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Abstract
Knowledge graph embedding, which aims to learn representations of entities and relations in large scale knowledge
graphs, plays a crucial part in various downstream applications. The performance of knowledge graph embedding
models mainly depends on the ability of modeling relation patterns, such as symmetry/antisymmetry, inversion
and composition (commutative composition and non-commutative composition). Most existing methods fail in
modeling the non-commutative composition patterns. Several methods support this kind of pattern by modeling
in quaternion space or dihedral group. However, extending to such sophisticated spaces leads to a substantial
increase in the amount of parameters, which greatly reduces the parameter efficiency. In this paper, we propose
a new knowledge graph embedding method called dual complex number knowledge graph embeddings (DCNE),
which maps entities to the dual complex number space, and represents relations as rotations in 2D space via
dual complex number multiplication. The non-commutativity of the dual complex number multiplication empowers
DCNE to model the non-commutative composition patterns. In the meantime, modeling relations as rotations in
2D space can effectively improve the parameter efficiency. Extensive experiments on multiple benchmark knowl-
edge graphs empirically show that DCNE achieves significant performance in link prediction and path query answering.
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1. Introduction

Knowledge graphs (KGs) contain structured facts
of the real world. Large-scale KGs such as Word-
Net (Miller, 1995), YAGO (Suchanek et al., 2007),
Freebase (Bollacker et al., 2008) and Nell (Mitchell
et al., 2018) have been applied to several down-
stream tasks including machine translation (Zhao
et al., 2020), relation extraction (Vashishth et al.,
2018), question answering (Hao et al., 2017), con-
versation generation (Zhou et al., 2018) and rec-
ommender systems (Zhang et al., 2016). KGs may
include millions or even billions of triplets. However,
real-world KGs are usually incomplete, i.e., hav-
ing numerous missing links (Socher et al., 2013).
Therefore, predicting missing links by mining infor-
mation in KG has gained growing interest in recent
years. This task can be further divided into two
categories according to the length of the predicting
path: link prediction (length = 1) and path query
answering (length ≥ 1). Link prediction focuses
on single-hop reasoning (e.g., answering the query
s → r → ?, where r is a relation), while path query
answering (PQA) is interested in multi-hop reason-
ing (e.g., answering the path query s → path → ?,
where path contains multiple relations).

A promising approach for link prediction and PQA
is knowledge graph embedding (KGE), which en-
codes each element in KG into a continuous low-
dimensional vector space, and predicts missing
links by evaluating the scores of them. The perfor-

Figure 1: An example in real world. Jack’s father’s
spouse is Emily, i.e., Jack’s mother; Jack’s spouse’s
father is Luke, i.e., Jack’s father-in-law. “father” and
“spouse” form a non-commutative composition pattern.

mance of KGE methods greatly relys on the ability
of modeling and inferring relation patterns includ-
ing symmetry/antisymmetry, inversion and com-
position. Actually, the composition patterns can
be further divided into the commutative compo-
sition patterns and non-commutative composi-
tion patterns. For example, “spouse” is a symmet-
ric relation and “father” is an antisymmetric relation.
Relations such as “has_part” and “part_of” forms
an inversion pattern. The meaning of the com-
position of “father” and “spouse” depends on the
relative order, which is a non-commutative com-
position pattern. (An example is shown in Fig. 1.)
By contrast, the composition of “father” and “father”
has a definite meaning, i.e.,“grandfather”, which is
a commutative composition pattern.

Current methods can capture one or more re-
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lation patterns. For instance, TransE (Bordes
et al., 2013) models antisymmetry, inversion and
commutative composition patterns by translating
relations from head entities to tail entities. Ro-
tatE (Sun et al., 2019), which regards relations as
rotations in complex space, aims to model the sym-
metry/antisymmetry, inversion and commutative
composition patterns. However, most approaches
fail to model the non-commutative composition pat-
terns, which are essential for learning semantics.

By the non-commutativity of quaternion and dual
quaternion, methods such as QuatE (Zhang et al.,
2019), Rotate3D (Gao et al., 2020) and DualE (Cao
et al., 2021) can model the non-commutative com-
position patterns. Nevertheless, quaternion-valued
methods model relations as rotations in 3D space,
which sharply increases the space cost than that
in 2D space.

In this paper, we propose a new method called
DCNE for knowledge graph embedding. DCNE
projects entities to the dual complex number
space, and represents relations as rotations around
any point in 2-dimensional Euclidean space via
dual complex number multiplication. The non-
commutativity of the dual complex number mul-
tiplication empowers DCNE to model the non-
commutative composition patterns. In addition,
modeling relations as rotations in 2D space can
effectively improve the parameter efficiency.

