationships with
distant nodes, avoiding fixed weights within only
1-hop neighbors.

3.3. Super Node Transform Module
Currently, only human body joints are assigned
as graph nodes, with specific physical meanings
in practice. However, we argue that the network
could also contain task-specific knowledge inher-
ently to aid recognition. For instance, in SLR, we
expect the network to contain the rules to perform
signs and execute body movements to help recog-
nition. To achieve this, we propose adding super
(virtual) nodes in each layer and allowing input fea-
tures to exchange information with them to absorb
useful knowledge. The overview of our proposed
module is illustrated in fig. 3.
Specifically, given the input features x ∈
RCin×T×N in each layer, they first pass through
a LayerNorm layer and a linear layer to en-
hance their representations. These features
are then multiplied with the super node features
u ∈ RCin×E to obtain the similarity matrix Ã ∈
RE×T×N . Here, E denotes the number of su-
per nodes. To encode the importance of each
super node, we introduce a randomly initialized
learnable parameter β ∈ RE×1×1, and multiply
it with the similarity matrix. The similarity matrix
Ã then passes through a tanh activation function
to transform its values into [-1, 1], whose neg-
ative values would suppress corresponding con-
nections and positive values would enhance the
received messages. Finally, the super node fea-
tures u ∈ RCin×E aremultiplied with the computed
similarity matrix Ã ∈ RE×T×N to aggregate bene-
ficial information from super nodes for each body
joint, to absorb specific domain knowledge to help
recognition.

3.4. Dynamic Graph Aggregation Module
In addition to the dynamic adjacent matrix that
is computed independently for each input, we

LayerNorm + Linear
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Figure 3: Overview for the proposed super node
transform module.

also integrate static graphs into our model de-
sign, which are invariant over inputs to encode
inherently important connections between body
points. Practically, we introduce a fully learn-
able graph P ∈ RCin×N×N to capture joint rela-
tionships. P is randomly initialized and updated
via backward-gradient-based network propaga-
tion, which is channel-wisely set to learn unique
connection characteristics for each channel to en-
code body movements. To exchange messages
between different graph nodes, we multiple input
features x ∈ RCin×T×N with P ∈ RCin×N×N to
let each node aggregate information from all other
joints in a per-channel manner, resulting in output
features y ∈ RT×Cin×N .

3.5. Parallel Temporal Convolution
Module

Current techniques typically utilize a single tem-
poral convolutional module with a large kernel to
extract temporal information. Nonetheless, we ar-
gue that this approach may not be adequate to
represent the complex movements when perform-
ing signs. For instance, various signers may per-
form signs with distinct speeds and body move-
ments, and the action durations may vary signifi-
cantly. Using a single temporal receptive field to
capture such diverse movement patterns may not
be optimal. Therefore, we propose a parallel tem-
poral convolution module (PTCN) that consists of
multiple temporal convolutions in parallel with dif-
ferent kernel sizes to capture these dynamics.
Fig. 4 depicts the architecture of our proposed
module. It comprises L parallel branches with var-
ious kernel sizes, i.e., K1, K2, . . . , KL, to cap-
ture temporal information of various scales. Given
the input features x ∈ RCin×T×N , we split x along
the channel dimension into L branches of x1, · · · ,
xL∈ RCin/L×T×N independently. In each of the
L branches, such as the lth branch, xl undergoes
a temporal convolution with a kernel size of Kl to
capture temporal information. Then, a BatchNorm
layer calibrates the representations. Finally, the
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Figure 4: Overview for the proposed parallel tem-
poral convolution module.

features from different branches are concatenated
along the channel dimension as outputs to mix in-
formation from different scales.
As shown in fig 1, we serially stack three PTCNs to
increase the temporal receptive field and enlarge
the model capacity to capture complex human dy-
namics.

3.6. Multiple-Stream Fusion.
Following previous methods (Jiang et al.,
2021a,b), we fuse beneficial information from
multiple streams to perform recognition, including
joint (original input data), bone, joint-motion and
bone motion streams. For the bone stream, we
obtain information by subtracting the source joint
(which is close to the center of gravity of the
skeleton) from the target joint (which is far away
from the center of gravity) for each connected
joint pair of the human body. Similarly, we obtain
motion information by subtracting the difference
between adjacent frames for either joint or bone
streams. We calculate softmax scores for all four
streams and then average them to give the final
prediction.

4. Experiments
4.1. Experimental Setup
4.1.1. Datasets
SLR500 (Zhang et al., 2016) is a Chinese sign
language dataset recorded in the controlled lab
environment with a solid-color background. It con-
tains 500 words performed by 50 signers through
5 times. Totally, there are 125,000 videos in
SLR500.
WLASL (Li et al., 2020a) is a challenging Amer-
ican Sign Language dataset collected from web
videos with a vocabulary size of 2000 words.
It contains 21,083 samples performed by 119
signers with unconstrained recording conditions.
We follow previous methods to use four sub-
sets of WLASL, i.e., WLASL100, WLASL300,
WLASL1000 and WLASL2000 to evaluate our
method.