In summary, our contributions are listed as fol-
lows: (1) DCNE provides a balanced solution to
model the non-commutative composition patterns,
which reduces the space cost than existing KGE
methods. (2) To the best of our knowledge, this pa-
per is the first to introduce dual complex numbers
into knowledge graph embeddings, which shows a
new perspective on modeling the non-commutative
composition patterns. (3) We provide comprehen-
sive theoretical analyses of DCNE including infer-
ence patterns and parameter efficiency. (4) Experi-
mental results verify the superiority of DCNE in link
prediction and path query answering.

The code and supplemental materials are pub-
licly available at GitHub1.

2. Related Work

In this section, we roughly divide the existing KGE
methods into three categories based on the non-
commutativity and discuss their connections to our
approach.

Models without Non-commutativity. Most ex-
isting KGE methods lack the non-commutativity,
which is the key to modeling non-commutative com-
position patterns. TransE (Bordes et al., 2013)
is the most representative KGE model, which en-

1https://github.com/JensenDong/DCNE

codes both entities and relations as vectors in em-
bedding space based on the principle h + r ≈ t,
where h, r, t denote the head entity, relation and
tail entity, respectively. To remedy the limitations
of TransE, several variants (Ji et al., 2015; Lin
et al., 2015; Wang et al., 2014; Xiao et al., 2016)
are proposed to improve the performance when
modeling 1-N, N-1 and N-N relations. Beyond Eu-
clidean space, TorusE (Ebisu and Ichise, 2018)
models triplets on a torus. Inspired by Euler’s iden-
tity eiθ = cosθ + isinθ, RotatE (Sun et al., 2019)
regards translations as rotations from head entities
to tail entities in complex space. RotH (Chami et al.,
2020) introduces a promising method which mod-
els elements in hyperbolic space. Rot-Pro (Song
et al., 2021) supports the transitivity patterns by
combining the projection and relational rotation. In
addition, BoxE (Abboud et al., 2020) encodes ele-
ments by explicitly defining the region as boxes.
RESCAL (Nickel et al., 2011) is the first bilin-
ear model that can perform collective learning via
matching the latent semantics between entities and
relations. DistMult (Yang et al., 2015) and Com-
plEx (Trouillon et al., 2016) are proposed to solve
the overfitting problem of RESCAL. HolE (Nickel
et al., 2016) absorbs the quintessence from Dist-
Mult and ComplEx. Approaches such as Sim-
plE (Kazemi and Poole, 2018) and TuckER (Bal-
azevic et al., 2019b) turn to different forms of de-
compositions. Recently, to increase the modeling
capacity, HousE (Li et al., 2022) utilizes House-
holder transformations. Although some of these
methods claim the ability to model the composition
patterns, in practice, they model the commutative
composition patterns, not non-commutative com-
position patterns.

Models with Non-commutativity. Several ap-
proaches extend the vector space to more sophis-
ticated spaces to obtain the non-commutativity,
which is important for multi-hop reasoning.
Specifically, Rotate3D (Gao et al., 2020) and
QuatE (Zhang et al., 2019) model relations as rota-
tions in quaternion space with different score func-
tions. DualE (Cao et al., 2021) makes the first
attempt to combine rotation and translation by ex-
tending the embedding space to dual quaternion
space. RotateCT (Dong et al., 2022) provides a
novel use of translation in which the coordinate
transformation and translation are integrated in
complex space. However, the performance of Ro-
tateCT on certain datasets stems from the self-
adversarial negative sampling (Sun et al., 2019). In
addition, DihEdral (Xu and Li, 2019) limits relation
matrices to be block diagonal and represents each
block with an element in a dihedral group. Although
such approaches can model the non-commutative
composition patterns, the space cost of them are
greatly increased due to the complicated vector
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spaces such as quaternion space. Our method
DCNE models relations as rotations around any
point in 2D space via dual complex numbers. Com-
pared to quaternion-valued methods, DCNE can
significantly improve the parameter efficiency.