Model configurations Top-1(%)

Our model 51.44
w/o Graph correlation 49.25 (-2.19)
w/o Super node transform 50.82 (-0.62)
w/o Dynamic aggregation 50.23 (-1.21)
w/o PTCN 49.69 (-1.75)

Table 1: Ablations on the effectiveness of each
proposed module.

MSASL (Joze and Koller, 2018) is an Ameri-
can sign language dataset, consisting of 16,054,
5,287, and 4,172 samples in the training, testing,
and validation set, respectively. It’s recorded in
unconstrained real-life scenarios with a vocabu-
lary size of 1,000. We follow previous methods
to use four subsets of MSASL, i.e., MSASL100,
MSASL200, MSASL500 and MSASL1000 to eval-
uate our method.
NMFs-CSL (Hu et al., 2021c) contains 25,608 and
6,402 samples for training and testing, respec-
tively, with a vocabulary of 1067 words.

4.1.2. Training details
We use r=4 basic blocks, and set the channels
for each block in [64, 128, 256, 512]. We ran-
domly/centrally sample 120 frames out of 150 in-
put frames as input during training/testing. In-
put data is mean normalized, added with random
noise of maxmium value of 20 and augmented
with 50% horizontally flipping (only during train-
ing). The temporal stride of 3rd PTCN in each
block is set as 2 to decrease the sequence length.
We adopt the SGD optimizer to train our model
by total 250 epochs and learning rate 0.1, which
is decreased by a factor of 10 after 150 and 200
epochs. Our model is trained with batch size of 24
with weight decay 0.0001 on a 3090 GPU in Py-
Torch framework. We follow SAM-SLR-v2 (Jiang
et al., 2021a) to add a STC Module after each
block to calibrate the input features.

4.2. Ablation Study
We conduct experiments on the WLASL2000
dataset with joint stream only to verify the effec-
tiveness of our proposed modules.
Study on the effectiveness of proposed mod-
ules. Tab. 1 verifies the effectiveness of our pro-
posed modules with an overall 51.44% accuracy
on the WLASL2000 dataset. It has been ob-
served that eliminating any of the suggested mod-
ules leads to a decrease in accuracy. Especially,
it’s noticed that the graph correlation module and
PTCN have the greatest impact on accuracy, re-
sulting in a boost of +2.19% and +1.75%, respec-
tively, by distinguishing beneficial spatial features
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Model configurations Top-1(%)

GCN 47.51
Learnable graph 49.86

Graph correlation module 51.44

S = 1 50.64
S = 4 50.91
S = 8 51.44
S = 16 50.93

Table 2: Ablations on the configuration of graph
correlation module.

Model configurations Top-1(%)

E = 1 50.98
E = 6 51.44
E = 12 51.26
E = 24 50.84

w/o β 50.96
Tanh → softmax 50.34

Table 3: Ablations on the configuration of super
node transform module.

from other nodes or capturing complex human dy-
namics.
Study on the architecture of graph correlation
module. In the upper part of tab. 2, we compare
our proposed graph correlation module against
other spatial aggregation architectures, e.g., GCN
and a learnable graph. GCN aggregates spatial in-
formation from 1-hop neighbors with fixed weights.
The learnable graph uses an adaptive adjacent
matrix for all inputs. It’s noticed that our proposed
graph correlation module outperforms the other
two architectures by a large margin in accuracy.
We then examine the effects of the number of gen-
erated adjacent matrices S, and find that larger
values of S lead to better performance, reaching
a peak at 8. We thus set S=8 by default.
Study on the configurations of super node
transform module. We first demonstrate the im-
pact of varying the number of super nodes E.
It’s observed that larger E achieves better perfor-
mance, which reaches a peak after equalling 6.
Therefore, we set E=6 by default. Next, we eval-
uate the effectiveness of several proposed com-
ponents in the super node transform module. Re-
moving β leads to a decrease in accuracy, as it
dynamically adjusts the importance weights of dif-
ferent super nodes. Additionally, replacing the
tanh activation function with softmax results in de-
creased accuracy. The tanh activation function is
crucial for highlighting important features with pos-
itive outputs and suppressing irrelevant features
with negative outputs.

Model configurations Top-1(%)

Kernels = [3,5,7,9] 50.05
Kernels = [3,5] 50.22
Kernels = [3,9] 51.05
Kernels = [5,7] 51.44
Kernels = [7,9] 51.03

1*PTCN 49.64
2*PTCN 50.52
3*PTCN 51.44
4*PTCN 50.66

Table 4: Ablations on the configuration of parallel
temporal convolution module.