Indeterminate Models. A number of re-
searchers focus on utilizing the neural networks.
However, the neural networks lack interpretability,
and it is difficult to give theoretical analyses from
the perspective of the non-commutativity. Gener-
ally, such approaches verify the performance by
empirical experiments. ConvE (Dettmers et al.,
2018), ConvKB (Nguyen et al., 2018) and Inter-
actE (Vashishth et al., 2020) capture the interac-
tions between entities and relations by convolu-
tional neural networks. R-GCN (Schlichtkrull et al.,
2018) and KBGAT (Nathani et al., 2019) redesign
a graph convolutional network and a graph atten-
tion network, respectively. Recent works try to ex-
ploit more global graph structures like multi-hop
paths. Path-RNN (Das et al., 2017) and ROP (Yin
et al., 2018) employ RNNs to explicitly model paths.
CoKE (Wang et al., 2019) uses a stack of Trans-
former blocks to model paths. Compared to the
above models, our method DCNE is more inter-
pretable with comprehensive theoretical analyses.

3. Preliminaries

In this section, we introduce dual complex numbers,
along with its operations and properties. Then, we
show how to use dual complex numbers to repre-
sent rotations in 2D space.

3.1. Dual Complex Numbers

A dual complex number q is of the form: q = A +
Bi+Cε+Diε, where A,B,C and D are real num-
bers. The set {1, i, ε, iε} forms a basis of the vector
space of dual complex numbers. Imaginary unit i
anti-commutes with dual unit ε. i and ε satisfy the
following rules: i2 = −1, ε2 = 0, iεi = ε, εi = −iε.
Thus, the multiplication of two dual complex num-
bers q1 and q2 is defined as:

q1 ⊗ q2 = (A1A2 −B1B2) + (A1B2 +B1A2)i

+ (C1A2 +D1B2 +A1C2 −B1D2)ε

+ (D1A2 − C1B2 +B1C2 +A1D2)iε (1)

Apparently, the multiplication between dual com-
plex numbers is non-commutative. If and only if
B1

B2
= C1

C2
= D1

D2
, q1 ⊗ q2 = q2 ⊗ q1.

Conjugate The conjugate of a dual complex
number q is defined as q̄ = A−Bi− Cε−Diε.

Norm The norm of a dual complex number q is
defined as ‖q‖ =

√
A2 +B2.

Inversion The inversion of a dual complex num-
ber q is defined as q−1 = q̄

‖q‖2 .

3.2. Representing Rotations in 2D Space
via Dual Complex Numbers

The Euclidean plane can be represented by the
set Π = {i + xε + yiε|x ∈ R, y ∈ R}. An element
v = i + aε + biε on Π represents the point on the
Euclidean plane with cartesian coordinate (a, b).
Theorem 1. If q = cos θ

2 + sin θ
2 (i + xε+ yiε), v ∈ Π,

then v′ = qvq−1 is the result of v rotating θ around
the point (x, y) in Euclidean plane.

4. Methodology

4.1. Dual Complex Number
Representations for Knowledge
Graph Embeddings

Formally, let E denote the set of entities and R de-
note the set of relations. Then a knowledge graph
G is a collection of factual triplets {(h, r, t)}, where
h, t ∈ E and r ∈ R. Lowercase letters h, r and t
denote the head entity, relation and tail entity, re-
spectively; the corresponding bold letters h, r and t
denote the embeddings of them. Note that the i-th
element of h is hi. Let k denote the dimension of
entity and relation embeddings.

In this paper, we propose DCNE to model the
non-commutative composition patterns in 2D space.
Our model projects entities to the dual complex
number space, i.e., h, t ∈ DC

k. Then each element
of an entity e is of the form ei = i+xiε+yiiε, which
represents a point (xi, yi) in 2D space. Further, we
define each relation as an element-wise rotation
around {(xi, yi)} from head entity h to tail entity t.
In other words, given a golden triplet (h, r, t), we
expect that:

t = r ◦ h ◦ r−1 (2)

where ◦ is the Hadmard (or element-wise) prod-
uct. Specifically, we have ti = ri ⊗ hi ⊗ r−1

i for
each element of h, r and t. Here, we constrain
the modulus of each element of r ∈ DC

k, i.e.,
ri ∈ DC, to be |ri| = 1. Then ri is of the form
ri = cos

θr,i
2 + sin

θr,i
2 (i+xr,iε+ yr,iiε), which corre-

sponds a counterclockwise rotation by θr,i radians
around the point (xr,i, yr,i). We define the distance-
based score function as follows:

dr(h, t) =
k∑

i=1

‖ri ⊗ hi ⊗ r−1
i − ti‖ (3)

Optimization. We use a loss function similar to
the negative sampling loss (Mikolov et al., 2013)
for optimizing:

L =−
m∑

i=1

1

m
logσ(dr(h

′
i, t

′
i)− γ)− logσ(γ − dr(h, t))

+ λ(‖h‖2 + ‖t‖2) (4)
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(a) RotatE (b) DCNE

Figure 2: Illustrations of RotatE (a) and DCNE (b). Ro-
tatE models r as a rotation around the origin in complex
plane. DCNE models r as a rotation around any point in
Euclidean plane.

where γ is a fixed margin, σ is the sigmoid func-
tion, m is the negative sampling size, dr(h

′
i, t

′
i)

represents the score of i-th negative triplet and
λ is the regularization rate of h and t. We utilize
Adam (Kingma and Ba, 2014) as the optimizer and
use the self-adversarial negative sampling (Sun
et al., 2019) for generating negative samples.

4.2. Discussion
In this part, we introduce the inference patterns and
provide some theoretical analyses of DCNE. Then,
we discuss the connections between DCNE and
RotatE, and give a comparison about the number
of free parameters among DCNE, Rotate3D and
QuatE.

Inference Patterns. Knowledge graphs mainly
consist of three important relation patterns: symme-
try/antisymmetry, inversion and composition (com-
mutative composition and non-commutative com-
position).
Theorem 2. (Inference ability) DCNE can in-
fer the symmetry/antisymmetry, inversion and
composition patterns.

Based on Theorem 2, we have two corollaries
for symmetry/antisymmetry and inversion patterns.
Corollary 1. If r is a symmetric relation, then θi =
0 ∨ ±π; if r is an antisymmetric relation, then θi �=
0, ±π.
Corollary 2. If r1 is the inverse of r2, then θ1,i +
θ2,i = 0 ∨ ±2π.

DCNE v.s. RotatE. DCNE encodes relations
as rotations around any point in 2-dimensional Eu-
clidean space, whereas RotatE represents relations
as rotations around the origin in complex plane.
Complex plane is a kind of 2D space. Essentially,
both RotatE and DCNE regard relations as rota-
tions in 2D space. Hence, RotatE can be viewed
as a special case of DCNE when the center of ro-
tation is the origin. Fig. 2 provides illustrations of
RotatE and DCNE.

Parameter Efficiency. The number of free pa-
rameters on multiple datasets are shown in Table 2,
from which we can see that DCNE reduces up to
30% parameters against Rotate3D on all datasets.
Intuitively, Rotate3D models relations in 3D space,
whereas DCNE model relations as rotations in 2D
space via dual complex numbers. Representing a
point in 2D space is one parameter less than that in
3D space, which reduces the space cost of DCNE.

5. Experiments

In this section, we evaluate DCNE on link predic-
tion (Bordes et al., 2013) and path query answer-
ing (Guu et al., 2015).

5.1. Link Prediction
Link prediction aims to predict the missing h or t for
a triplet (h, r, t), namely, predicting the head query
? → r → t or the tail query h → r → ?.

Datasets. We evaluate DCNE on four widely
used benchmarks: WN18 (Bordes et al., 2013),
FB15k (Bordes et al., 2013), WN18RR (Dettmers
et al., 2018) and FB15k-237 (Toutanova and Chen,
2015). WN18 is a subset of WordNet, consist-
ing of lexical relations between words. FB15k
is extracted from Freebase, a large-scale knowl-
edge graph containing general facts. The main
relation patterns in WN18 and FB15k are sym-
metry/antisymmetry and inversion (Sun et al.,
2019). However, both WN18 and FB15k suffer from
test leakage through inverse relations (Toutanova
and Chen, 2015). To avoid this problem, WN18RR
and FB15k-237 remove the inverse relations in
WN18 and FB15k. Thus, the main relation pat-
terns in WN18RR and FB15k-237 are symme-
try/antisymmetry and composition (Sun et al.,
2019).

Evaluation Protocol. We report three standard
evaluation metrics: Mean Rank (MR), Mean Recip-
rocal Rank (MRR) and Hits@N, where N = 1, 3, 10.
MR is the average rank of all correct entites. MRR
is the mean reciprocal rank of all correct entities.
Hits@N represents the proportion of correct enti-
ties whose rank is not larger than N. Note that an
excellent KGE model should achieve a lower MR,
a higher MRR and a higher Hits@N. Following Bor-
des et al. (2013), we report the filtered results to
avoid possibly flawed evaluation.

Implementation Details. We use PyTorch to
implement our model and test it on a single GPU
(Tesla V100).