Study on the configurations of parallel tempo-
ral convolution module (PTCN). The upper part
of tab. 4 investigates the architecture of PTCN.
We find that a two-branch architecture using ker-
nel sizes of [5,7] achieves better performance
than other options, such as two branches or four
branches. We believe that larger temporal ker-
nels (e.g., 9) may introduce excessive noise, while
smaller kernels may not adequately capture com-
plex temporal movements. We then consider
the number of stacked PTCNs. The bottom part
of tab. 4 reveals that increasing the number of
PTCNs leads to consistent improvements in per-
formance, which reaches a peak after using 3
PTCNs. Thus, we use 3 PTCNs as the default set-
ting.

4.3. Comparison with the state-of-the-art
WLASL. Tab. 5 presents a comparison of our
method with state-of-the-art approaches on the
WLASL dataset. For fair comparison, we follow
the previous methods to divide this dataset into
four subsets, including WLASL100, WLASL300,
WLASL1000, and WLASL2000, and evaluate us-
ing two accuracy metrics: per-instance accu-
racy (P-I) and per-class accuracy (P-C). The up-
per part of Tab. 5 compares our method with
other skeleton-aware methods, while the bottom
part compares it with other RGB-based methods.
Our method achieves new state-of-the-art perfor-
mance across all four subsets, surpassing other
skeleton-aware approaches by a large margin,
thanks to its superior ability to dynamically aggre-
gate joint features and capture complex human dy-
namics. We especially find that our method out-
performs other RGB-based approaches in most
cases, despite consuming fewer computation.
These results demonstrate the effectiveness and
efficiency of our proposed method.
MSASL. Tab. 6 compares our method with
state-of-the-art approaches on the MSASL
dataset, which is divided into four subsets in-
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Methods WLASL100 WLASL300 WLASL1000 WLASL2000
P-I(%) P-C(%) P-I(%) P-C(%) P-I(%) P-C(%) P-I(%) P-C(%)

Skeleton-aware
SignBERT (Hu et al., 2021a) 79.07 80.05 70.36 71.17 - - 47.46 45.17

HMA (Hu et al., 2021b) - - - - - - 46.32 44.09
SAM-CLR-v2 (Jiang et al., 2021a) - - - - - - 51.50 -

SLGTformer (Song, 2022) - - - - - - 47.42 -
BEST (Zhao et al., 2023) 77.91 77.83 67.66 68.31 - - 46.25 43.52

RGB-based
I3D (Li et al., 2020a) 65.89 - 56.14 - 47.33 - 32.48 -

Fusion-3 (Hosain et al., 2021) 75.67 - 68.30 - 56.68 - 38.84 -
TCK (Li et al., 2020b) 77.52 - 68.56 - - - - -

BEST (Zhao et al., 2023) (R+P) 81.63 81.01 75.60 76.12 - - 54.59 52.12

Ours 82.38 83.09 79.97 80.56 67.76 67.54 53.68 51.17

Table 5: Comparison with other methods on the WLASL dataset. ’R+P’ denotes the fused results of RGB
and pose modalities.

Methods MSASL100 MSASL200 MSASL500 MSASL1000
P-I(%) P-C(%) P-I(%) P-C(%) P-I(%) P-C(%) P-I(%) P-C(%)

Skeleton-aware
SignBERT (Hu et al., 2021a) 81.37 82.31 77.34 78.02 - - 59.80 57.06

HMA (Hu et al., 2021b) 78.57 79.48 72.19 73.52 - - 56.02 52.98
BEST (Zhao et al., 2023) 80.98 81.24 76.60 76.75 - - 58.82 54.87

RGB-based
I3D+BLSTM (Li et al., 2020a) 72.07 - - - - - 40.99 -

TCK (Li et al., 2020b) 83.04 83.91 80.31 81.14 - - - -
BSL (Albanie et al., 2020) - - - - - - 64.71 61.55

Ours 84.16 84.54 81.58 81.89 75.06 74.68 65.74 62.31

Table 6: Comparison with other methods on the MSASL dataset. ’R+P’ denotes the fused results of RGB
and pose modalities.