Main Results. We compare DCNE with a num-
ber of strong baselines. For models without non-
commutativity, we report TransE (Bordes et al.,
2013), DistMult (Yang et al., 2015), ComplEx (Trouil-
lon et al., 2016), SimplE (Kazemi and Poole, 2018),
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WN18 FB15k
Model MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10
TransE (2013) - 0.495 0.113 0.888 0.943 - 0.463 0.297 0.578 0.749
DistMult (2015) 655 0.797 - - 0.946 42 0.798 - - 0.893
ComplEx (2016) - 0.941 0.936 0.945 0.947 - 0.692 0.599 0.759 0.840
SimplE (2018) - 0.942 0.939 0.944 0.947 - 0.727 0.660 0.773 0.838
TorusE (2018) - 0.947 0.943 0.950 0.954 - 0.733 0.674 0.771 0.832
RotatE (2019) 309 0.949 0.944 0.952 0.959 40 0.797 0.746 0.830 0.884
ConvE (2018) 374 0.943 0.935 0.946 0.956 51 0.657 0.558 0.723 0.831
R-GCN+ (2018) - 0.819 0.697 0.929 0.964 - 0.696 0.601 0.760 0.842
NKGE (2018) 336 0.947 0.942 - 0.957 56 0.730 0.650 0.790 0.871
DihEdral (2019) - 0.946 0.942 0.949 0.954 - 0.733 0.641 0.803 0.877
Rotate3D (2020) 214 0.951 0.945 0.953 0.961 39 0.789 0.728 0.832 0.887
QuatE (2019) 338 0.949 0.941 0.954 0.960 41 0.770 0.700 0.821 0.878
DualE (2021) - 0.951 0.945 0.956 0.961 - 0.790 0.734 0.829 0.881
RotateCT (2022) 201 0.951 0.944 0.956 0.963 34 0.794 0.737 0.834 0.888
DCNE (ours) 192 0.952 0.945 0.955 0.963 34 0.798 0.745 0.835 0.888

Table 1: Link prediction results on WN18 and FB15k.

Model Rotate3D DCNE QuatE

Space H
k

DC
k

H
k

Dimension 1000 1000 1000
FB15k 50.23M 33.94M(↓ 32.4%) 69.18M
FB15k-237 44.56M 29.79M(↓ 33.1%) 59.11M
WN18 122.90M 81.94M(↓ 33.3%) 163.84M
WN18RR 122.87M 81.92M(↓ 33.3%) 163.82M
Freebase 225.18M 150.13M(↓ 33.3%) 300.22M
WordNet 115.70M 77.14M(↓ 33.3%) 154.25M

Table 2: Number of free parameters.

TorusE (Ebisu and Ichise, 2018), RotatE (Sun et al.,
2019), BoxE (Abboud et al., 2020), MuRP (Balaze-
vic et al., 2019a) and Rot-Pro (Song et al., 2021);
for models with non-commutativity, we report DihE-
dral (Xu and Li, 2019), QuatE (Zhang et al., 2019),
Rotate3D (Gao et al., 2020), DualE (Cao et al.,
2021) and RotateCT (Dong et al., 2022); for in-
determinate models, we report ConvE (Dettmers
et al., 2018), R-GCN+ (Schlichtkrull et al., 2018)
and NKGE (Wang et al., 2018).

The empirical results on four benchmarks are re-
ported in Table 1 and Table 3. Best results are
in bold and second best results are underlined.
We can see that DCNE outperforms all the base-
lines on WN18, WN18RR and FB15k-237, and
achieves extremely competitive performance on
FB15k, which demonstrates the effectiveness of
DCNE in single-hop reasoning. On WN18RR and
FB15k-237, the main relation patterns are sym-
metry/antisymmetry and composition. The perfor-
mance improvement confirms the effectiveness of
DCNE in modeling symmetry/antisymmetry and
composition patterns. As a dual-complex-number-
valued method, DCNE outperforms two represen-

tative quaternion-valued methods QuatE and Ro-
tate3D, the dual-quaternion-valued method DualE,
and the complex-valued method RotateCT, which
fully demonstrates the superiority of dual complex
number embeddings. The overall performance of
the models with non-commutativity is better than
that of the models without non-commutativity, which
proves that modeling non-commutative composi-
tion patterns is crucial. On WN18 and FB15k, the
main relation patterns are symmetry/antisymmetry
and inversion. Since DCNE has no obvious superi-
ority over other state-of-the-art baselines in model-
ing symmetry/antisymmetry and inversion patterns,
the performance improvement on WN18 and FB15k
is not significant than that on WN18RR and FB15k-
237.

Ablation study. We conduct ablation study of
self-adversarial negative sampling on WN18RR
and FB15k-237. From Table 4, we observe that
the performance of DCNE drops by an average
of 0.475 percentage points across MRR, Hits@1,
Hits@3 and Hits@10 on FB15k-237 when not using
self-adversarial negative sampling, where RotatE
drops by an average of 4.425 percentage points
and RotateCT (Dong et al., 2022) drops by an av-
erage of 3.175 percentage points. One reason is
that the performance improvement of our model
comes from dual complex number embeddings,
not self-adversarial negative sampling, which is
also confirmed by the ablation results of DCNE on
WN18RR.

5.2. Path Query Answering

This task is to answer path queries on KGs (Guu
et al., 2015). Given a path query q consisting of
a start entity s and a path p, the answer of q is
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WN18RR FB15k-237
Model MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10
TransE (2013) 3384 0.226 - - 0.501 357 0.294 - - 0.465
DistMult (2015) 5100 0.430 0.390 0.440 0.490 254 0.241 0.155 0.263 0.419
ComplEx (2016) 5261 0.440 0.410 0.460 0.510 339 0.247 0.158 0.275 0.428
MuRP (2019a) - 0.475 0.436 0.487 0.554 - 0.336 0.245 0.370 0.521
BoxE (2020) 3207 0.451 0.400 0.472 0.541 163 0.337 0.238 0.374 0.538
RotatE † (2019) 3340 0.476 0.428 0.492 0.571 177 0.338 0.241 0.375 0.533
Rot-Pro † (2021) 2815 0.457 0.397 0.482 0.577 201 0.344 0.246 0.383 0.540
ConvE (2018) 4187 0.430 0.400 0.440 0.520 244 0.325 0.237 0.356 0.501
R-GCN+ (2018) - - - - - - 0.249 0.151 0.264 0.417
NKGE (2018) 4170 0.450 0.421 0.465 0.526 237 0.330 0.241 0.365 0.510
DihEdral (2019) - 0.486 0.442 0.505 0.557 - 0.320 0.230 0.353 0.502
Rotate3D † (2020) 3328 0.489 0.442 0.505 0.579 165 0.347 0.250 0.385 0.543
QuatE (2019) 3472 0.481 0.436 0.500 0.564 176 0.311 0.221 0.342 0.495
DualE (2021) - 0.482 0.440 0.500 0.561 - 0.330 0.237 0.363 0.518
RotateCT (2022) 3285 0.492 0.448 0.507 0.579 171 0.347 0.251 0.382 0.537
DCNE (ours) 3244 0.492 0.448 0.510 0.581 169 0.354 0.257 0.393 0.547

Table 3: Link prediction results on WN18RR and FB15k-237. [†]: Results with the self-adversarial negative sampling.

WN18RR FB15k-237
MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

RotatE w/ self-adv � 3340 0.476 0.428 0.492 0.571 177 0.338 0.241 0.375 0.533
RotatE w/o self-adv � - - - - - 185 0.297 0.205 0.328 0.480
RotateCT w/ self-adv � 3285 0.492 0.448 0.507 0.579 171 0.347 0.251 0.382 0.537
RotateCT w/o self-adv 2950 0.486 0.441 0.501 0.572 175 0.314 0.215 0.352 0.509
DCNE w/ self-adv 3244 0.492 0.448 0.510 0.581 169 0.354 0.257 0.393 0.547
DCNE w/o self-adv 2908 0.489 0.446 0.504 0.574 181 0.349 0.253 0.388 0.542

Table 4: Ablation study results on WN18RR and FB15k-237, where “self-adv” denotes the self-adversarial negative
sampling. [�]: Results are taken from the original paper.

the entities that can be reached from s via p. A
path p consists of a sequence of relations, i.e.,
r1 → ... → rj, where j is the length of p. Notably,
link prediction can be viewed as a special case
of path query answering when the path length is
fixed to 1. However, different from link prediction,
path query answering requires the ability of muti-
hop reasoning, in which modeling the composition
patterns is crucial.

Datasets. We conduct experiments on two
datasets released by Guu et al. (2015), which
are extracted from WordNet and Freebase. Both
datasets contain triplets and paths.