Methods Top-1(%)

Skeleton-aware
ST-GCN (Yan et al., 2018) 90.0
SignBERT (Hu et al., 2021a) 96.6

HMA (Hu et al., 2021b) 95.9

RGB-based
3D-R50 (Qiu et al., 2017) 95.1
GLE-Net (Hu et al., 2021c) 96.8

SignBERT (Hu et al., 2021a) (R+P) 97.6
BEST (Zhao et al., 2023) (R+P) 97.7

Ours 98.1

Table 7: Comparison with other methods on the
SLR500 dataset. ’R+P’ denotes the fused results
of RGB and pose modalities.

cluding MSASL100, MSASL200, MSASL500
and MSASL1000. The upper and bottom parts
of tab. 6 compare our method against other

skeleton-aware methods and RGB-based meth-
ods, respectively. It’s observed that our method
achieves much better accuracy in both metrics
across all four subsets than other skeleton-aware
approaches. Moreover, our method outperforms
RGB-based approaches in most cases.
SLR500 and NMFs-CSL. Tab. 7 and tab. 8 com-
pare our method against other skeleton-aware and
RGB-based methods on the SLR500 and NMFs-
CS datasets, respectively. As a skeleton-aware
approach, our method beats both skeleton-aware
methods and RGB-basedmethods, verifying its ef-
fectiveness.

4.4. Visualizations
Fig. 5 depicts the edges computed by the graph
correlation module to demonstrate its efficacy in
capturing human dynamics for the ”Clothes” and
”No” signs. Only the edges with top 5% weights
are displayed. It is observed that the generated
edges primarily connect the center joint (neck) with
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(a) Sign class : Clothes

(b) Sign class: No

Figure 5: Visualizations of learned edges in the graph correlation module for two signs. Only the top 5%
active connections are plotted. It’s observed that our method learns to build dynamic joint relationships
for different input samples, and especially pays attention to the joints of both hands to capture sign
movements.

Methods Top-1(%)

Skeleton-aware
ST-GCN (Yan et al., 2018) 59.9
HMA (Hu et al., 2021b) 71.7

SignBERT (Hu et al., 2021a) 74.9
BEST (Zhao et al., 2023) 68.5

RGB-based
I3D (Carreira and Zisserman, 2017) 64.4

TSM (Lin et al., 2019) 64.5
Slowfast (Feichtenhofer et al., 2019) 66.3

GLE-Net (Hu et al., 2021c) 69.0
HMA (Hu et al., 2021b) (R+P) 75.6

Ours 77.9

Table 8: Comparison with state-of-the-art meth-
ods on the NMFs-CSL dataset. ’R+P’ denotes the
fused results of RGB and pose modalities.

joints located in both hands for both signs. Addi-
tionally, our approach learns to establish connec-
tions between the joints of the left and right hands
to create distant relationships. We conclude that
our method can develop dynamic joint relation-
ships for various input samples and, in particular,
focuses on the joints of both hands to capture sign
movements.

4.5. Efficiency
4.5.1. Model parameters
Tab. 9 presents a comparison between our pro-
posed method and two recent skeleton-aware
approaches, namely SAM-CLR-v2 (Jiang et al.,
2021a) and SPOTER (Boháček and Hrúz, 2022).

Parameters

12.4M

7.4M

Avg FLOPs

5.22G

0.72G

0.91G

1.63G

Avg inference time

1.34s

0.54s

0.05s

0.59s

I3D

Ours

Pose estimation

Accuracy

32.5%

51.4%

Figure 6: Comparison of our method (with joint
stream only) and I3D (Li et al., 2020a) upon ac-
curacy, parameters, average FLOPs, and average
inference time on the WLASL2000 dataset.

We observe that while the parameters of our
method fall between those of the other ap-
proaches, our method significantly outperforms
them in terms of accuracy. This demonstrates the
effectiveness and efficiency of our proposed ap-
proach.

4.5.2. Comparison with RGB-based methods
Fig. 6 presents a comparison between our method
and a popular RGB-based approach, I3D (Li et al.,
2020a), using various metrics such as accuracy,
parameters, FLOPs, and inference time on the
WLASL2000 dataset to highlight the advantages
of our method in real-world applications. The fig-
ure shows that our method outperforms I3D in
terms of accuracy, while having lower parame-
ters, much fewer average FLOPs per video, and
less average inference time per video. Compared
to RGB-based approaches, our method demon-
strates great advantages in both accuracy and ef-
ficiency by taking skeleton data as input, demon-
strating its superiority in real-life scenarios.
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Methods Parameters(M) Top-1(%)
SAM-CLR-v2 4.3 45.61
SLGTformer 9.3 47.42

Ours 7.4 51.44

Table 9: Comparison of our method with other
skeleton-aware approaches upon both accuracy
and parameters on the WLASL2000 dataset with
joint stream only.

5. Conclusion
In this paper, we address the shortcomings of pre-
vious skeleton-aware sign language recognition
methods by introducing two novel approaches.
Firstly, we dynamically construct joint relation-
ships to gather useful spatial features. Secondly,
we present a parallel temporal convolution mod-
ule to capture intricate human dynamics. Our
method achieves new state-of-the-art results on
four widely-used benchmarks and even outper-
forms RGB-based approaches in terms of both ef-
fectiveness and efficiency in most cases.
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