Evaluation Protocol. We use the same evalua-
tion protocol as in (Guu et al., 2015). For each test
path pt = s → r1 → ... → rj → o, the correspond-
ing query q is s → r1 → ... → rj → ?. For each
query q, the candidate answers are entities that
“type-match”, i.e., all tail entities of the final relation
rj. The correct answers are entities that can be
reached from s by traversing the path p; the incor-
rect answers are obtained by filtering out the correct
answers from the candidate answers. The set of

candidate answers to a query q denotes as C(q);
the set of correct answers to a query q denotes
as P(q); the set of incorrect answers to a query q
denotes as N (q). We give the formal definition of
C(q), P(q), and N (q) as follows:

C(q) � {o|∃e s.t. (e, rj, o) ∈ G}
P(q) � {o|∃e1, ..., ej−1 s.t. (s, r1, e1), ..., (ej−1, rj, o) ∈ G}
N (q) � C(q)\P(q)

Here G includes training triplets and test triplets.
For each test path pt, we replace entity o with en-
tities in C(q) and compute the score of each can-
didate answer. Then we rank the scores of can-
didates along with the score of pt in descending
order and caculate the quantile, which is the pro-
portion of incorrect answers ranked after the target
answer o. We report the mean quantile (MQ) and
Hits@10 on this task. MQ is the average quantile of
all test paths. Hits@10 represents the percentage
of target answers whose rank is not larger than 10.
Higher MQ and higher Hits@10 indicate the better
performance.
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WordNet Freebase
Model MQ Hits@10 MQ Hits@10
DistMult 0.904 0.311 0.848 0.386
TransE 0.933 0.435 0.880 0.505
RotatE 0.947 0.653 0.901 0.601
Rotate3D 0.949 0.671 0.905 0.621
RotateCT 0.949 0.673 0.907 0.630
DCNE (ours) 0.949 0.674 0.911 0.630

Table 5: Path query answering results on WordNet and
Freebase.

Implementation Details. We train DCNE with
all paths in the training set, which is denoted as
“Comp” in (Guu et al., 2015). Note that triplets are
the paths of length 1. To make the results directly
comparable, we follow Gao et al. (2020) to train
DCNE on paths of length 1 to 5 in turn, i.e., we
train our model on paths of length i until conver-
gence before training on paths of length i+ 1. The
experimental environment is the same as in link
prediction.

Main Results. We compare our method DCNE
to several representative models, such as Dist-
Mult (Yang et al., 2015), TransE (Bordes et al.,
2013), RotatE (Sun et al., 2019), Rotate3D (Gao
et al., 2020) and RotateCT (Dong et al., 2022).

Table 5 shows experimental results on both Word-
Net and Freebase. Best results are in bold and sec-
ond best results are underlined. Compared with
other methods, DCNE achieves consistent perfor-
mance improvement on the two datasets, which
indicates the superiority of DCNE in modeling the
composition patterns. Specifically, DCNE signifi-
cantly outperforms DistMult, TransE and RotatE,
while slightly surpasses Rotate3D. We argue that
this is because DCNE and Rotate3D both have the
ability of modeling the non-commutative composi-
tion patterns, whereas others do not.

6. Case Studies

In this section, we verify that DCNE can effectively
model all the three types of relation patterns by his-
tograms, some intuitive examples and quantitative
experiments.

6.1. Symmetry/Antisymmetry

According to Corollary 1, the phase of each ele-
ment in the embeddings of a symmetric relation
should be 0 or ±π. For an antisymmetric relation,
the phases should not be 0 and ±π. We investigate
the phases of elements in relation embeddings from
a 1000-dimensional DCNE trained on WN18 and
a 1000-dimensional DCNE trained on FB15k-237
with their best hyperparameters in link prediction.

(a) (b) (c)

Figure 3: (a) Histogram of relation embeddings
phases {θr,i}(ri = cos

θr,i
2

+ sin
θr,i
2
(i + xr,iε +

yr,iiε)) of a symmetric relation: similar_to. (b) His-
togram of relation embeddings phases {θr,i} of an
antisymmetric relation, where parent_genre represents
/music/genre/parent_genre. (c) Histogram of the addi-
tion of relation embeddings phases {(θ1,i + θ2,i)} of a
pair of inverse relations: has_part ◦ part_of, where ◦ is
the Hadmard (or element-wise) product.

Dauphin
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Louis_i
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parents

spouse
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parents

parents

Figure 4: A subgraph about Dauphin’s family. Dauphin’s
parents’ spouse are Leszczynska and Louis_ii; Dauphin’s
spouse’s parents is Josepha; Dauphin’s parents’ parents
are Stanislaw, Katarzyna, Louis_i and Adelaide.

Fig. 3(a) gives the histogram of a symmetric rela-
tion in WN18: similar_to. We can find that most
phases of similar_to are either 0 or ±π. The his-
togram of an antisymmetric relation parent_genre in
FB15k-237 is shown in Fig. 3(b), from which we can
find that the phases of parent_genre are scattered
and most phases of parent_genre are neither 0 nor
±π. The above observations indicate that DCNE
can effectively model the symmetry/antisymmetry
patterns.

6.2. Inversion
According to Corollary 2, if there exists inverse rela-
tionship between r1 and r2, each element of the ad-
ditive embedding phases, i.e., θ1,i + θ2,i, should be
0 or ±2π. We use the same DCNE model trained on
WN18 for an analysis. Fig. 3(c) shows the element-
wise addition of the embedding phases of a pair of
inverse relations: has_part and part_of. We can
find that most additive embedding phases are either
0 or±2π, which illustrates that DCNE can effectively
model the inversion patterns.

6.3. Composition
Fig. 4 shows a subgraph extracted from the Free-
base dataset. In this subgraph, parents and spouse
form a non-commutative composition pattern, in
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Figure 5: Top 5 answers of DCNE and RotatE for three
queries. Q1: Who are Dauphin’s parents’ spouse? Q2:
Who are Dauphin’s spouse’s parents? Q3: Who are
Dauphin’s parents’ parents? Correct answers are in
bold.

Hits@1 Hits@3

RotatERotate3DDCNERotatERotate3DDCNE

parents’ spouse 0.920 0.971 0.973 0.997 1.000 1.000
spouse’s parents 0.692 0.806 0.804 0.922 0.990 0.992
parents’ parents 0.910 0.967 0.968 0.984 1.000 1.000

Table 6: Results of two non-commutative composition
patterns “parents’ spouse” and “spouse’s parents”, and
one commutative composition pattern “parents’ parents”
on the Freebase dataset.

which the meaning of “parents’ spouse” is differ-
ent from “spouse’s parents”. In addition, there is
a commutative composition pattern “parents’ par-
ents”. We use a DCNE and a RotatE, both trained
with their best hyperparameters on the Freebase
in path query answering for an analysis.

Non-commutative Composition. From Fig. 5,
we find that DCNE predicts the queries “Q1: Who
are Dauphin’s parents’ spouse?” and “Q2: Who
are Dauphin’s spouse’s parents?” correctly, which
indicates that DCNE can effectively model the non-
commutative composition patterns. By compari-
sion, RotatE confuses the two queries and gives
unsatisfactory answers to the query “Q2: Who
are Dauphin’s spouse’s parents?”, which proves
that RotatE lacks the ability of modeling the non-
commutative composition patterns.

Commutative Composition. We further inves-
tigate the ability of modeling the commutative com-
position patterns. As shown in Fig. 5, DCNE pre-
dicts the query “Q3: Who are Dauphin’s parents’
parents?” correctly, which indicates that DCNE
can effectively model the commutative composition
patterns. By contrast, RotatE misses one correct
answer in top 5 answers. One reason is that the in-
ability of RotatE in modeling the non-commutative
composition patterns has an adverse impact on

embeddings’ learning. Intuitively, if RotatE repre-
sents “parents’ spouse” and “spouse’s parents” in
the same way, it is hard to decide what seman-
tic information to retain and what to discard. This
dilemma prevents RotatE from effectively learning
the semantics of parents and spouse, which in turn,
will reduce RotatE’s performance on modeling the
pattern “parents’ parents”.

To verify our analysis, we evaluate two
non-commutative composition patterns “parents’
spouse” and “spouse’s parents”, and one commu-
tative composition pattern “parents’ parents” on the
Freebase dataset. From Table 6, we observe that
DCNE outperforms RotatE on all three patterns
and obtains better performance than Rotate3D,
which fully demonstrates the effectiveness of dual
complex number embeddings in modeling the non-
commutative composition patterns. Due to effec-
tively learning the semantics of parents and spouse,
DCNE achieves better performance than RotatE
on the “parents’ parents” pattern.

7. Conclusion

In this paper, we propose a new KGE method called
DCNE, which projects entities to the dual com-
plex number space, and represents relations as
rotations around any point in 2-dimensional Eu-
clidean space via dual complex number multipli-
cation. Due to the non-commutativity of the dual
complex number multiplication, DCNE can model
not only the commutative composition patterns, but
also the non-commutative composition patterns. In
the meantime, modeling relations as rotations in 2D
space can effectively improve the parameter effi-
ciency. Experimental results on link prediction and
path query answering demonstrate the superiority
of DCNE in single-hop reasoning and multi-hop rea-
soning. Case studies confirm the ability of DCNE
in modeling all the relation patterns. Parameter ef-
ficiency analysis proves that DCNE can reduce the
space cost compared to quaternion-valued meth-
ods. In future work, we will explore the different
usages of dual complex numbers.
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